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with alkynes under CFL (Compact fluorescent light) irradia-
tion as a source of visible light resulting in the formation 
of C–N bonds, is the characteristic feature of the present 
strategy. Scope of the present protocol is further extended 
by using benzyl chloride in place of epoxide.

Keywords  Visible light · [3 + 2] cycloaddition · Eosin Y · 
Regioselective · 1,2,3-Triazole

1  Introduction

Recently, the focus of the chemists is shifting towards syn-
thetic routes employing green aspects [1–5]. Taking into 
consideration the increasing concern for the environment, 
the chemists are making a constant effort to adopt syn-
thetic routes that discourage the involvement of hazardous 
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Abstract  A visible light initiated, mild, one pot, multicom-
ponent copper catalyzed azide alkyne [3 + 2] cycloaddition 
in the presence of organo photoredox catalyst Eosin Y using 
EtOH:H2O as reaction medium for the synthesis of substi-
tuted 1,2,3-triazoles is reported. A facile regioselective ring 
opening of epoxides followed by 1, 3 dipolar cycloaddition 
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chemicals. In this recent past, light has been utilized as one 
of the most efficient and prominent resources to achieve 
synthetically useful organic transformations [6–10]. A bulk 
of chemists are experimenting with visible light (generally 
CFLs and LEDs) because of its unique properties like easy 
availability, easy handling and serving as an eco-efficient, 
cost effective, environmentally benign and unending source 
of energy for the construction of organic molecules [11, 12]. 
It is able to transfer the activation energy to the reactants 
in chemical reactions. Thus visible light promoted cataly-
sis has originated as one of the most sustainable tools in 
organic synthesis being accessible to a myriad of reactions 
[13–17]. However, some organic molecules are unable to 
absorb visible light [18]. To triumph over this barricade, 
chemists use photo sensitizers. In literature various methods 
have been revealed in which transition metals [19–22], nano-
particles [23–25] and certain organic dyes [26–29] are uti-
lized as photocatalysts. Howbeit trasition metals like Ru(II) 
and Ir(II) complexes exhibit a number of impediments as 
they proclaim adverse inherent malignancy, high toxicity, 
low sustainability, short durability and expensiveness [30, 
31]. Within this context, an organic dye, eosin Y (EY), is a 
fascinating alternative to transition metal photocatalysts and 
has lately been extensively used as a photoredox catalyst. It 
undergoes redox quenching to generate radical anion or radi-
cal cation and this process has been done via photoexcitation 
of eosin Y with simultaneous reductive or oxidative quench-
ing through acceptance or donation of an electron [30].

Over the past few years, nitrogen heterocycles have gained 
substantial attention [32] (https://cen.acs.org/content/dam/
cen/supplements/CENsupplement092014.pdf, http://www.
fiercepharma.com/special-report/top-20-generic-molecules-
worldwide). In September 2014, C and EN Supplement pre-
sented top fifty drugs, most of them enclosed at least one 
nitrogen-containing heterocycle (https://cen.acs.org/con-
tent/dam/cen/supplements/CENsupplement092014.pdf). It 
is present in a range of natural products, biologically active 
structures and medicinally important compounds. 1,2,3-tri-
azoles, five-membered nitrogen containing heterocycles, 
reveal diverse biological activities such as being anti-allergic 
[33], anti-HIV [34, 35], anti-microbial [36], anti-bacterial 
[37], anticancerous [38], antifungal [39], antimalarial [40], 
anti-inflammatory [41], antitubercular [42], β3-adrenergic 
receptor agonist [43] and having antioxidant activity [44]. 
They also find industrial applications in optical brighteners, 
corrosion decelerating agents, dyes, agrochemicals, fungi-
cides, herbicides and solar cells [45–48] (Fig. 1) [49–53].

Multicomponent reactions (MCRs) are highly cost-
effective, environmentally benign and absolutely appropri-
ate for combinatorial library synthesis and have thus gained 
colossal advantages over conventional multi-step reaction 
sequences managing to diminish waste, time and cost suc-
cessfully [54–58]. Huisgen 1,3-dipolar cycloaddition is one 

of the prominent reaction for the synthesis of 1,2,3-triazoles 
via copper-catalyzed azide–alkyne cycloaddition (CuAAC). 
Various methods for the synthesis of 1,2,3-triazoles in dif-
ferent reaction conditions have been developed [59–74]. 
Although the reported methods have several merits, how-
ever they were associated with some drawbacks like use of 
costly and bulky catalysts, non-reusability of catalyst, use 
of base, difficulty in the recovery of high boiling solvent, 
high temperature and use of excess amounts of reagents or 
catalysts which entails to design a more facile and eco-effi-
cient protocol for the synthesis of 1,2,3-triazoles. In order to 
extend our work on visible light induced synthesis [75–78], 
here we have documented a visible light promoted Eosin Y 
and copper (I) iodide catalyzed [3 + 2] cycloaddition for the 
synthesis of 1,2,3-triazoles initiating from epoxides, sodium 
azide and terminal alkynes. The scope of the present proto-
col has been further increased by using benzyl chloride in 
place of epoxides (Scheme 1).

2 � Results and Discussion

For the attainment of optimization, we took styrene oxide 
(1a), sodium azide (2) and phenyl acetylene (3a) as model 
substrates for the synthesis of 1,2,3-triazoles. During our ini-
tial attempts, we optimized the reaction conditions by using 
varied catalysts, photosensitizers and different sources as 
well as intensities of visible light (Table 1). Initially, we took 
styrene oxide (1a, 1.0 mmol), sodium azide (2, 1.0 mmol) 
and phenyl acetylene (3a, 1.0 mmol) under CFL (23 W) irra-
diation in the absence of catalyst at room temperature and 
found that product did not form after 24 h of CFL irradia-
tion (Table 1, entry 1). After that, we performed our test 
reaction in the presence of catalysts. In the first instance, we 
used copper(II) chloride as a catalyst and afforded 41% yield 
of product within 8 h (Table 1, entry 2). Similarly when 
we used copper(I) oxide, it resulted in the product in 6 h 
with 50% yield (Table 1, entry 3). However when we used 
copper(I) iodide as a catalyst for the test reaction, surpris-
ingly an improved result was obtained with 60% yield of 
the product in 5 h (Table 1, entry 4). On the basis of above 
investigations, we concluded that catalyst is mandatory for 
the reaction to proceed and copper(I) salts are suitable for 
the present transformation as it forms copper(I) phenyla-
cetylide, which is the essential light absorbing species and 
increases the efficiency of reaction in presence of visible 
light [79–82]. Although the reactions proceeded well in the 
presence of copper(I) iodide, the yield and reaction time 
have not been much satisfactory. In order to further increase 
the effectiveness of the model reaction, we decided to make 
use of various types of photocatalysts. Within this context, 
we used a range of photocatalysts (Table 1, entries 5–9) and 
found that Eosin Y encouraged the reaction and furnished 
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Fig. 1   Some biologically important derivatives of 1,2,3-triazole

N N
N

R2

R1

HO

4

N N
N

R2

HO

When R1= Aryl When R1= Alkyl

O

R1

NaN3

R2

1
2

3

OR

Cl

5

N N
N

R2
6

Present work

Previous works[59–74]

O

R1

NaN3

R2

1 2

3

OR

Cl

5

N N
N

R2
6

EtOH:H2O(1:1)

CuI

CFL(23W)

Eosin Y

     High 
Temprature

Base

 Expensive
 Catalysts

N N
N

R2

R1

HO

4
When R1= Aryl When R1= Alkyl

OR

OR
rt

R1

N N
N

R2

HO

R1

R3

R3
R3

R3

Scheme 1   Synthesis of 1,2,3-triazole
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the products with 82% yields in 3.5 h (Table 1, entry 9). In 
the next endeavour, we focused towards the optimization 
of best catalyst loading for the present protocol (Table 1, 
entries 9–14) which led us to infer that the reaction works 
well with 20 mol% of Copper(I) iodide and 0.1 mol% of 
Eosin Y (Table 1, entry 9).

After this we performed our model reaction with differ-
ent intensities of light source (Table 1, entries 16–19) and 
observed that CFL (23W) is the ideal source of visible light 
for the present protocol (Table 1, entry 18). Moreover, the 
reaction was suppressed with TEMPO (2.0 mmol), clearly 
indicating that the reaction proceeds through a free radical 
pathway (Table 1, entry 20) [83–85].

Table 1   Optimization of reaction conditions 

Reaction condition: 1a (1.0 mmol), 2 (1.0 mmol), 3a (1.0 mmol) in EtOH: H2O irradiated using CFL under open air at room temperature
a Yield of the product (%)
b Absence of catalysts
c Not detected
d Cerric Ammonium Nitrate
e Rose Bengal
f Eosin Blue
g Dark
h (2,2,6,6-Tetramethyl-piperidin-1-yl)oxyl

Entry Catalyst Time (h) Yielda (%)

1 Noneb 24.0 –c

2 CuCl2 (20 mol%) 8.0 41
3 Cu2O (20 mol%) 6.0 50
4 CuI (20 mol%) 5.0 60
5 CuI (20 mol%) + Iodine (0.1 mol%) 4.5 71
6 CuI (20 mol%) + CANd (0.1 mol%) 4.5 72
7 CuI (20 mol%) + RBe (0.1 mol%) 4.0 78
8 CuI (20 mol%) + EBf (0.1 mol%) 3.5 76
9 CuI (20 mol%) + Eosin Y (0.1 mol%) 3.5 82
10 CuI (10 mol%) + Eosin Y (0.1 mol%) 3.5 72
11 CuI (15 mol%) + Eosin Y (0.1 mol%) 3.5 75
12 CuI (30 mol%) + Eosin Y (0.1 mol%) 3.5 82
13 CuI (20 mol%) + Eosin Y (0.05 mol%) 3.5 78
14 CuI (20 mol%) + Eosin Y (0.2 mol%) 3.5 82
15 CuI + Eosin Yg 12.0 25
16 CuI + Eosin Y (18 W CFL) 3.5 75
17 CuI + Eosin Y (20 W CFL) 3.5 77
18 CuI + Eosin Y (23 W CFL) 3.5 82
19 CuI + Eosin Y (27 W CFL) 3.5 82
20 CuI + Eosin Y + TEMPOh 12.0 Trace
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After the finalization of the best catalytic system, we next 
screened different solvents to further optimize the reaction 
conditions (Table 2). Initially, we used DMF as a solvent 
and found that after 24 h of CFL irradiation the product was 
formed in traces (Table 2, entry 1). After that a batch of reac-
tions with polar aprotic solvents (Table 2, entries 2–6) were 
performed but still neither yield nor time of reaction was 
satisfactory for the desired transformation. Further we used 
polar protic solvents (Table 2, entries 7–12) and discovered 
that the present strategy is effective with them. Among them 
EtOH:H2O (1:1) combination of solvent was observed as 
most appropriate for the required transformation (Table 2, 
entry 10). EtOH:H2O (1:1) solvent system might be effective 
because of greater solubility of reactants in this medium or 
due to an increase in the number of collisions between reac-
tants which resulted in enhancement of their ground state 
energy and reaction rates [86–90]. A hypothesis is also asso-
ciated with it; the transition states of present reaction could 
be stabilized by water as it has high static permittivity [91]. 

We also carried out the test reaction in neat condition but no 
result was obtained even 24 h of CFL irradiation (Table 2, 
entry 13). So the EtOH:H2O (1:1) mixed solvent system has 
been found to be most effective, convenient and efficient for 
the required transformation.

Once we had the optimal reaction conditions in hand, 
we next sought to extend this methodology with scope 
and limitations of the present synthetic strategy. In this 
regard, we used different derivatives of epoxide (1) as 
well as alkynes (3) (Table 3). It was observed that aryl 
substituted epoxides afforded the reactions more effec-
tively in comparison to alkyl substituted epoxides. It was 
interestingly observed that in the case of aryl substituted 
epoxides a preferential attack on the more hindered car-
bon atom took place (Table 3, entries 1, 2, 3, 4 and 6) [59, 
60, 63]. In contrast, alkyl substituted epoxides involved 
attack at less hindered carbon atom (Table 3, entries 8, 
10, 11 and 12). Similar less hindered attack was found 
with glycidyl phenyl ether and isopropyl glycidyl ether 

Table 2   Optimization of solvents for the synthesis of compound 4a 

Reaction condition: 1a (1.0 mmol), 2 (1.0 mmol), 3a (1.0 mmol) in solvent irradiated using CFL (23W) under open air at room temperature.
a Yield of the product (%)
b Not detected.

Entry Solvents Time (h) Yielda (%)

1 DMF 24.0 Trace
2 THF 6.0 45
3 DMSO 10.0 21
4 DCM 10.0 26
5 DCE 24.0 Trace
6 CH3CN 10.0 49
7 MeOH 7.0 70
8 H2O 4.0 75
9 EtOH 4.5 71
10 EtOH: H2O (1: 1) 3.5 82
11 EtOH: H2O (2: 1) 3.5 78
12 EtOH: H2O (3: 1) 3.5 78
13 Neat 24.0 –b
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Table 3   Substrate scope for the synthesis of compound 4 

Entry Epoxide (1) Alkyne (3) Product (4) Yielda (%) Time (h) M. P. (℃)

1 82 3.5 126–127 °C [63]

2 72 5.0 62–63 °C [59]

3 74 5.0 65–67 °C [67]

4 82 3.5 123–125 °C [59]

5 73 4.5 126–128 °C [68]

6 75 4.0 – [60]
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(Table 3, entries 5 and 7) [60]. As in epoxides, alkynes 
with aryl substitution react faster and more efficiently 
than those with alkyl substitution. Adopting the same 

experimental route, we further extended the scope of 
this methodology for the synthesis of 1,2,3-triazole by 
replacing epoxide by Benzyl chloride (5). It resulted in 

Reaction condition: 1 (1.0 mmol), 2 (1.0 mmol), 3 (1.0 mmol) in EtOH: H2O irradiated using CFL (23W) under open air at room temperature
a Yield of the product (%)

Table 3   (continued)

Entry Epoxide (1) Alkyne (3) Product (4) Yielda (%) Time (h) M. P. (℃)

7 71 5.0 62–64 °C [59]

8 78 4.0 168–170 °C [63]

9 70 5.0 101–103 °C [67]

10 76 4.0 109–110 °C [59]

11 70 7.5 93–94 °C [67]

12 69 7.5 105–107 °C [63]
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Table 4   Substrate scope for the synthesis of compound 6 

Entry Benzyl chloride (5) Alkynes (3) Product (6) Time (h) Yielda (%) M.P. (℃)

1 1.5 85 127–129 °C [64]

2 3.0 75 – [70]

3 2.5 87 151–152 °C [64]

4 Cl

5b
H3CO

3.0 82 127–128 °C [71]

5
N N

N

6e

Br

2.0 86 149–150 °C [64]

6 Cl

5c
Br

3e

H3C
6f

CH3

Br

N N
N

2.0 85 203–204 °C [64]

7 Cl

5d
O2N

3a

N N
N

O2N

6g

2.0 87 141–142 °C [64]
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the formation of a new series of derivatives of 1,2,3-tria-
zole (6) (Table 4, entries 1–10).

2.1 � Mechanism

A proposed mechanistic route, the cornerstone of litera-
ture survey [21, 79–82, 84, 92–100], for 1,2,3-triazoles 
has been postulated (Schemes 2, 3). On photo-absorption 
Eosin Y, a photoredox catalyst gets excited to its singlet 
state (1EY*) and is then converted to a more stable triplet 
state (3EY*) via inter system crossing (ISC). After this it 
undergoes a single electron transfer (SET) and converts 
epoxide (1) into an arene radical cation (A) which fur-
ther gets converted into its stable benzyl cation (A’) form 
[92]. Next azide attacks as a nucleophile, at the same time 
Eosin Y undergoes a single electron transfer (SET) and 
(B) results into (C). After that (C) takes a proton from the 
solvent and converts into (D) which resulted in its active 
1, 3 dipolar form (E). Simultaneously, phenyl acetylene 
reacts with copper (I) iodide to form a light absorbing 
species, copper (I) phenylacetylide (F). In last step (E) and 
(F) undergo the well known [3 + 2] cycloaddition which 

consequently leads to the formation of the desired scaffold, 
1,2,3-triazole.

3 � Conclusion

In conclusion, we have divulged the successful, visible-
light-promoted synthetic approach to accomplish a slick 
synthesis of 1,2,3-triazole, a biologically and pharmaceu-
tically significant scaffold, via multicomponent [3 + 2] 
CuAAC using epoxide (1), sodium azide (2) and terminal 
alkyne (3) as reactants in presence of eosin Y, a photosensi-
tizer and copper iodide. The present synthetic strategy has 
been pertained to the quick synthesis of 1,2,3-triazole using 
commercially available substrates, without employing harsh 
reaction conditions. The expansion of this methodology has 
been achieved by the use of a range of epoxides as well as 
phenylacetylene and benzyl chloride derivatives. The use 
of ubiquitous visible light makes the adopted procedure 
immensely green.

Reaction condition: 5 (1.0 mmol), 2 (1.0 mmol), 3 (1.0 mmol) in EtOH: H2O irradiated using CFL (23W) under open air at room temperature
a Yield of the product (%)

Table 4   (continued)

Entry Benzyl chloride (5) Alkynes (3) Product (6) Time (h) Yielda (%) M.P. (℃)

8 Cl

5d
O2N

3e

H3C

N N
N

6h

O2N

CH3

2.5 86 244–245 °C [64]

9 Cl

5e

Cl

3a

N N
N

6i

Cl

2.5 85 96–98 °C [70]

10 Cl

5fCl
3a

N N
N

6j

Cl

2.5 84 86–88 °C [64]
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