One-Pot-One-Step, Microwave-Assisted Fischer Indole Synthesis

Evelyn Cuevas Creencia,^a* Masayuki Tsukamoto,^b and Takaaki Horaguchi^b*

 ^aDepartment of Chemistry, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
 ^bDepartment of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan
 *E-mail: ec.creencia@gmail.com or hora@chem.sc.niigata-.ac.jp Received May 6, 2010 DOI 10.1002/jhet.689

Published online 19 May 2011 in Wiley Online Library (wileyonlinelibrary.com).

The Fischer indole synthesis was carried out using microwaves instead of conventional heating procedures. When the mixture of phenylhydrazine, cyclohexanone and zinc chloride was irradiated at 600 W for 3 min, 76% of 1,2,3,4-tetrahydrocarbazole was obtained. However, when zinc chloride was replaced with *p*-toluenesulfonic acid (*p*-TSA), the reaction yielded 91% of 1,2,3,4-tetrahydrocarbazole. Thus, a series of indoles were prepared using microwaves in the presence of *p*-TSA catalyst.

J. Heterocyclic Chem., 48, 1095 (2011).

INTRODUCTION

The synthesis of indoles has always been in the frontline of researches because of their many potential uses in the field of medicine [1-3]. Reviews have been written on the diverse methods for the synthesis of indole and its derivatives [3–5]. However, of the many available methods for the synthesis of indoles, the Fischer indole reaction, which was described over a century ago, is still the most versatile and important method for the synthesis of this group of compounds [3,4,6]. The reaction produces the aromatic heterocycle indole from substituted phenylhydrazines and aldehyde or ketone under acidic conditions. Initially, the reaction forms a phenylhydrazone, which undergoes isomerization to the respective enamine (or ene-hydrazine). After protonation, a cyclic [3,3]-sigmatropic rearrangement occurs to produce an imine. The resulting imine then forms a cyclic aminoacetal (or aminal) which, under acid catalysis, eliminates NH₃ to give the energetically favorable indole (Scheme 1).

The choice of acid catalysts is very important. Brønsted acids such as HCl, H₂SO₄, polyphosphoric acid, and *p*-toluenesulfonic acid (*p*-TSA) have been used successfully. Lewis acids, such as boron trifluoride, zinc chloride, iron chloride, and aluminum chloride are also used as catalysts [4,7,8]. More recently, thionyl chloride in ethanol was also experimented for the synthesis of substituted (*N*-acylamino)-2-phenylindoles [9]. New methods for the Fischer indole synthesis have been developed such as the one-pot, multiple component method, which has been reported to give indoles in good yield [10]. The method is convenient because it usually starts from commercially available precursors, thus eliminating the necessity of preparing and isolating the unstable arylhydrazones (Scheme 2) [11].

A number of studies utilizing this method have been reported [12]. The one-pot synthesis (90°C, 3 h) of indoles in acetic acid medium from phenylhydrazine hydrochloride with various acyclic ketones has been reported in literature [7]. To better improve the method, microwave irradiations were used instead of the conventional heating procedures [13]. A number of reports have indicated that the use of microwave radiations with the one-pot method improves the yield of indoles, reduces reaction time, and eliminates the need of solvents for the

reactions [7,14]. Aside from this, use of solid-support and solid catalysts along with the one-pot, solvent-free microwave-assisted reaction is gaining much attention in the scientific community [1,7,8,15–18].

The goal of this present study is to synthesize indoles by one-pot-one-step, solvent-free, microwave-assisted Fischer indole reaction (Scheme 3). In the course of the study, several protic acids were investigated for their efficiency as catalysts for the reaction. These were used in the model reaction between phenylhydrazine and cyclohexanone and the mixture irradiated with microwaves at 600 W for 3 min. From among the acids investigated (H₂SO₄, HCl, ZnCl₂, and *p*-TSA), *p*-TSA gave the highest yield of 1,2,3,4-tetrahydrocarbazole (91%). The conventional Fischer reaction was then carried out using p-TSA without a solvent (120°C, 4 h, 15% yield) and with xylene as solvent (120°C, 6 h, 19% yield) [19]. The microwave-assisted reaction gave a better yield at shorter reaction time. This method was applied to various phenylhydrazines and enolizable ketones, and the results are discussed in this article.

RESULTS AND DISCUSSION

A one-pot-one-step, solvent-free, microwave-assisted Fischer indole synthesis (Scheme 3) is investigated

Scheme 2. Fischer indole synthesis. (a) classical two-step procedure and (b) one-pot-one-step procedure.

Scheme 3. One-pot-one-step, microwave-assisted Fischer indole synthesis.

using various readily available substituted phenylhydrazines and enolizable ketones.

Table 1 gives the results of the synthesis of indoles when phenylhydrazine 1a was reacted with various enolizable ketones 2a-f (Scheme 4). The results show that the reaction of phenylhydrazine **1a** with the different enolizable ketones 2a-f gave excellent yields (76-96%) of the corresponding 1H-indoles 3a-f. Liu et al. [18] reported 60% yield of 3-methyl-2-phenylindole 3a, 31% yield of 2,3-diphenylindole 3b and 54% yield of 1,2,3,4tetrahydrocarbazole **3d** from phenylhydrazine and α branched aldehydes via rearrangement of 3,3-disubstituted indolenine intermediates, with the reaction conducted at 110°C for 6 h. Reduction of 2-(2-nitrophenyl)-2-cyclohexene-1-one with Pd/C catalyst and 1 atm H_2 at ambient temperature yielded 22% of 1,2,3,4-tetrahydrocrbazole 3d [20]. The Fischer reaction of phenylhydrazine and cyclohexanone carried out in the presence of Brønsted acidic ionic liquid gave a comparable yield of 1,2,3,4-tetrahydrocarbazole **3d** (92%, 70°C, 1 h) [11]. The microwave-assisted Bischler reaction of aniline and 2-bromocyclohexanone in ethoxyethanol (325 W, 10 min, N2 atmosphere) yielded 84% of 1,2,3,4-tetrahydrocarbazole [21] **3d** whereas the microwave-assisted cycloisomerization of 2-alkynylanilines in water without catalysts, acids, or bases, gave 46% of 2-phenylindole (200°C, 90 min) [22].

Table 2 gives the results for the reaction of *p*-methylphenylhydrazine **1b** and various enolizable ketones **2a–f** (Scheme 5). The results show excellent yields (84–97%) of the different 1*H*-indoles **4a–f** from the one-pot-onestep, solvent-free, microwave-assisted method. Chen and Hu [21] reported 83% yield of 6-methyl-1,2,3,4-tetrahydrocarbazole **4d** by irradiating a mixture of 4-methylaniline and 2-bromocyclohexanone at 325 W for 10 min under nitrogen condition. The present method yielded 93% **4d** by irradiating a mixture of 4-methylphenylhydrazine hydrochloride and cyclohexanone at 80 W for 5 min in the presence of *p*-TSA catalyst.

Entries		2	Power (W)	Time (min)	Product	3	Yield ^a (%)
1	Ph CH3	2a	600	3	CH ₃	3 a	86
2	Ph Ph	2b	200	4.5	₩ Ph	3b	76
3	CH3	2c	200	5		3c	94
4		2d	600	3		3d	91
5		2e	600	3		3e	83
6		2f	600	2.5		3f	96

 Table 1

 Reaction of phenylhydrazine 1a and ketones 2a-f.

The reaction of *p*-chlorophenylhydrazine 1c and various enolizable ketones 2a-f conducted under the present method gave excellent product yields (81–95%) of 1*H*-indoles 5a–f (Table 3, Scheme 6). When the mixture of 4-chloroaniline and 2-bromocyclohexanone was irradiated at 325 W for 10 min under nitrogen condition, yield of 71% 6-chloro-1,2,3,4-tetrahydrocarbazole [21] 5d was reported. The present method gave 84% 5d when the mixture of *p*-chlorophenylhydrazine hydrochloride and cyclohexanone was irradiated at 200 W for 1 min in the presence of *p*-TSA catalyst.

Good yields of the products 6a-f (26–83%) were also obtained from the reaction of *p*-methoxyphenylhydrazine 1d and various enolizable ketones 2a–f as shown in Table 4 (Scheme 7). Entry 4 of Table 4 shows that 83% 6methoxy-1,2,3,4-tetrahydrocabazole 6d was obtained when the mixture of *p*-methoxyphenylhydrazine hydrochloride and cyclohexanone was irradiated at 200 W for 1 min in the presence of *p*-TSA catalyst. On the other hand, 49% 6d was obtained when the mixture of 4methoxyaniline and 2-bromocyclohexanone was irradiated at 325 W for 10 min under nitrogen condition [21].

3*H*-Indoles **3–6g** were also synthesized by the onepot-one-step, solvent-free, microwave-assisted Fischer reaction using the unsymmetrically-substituted ketone isobutyrophenone **2g** (Scheme 8). The results in Table 5 show that the reactions also gave good product yields (54–78%).

CONCLUSION

The one-pot-one-step, microwave-assisted Fischer indole synthesis is a convenient method for the synthesis

of various indoles from substituted phenylhydrazines and enolizable ketones. The method does not require the preparation and isolation of the unstable arylhydrazones because commercially available precursors are used as starting reagents. The results revealed that the one-potone-step, solvent-free microwave-assisted Fischer indole reaction gave higher product yields at shorter reaction times as compared with previously reported methods. In summary, the present study describes a method for the synthesis of indoles from substituted phenylhydrazines and enolizable ketones that gives better product yields at shorter reaction times and does not necessitate the use of solvent.

EXPERIMENTAL

The microwave oven used for the reactions was Model YD-17 (W), Yoshii Electric. The reaction vessel was a Pyrex test tube (15 mm i.d. \times 17 mm o.d. \times 105 mm h) placed in a 50mL Erlenmeyer flask for support. The melting points are uncorrected. Column chromatography was performed on silica gel (Wakogel C-200). Unless otherwise stated, anhydrous sodium sulfate was used as the drying agent. The IR spectra were measured on a Hitachi Model 270-30 IR spectrometer. The ¹H NMR and ¹³C NMR spectra were measured at 500 and 125 MHz, respectively, on a Varian Unity plus-500W NMR

Scheme 4. One-pot-one-step, microwave-assisted reaction of phenylhydrazine 1a and enolizable ketones 2a-f.

Entries		2	Power (W)	Time (min)	Product	4	Yield ^a (%)
1	Ph CH3	2a	80	5	H ₃ C Ph	4a	88
2	Ph Ph	2b	80	5		4b	87
3	O CH ₃	2c	80	6		4c	84
4	O OH	2d	80	5	H ₃ C	4d	93
5		2e	80	5	H ₃ C	4e	92
6		2f	80	5	H ₃ C	4f	97

 Table 2

 Reaction of *p*-methylhydrazine 1b and ketones 2a–f.

spectrometer, using tetramethylsilane as the internal standard. The starting materials are available commercially and used as received.

One-pot-one-step, solvent-free, microwave-assisted Fischer indole synthesis. A mixture of phenylhydrazine (1.0 mmol), enolizable ketone (1.5, 2.0 or 3.0 mmol), and p-TSA (0.1 mmol) was placed in a test tube, plugged with quartz wool and irradiated with microwaves at a specific power for several minutes. The resulting mixture was then extracted with acetone, filtered, and then concentrated in a rotary evaporator. The residue was subjected to silica gel column chromatography using benzene, benzene:hexane, hexane:ethyl acetate, or hexane:acetone to give the various products.

3-Methyl-2-phenylindole (3a). Colorless crystals from hexane: m.p. 91°C (lit.[23] m.p. 90–92°C); IR (KBr): 3420 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 2.47 (s, 3H), 7.15 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.21 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.35–7.38 (m, 2H), 7.48 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.57–7.62 (m, 3H), 8.01 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.6 (q), 108.7 (s), 110.6 (d), 118.9 (d), 119.5 (d), 122.3 (d), 127.3 (d), 127.7 (d), 128.8 (d), 130.0 (s), 133.3 (s), 134.0 (s), 135.8 (s).

2,3-Diphenylinddole (3b). Colorless crystals from hexane: m.p. 122–124°C (lit.[24] m.p. 122–124°C); IR (KBr): 3392 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 7.15 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.25 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.27–7.35 (m, 4H), 7.38 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.41–7.46 (m, 5H), 7.69 (d, J = 7.5 Hz, 1H), 8.24 (br s, 1H); ¹³C NMR (CDCl₃): δ 110.9 (d), 115.0 (s), 119.7 (d), 120.4 (d), 122.7 (d), 126.2 (d), 127.7 (d), 128.1 (d), 128.5 (d), 128.6 (d), 128.7 (d), 130.1 (s), 132.7 (s), 134.1 (s), 135.0 (s), 135.9 (s).

2-(2'-Hydroxyphenyl)-3-methylindole (3c). Yellow liquid [25]: IR (neat): 3364 cm⁻¹ (O–H); ¹H NMR (CDCl₃): δ 2.32 (s, 3H), 5.54 (br s, 1H), 6.99–7.05 (m, 2H), 7.18 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.25 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.32 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.35–7.41 (m, 2H), 7.62 (d, J = 7.5 Hz, 1H), 8.06 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.3 (q), 110.6 (s), 110.9 (d), 115.8 (d), 119.0 (d), 119.1 (s), 119.8 (d), 120.7

(d), 122.7 (d), 129.3 (s), 129.4 (s), 130.0 (d), 130.4 (d), 136.4 (s), 153.3 (s).

1,2,3,4-Tetrahydrocarbazole (3d). Pale yellow crystals from hexane: m.p. 115–116°C (lit.[26] m.p. 115–116°C); IR (KBr) [21]: 3400 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 1.85–1.95 (m, 4H), 2.69–2.74 (m, 4H), 7.06 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.10 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.65 (br s, 1H); ¹³C NMR (CDCl₃): δ 20.9 (t), 23.1 (t), 23.1 (t), 23.2 (t), 110.1 (s), 110.3 (d), 117.7 (d), 119.0 (d), 120.9 (d), 127.7 (s), 134.0 (s), 135.6 (s).

5,10-Dihydroindeno[1,2-b]indole (3e). Colorless crystals from benzene: m.p. 209°C (lit.[27] m.p. 208–210°C); IR (KBr): 3412 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 3.73 (s, 2H), 7.14–7.24 (m, 3H), 7.33 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.42–7.47 (m, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 8.29 (br s, 1H); ¹³C NMR (CDCl₃): δ 30.3 (t), 112.0 (d), 117.3 (d), 119.0 (d), 120.2 (d), 121.7 (d), 121.8 (s), 124.7 (s), 124.8 (d), 125.5 (d), 126.5 (d), 135.0 (s), 140.6 (s), 143.3 (s), 147.8 (s).

6,11-Dihydro-5H-benzo[a]carbazole (**3f**). Colorless crystals from hexane/benzene: m.p. 161° C (lit.[28] m.p. $160-161^{\circ}$ C); IR (KBr): 3404 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 2.96–3.00 (m, 2H), 3.05–3.09 (m, 2H), 7.12 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.17 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.24–7.29 (m, 2H), 7.33 (d, J = 7.5 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 8.19 (br s, 1H); ¹³C NMR (CDCl₃): δ 19.6 (t), 29.5 (t), 111.1 (d), 112.6 (s), 118.7 (d), 119.7 (d), 119.8 (d),

Scheme 5. One-pot-one-step, microwave-assisted reaction of phenylhydrazine 1b and enolizable ketones 2a–f.

Entries		2	Power (W)	Time (min)	Product	5	Yield ^a (%)
1	Ph CH3	2a	80	5	CI	5a	95
2	Ph Ph	2b	80	5		5b	81
3	CH3	2c	80	4		5c	90
4	O OH	2d	200	1	cr K	5d	84
5		2e	80	5	CI CI CI	5e	89
6		2f	80	5	ci Ci K	5f	91

 Table 3

 Reaction of *p*-chlorophenylhydrazine 1c and ketones 2a–f.

122.3 (d), 126.6 (d), 126.7 (d), 127.4 (s), 128.4 (d), 128.8 (s), 133.0 (s), 136.5 (s), 136.9 (s).

3,3-Dimethyl-2-phenyl-3H-indole (3g). Orange liquid [29]: IR (neat): 2956 cm⁻¹ (C–H); ¹H NMR (CDCl₃): δ 1.59 (s, 6H), 7.27 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.32–7.38 (m, 2H), 7.46–7.52 (m, 3H), 7.70 (d, J = 7.5 Hz, 1H), 8.14 (dd, J = 7.5 Hz, 7.5 Hz, 2H); ¹³C NMR (CDCl₃): δ 24.7 (q), 53.5 (s), 120.8 (d), 125.8 (d), 127.7 (d), 128.2 (d), 128.3 (d), 128.5 (d), 130.4 (d), 133.3 (s), 147.5 (s), 153.0 (s), 183.2 (s).

3,5-Dimethyl-2-phenylindole (4a). Yellow needles from hexane: m.p. $80-82^{\circ}$ C (lit.[30] m.p. $80-82^{\circ}$ C); IR (KBr): 3384 cm⁻¹ (N-H); ¹H NMR (CDCl₃): δ 2.44 (s, 3H), 2.48 (s, 3H), 7.02 (d, J = 7.5 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.38 (s, 1H), 7.46 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.57 (d, J = 7.5 Hz, 2H), 7.90 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.6 (q), 21.5 (q), 108.2 (s), 110.3 (d), 118.6 (d), 118.7 (s), 123.8 (d), 127.1 (d), 127.6 (d), 128.6 (d), 128.7 (s), 130.2 (s), 133.4 (s), 134.1 (s).

5-Methyl-2,3-diphenylindole (4b). Colorless needles from hexane: m.p. 153–154°C (lit.[31] m.p. 153–155°C); IR (KBr): 3360 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 2.44 (s, 3H), 7.07 (d, J = 7.5 Hz, 1H), 7.26–7.34 (m, 5H), 7.35–7.47 (m, 7H), 8.24 (br s, 1H); ¹³C NMR (CDCl₃): δ 21.5 (q), 110.5 (d), 114.6 (s), 119.2 (d), 124.3 (d), 126.1 (d), 127.5 (d), 128.1 (d), 128.5 (d), 128.6 (d), 129.0 (s), 129.7 (s), 130.2 (d), 132.8 (s), 134.1 (s), 134.2 (s), 135.2 (s).

2-(2'-Hydroxyphenyl)-3,5-dimethylindole (4c). Yellow liquid: IR (neat): 3364 cm⁻¹ (O—H); ¹H NMR (CDCl₃): δ 2.29 (s, 3H), 2.49 (s, 3H), 5.61 (br s, 1H), 6.99–7.05 (m, 2H), 7.07 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.40 (s, 1H, s), 7.98 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.2 (q), 21.5 (q), 110.1 (s), 110.6 (d), 115.8 (d), 118.7 (s), 119.3 (s), 120.6 (d), 124.3 (d), 128.3 (d), 129.1 (s), 129.6 (s), 129.9 (d), 130.3 (d), 134.8 (s), 153.3 (s).

6-Methyl-1,2,3,4-tetrahydrocarbazole (4d). Colorless crystals from hexane: m.p. 140°C (lit.[21] m.p. 138–140°C); IR (KBr): 3388 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 1.80–1.93 (m,

4H), 2.43 (s, 3H), 2.65–2.72 (m, 4H), 6.92 (d, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.24 (s, 1H), 7.53 (br s, 1H); ¹³C NMR (CDCl₃): δ 20.9 (q), 21.5 (t), 23.2 (t), 23.2 (t), 23.3 (t), 109.6 (s), 110.0 (d), 117.4 (d), 122.3 (d), 128.0 (s), 128.1 (s), 133.9 (s), 134.2 (s).

8-Methyl-5,10-dihydroindeno[1,2-b]indole (4e). Colorless crystals from benzene: m.p. 225°C (lit.[32] m.p. 225°C); IR (KBr): 3388 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 2.47 (s, 3H), 3.73 (s, 2H), 7.00 (d, J = 7.5 Hz, 1H), 7.20 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.29–7.35 (m, 2H), 7.41–7.47 (m, 2H), 7.52 (d, J = 7.5 Hz, 1H), 8.29 (br s, 1H); ¹³C NMR (CDCl₃): δ 21.5 (q), 30.3 (t), 111.7 (d), 117.2 (d), 118.8 (d), 121.4 (s), 123.2 (d), 124.6 (d), 124.9 (s), 125.5 (d), 126.5 (d), 129.5 (s), 135.1 (s), 140.0 (s), 143.5 (s), 147.8 (s).

8-Methyl-6,11-dihydro-5H-benzo[a]carbazole (4f). Colorless crystals from hexane/benzene: m.p. 184–186°C; IR (KBr): 3400 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 2.47 (s, 3H), 2.92– 2.97 (m, 2H), 3.03–3.07 (m, 2H), 7.01 (d, J = 7.5 Hz, 1H), 7.16 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.22–7.29 (m, 3H), 7.31 (d, J = 7.5 Hz, 1H), 7.34 (s, 1H), 7.90 (br s, 1H); ¹³C NMR (CDCl₃): δ 19.6 (t), 21.5 (q), 29.5 (t), 110.7 (d), 112.3 (s), 118.4 (d), 118.5 (s), 119.7 (d), 123.9 (d), 126.5 (d), 127.6 (d), 128.4 (d), 129.0 (s), 129.1 (s), 133.1 (s), 135.3 (s), 136.4 (s).

3,3,5-Trimethyl-2-phenyl-3H-indole (**4g**). Orange liquid: IR (neat): 2912 cm⁻¹ (C—H); ¹H NMR (CDCl₃): δ 1.58 (s, 6H), 2.44 (s, 3H), 7.13–7.19 (m, 2H), 7.45–7.52 (m, 3H), 7.57 (d, J = 7.5 Hz, 1H), 8.14 (dd, J = 7.5 Hz, 7.5 Hz, 2H); ¹³C NMR (CDCl₃): δ 21.6 (q), 24.7 (q), 53.3 (s), 120.4 (d), 121.6 (d),

Scheme 6. One-pot-one-step, microwave-assisted reaction of phenylhydrazine 1c and enolizable ketones 2a–f.

Entries		2	Power (W)	Time (min)	Product	6	Yield ^a (%)
1	Ph CH3	2a	80	6	H ₂ CO	6a	74
2	Ph Ph	2b	80	4	H ₂ CO	6b	41
3	CH3	2c	80	11		6c	26
4	ОН	2d	200	1	нас но	6d	83
5		2e	80	5	н₃со∽∽́С∕	6e	70
6	СТ О	2f	80	4	н₃со	6f	79
					H ₃ CO		

 Table 4

 Reaction of *p*-methoxyphenylhydrazine 1d and ketones 2a–f.

128.1 (d), 128.2 (d), 128.5 (d), 130.3 (d), 133.4 (s), 135.7 (s), 147.7 (s), 150.9 (s), 182.3 (s).

5-Chloro-3-methyl-2-phenylindole (5a). Colorless needles [33] from hexane: m.p. 134–136°C; IR (KBr): 3388 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 2.41 (s, 3H), 7.14 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.48 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.54–7.59 (m, 3H), 8.02 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.5 (q), 108.3 (s), 111.6 (d), 118.4 (d), 122.4 (d), 125.1 (d), 127.6 (s), 127.7 (d), 128.8 (d), 131.1 (s), 132.7 (s), 134.1 (s), 135.4 (s).

5-Chloro-2,3-diphenylindole (5b). Yellow crystals from hexane: m.p. 126–127°C (lit.[34] m.p. 124–126°C); IR (KBr): 3412 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 7.19 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.27–7.37 (m, 6H), 7.37–7.44 (m, 5H), 7.63 (d, J = 1.5 Hz, 1H), 8.24 (br s, 1H); ¹³C NMR (CDCl₃): δ 111.9 (d), 114.8 (s), 119.1 (d), 122.9 (d), 126.2 (s), 126.5 (s), 128.0 (d), 128.1 (d), 128.6 (d), 128.7 (d), 129.9 (d), 130.0 (d), 132.1 (s), 134.1 (s), 134.3 (s), 135.4 (s).

5-Chloro-2-(2'-hydroxyphenyl)-3-methylindole (5c). Yellow liquid [33]: IR (neat): 3328 cm⁻¹ (O—H); ¹H NMR (CDCl₃): δ 2.29 (s, 3H), 5.47 (br s, 1H), 6.99–7.05 (m, 2H), 7.17 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.31 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.57 (d, J = 1.5 Hz, 1H), 8.01 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.4 (q), 109.7 (s), 111.8 (d), 116.0 (d), 118.3 (d), 118.8 (s), 120.7 (d), 122.6 (d), 125.1 (d), 129.8 (s), 130.3 (d), 130.4 (s), 131.3 (s), 134.4 (s), 153.3 (s).

6-Chloro-1,2,3,4-tetrahydrocarbazole (5d). Pale yellow crystals from hexane: m.p. 141°C (lit.[21,35] m.p. 140–141°C); IR (KBr): 3396 cm⁻¹ (N–H); ¹H NMR (CDCl₃)[21]:

Scheme 7. One-pot-one-step, microwave-assisted reaction of phenylhydrazine 1d and enolizable ketones 2a–f.

δ 1.85–1.95 (m, 4H), 2.63–2.67 (m, 2H), 2.70–2.74 (m, 2H), 7.05 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 1.5 Hz, 1H), 7.65 (br s, 1H); ¹³C NMR (CDCl₃): δ 20.7 (t), 23.0 (t), 23.1 (t), 23.2 (t), 110.0 (s), 111.2 (d), 117.3 (d), 120.9 (d), 124.7 (s), 128.9 (s), 133.9 (s), 135.7 (s).

8-Chloro-5,10-dihydroindeno[1,2-b]indole (5e). Pale orange crystals from benzene: m.p. 223–225°C (lit.[36] m.p. 223–223.5°C); IR (KBr): 3392 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 3.70 (s, 2H), 7.13 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.24 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.31–7.38 (m, 2H), 7.47 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 1.5 Hz, 1H), 8.33 (br s, 1H); ¹³C NMR (CDCl₃): δ 30.3 (t), 112.9 (d), 117.6 (d), 118.5 (d), 121.1 (s), 121.7 (d), 125.3 (d), 125.6 (d), 125.7 (s), 125.9 (s), 126.7 (d), 134.5 (s), 138.9 (s), 144.7 (s), 147.8 (s).

8-Chloro-6,11-dihydro-5H-benzo[a]carbazole (5f). Colorless crystals from hexane/benzene: m.p. 163–165°C; IR (KBr): 3380 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 2.90–2.95 (m, 2H), 3.03–3.08 (m, 2H), 7.12 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.19 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.24–7.30 (m, 3H), 7.32 (d, J =7.5 Hz, 1H), 7.50 (d, J = 1.5 Hz, 1H), 8.21 (br s, 1H); ¹³C NMR (CDCl₃): δ 19.5 (t), 29.3 (t), 112.0 (d), 112.1 (s), 118.2 (d), 119.9 (d), 122.4 (d), 125.5 (s), 126.6 (d), 127.1 (d), 128.3 (s), 128.5 (d), 128.6 (s), 134.4 (s), 135.2 (s), 136.6 (s).

5-Chloro-3,3-dimethyl-2-phenyl-3H-indole (**5g**). Orange liquid: IR (neat): 2924 cm⁻¹ (C—H); ¹H NMR (CDCl₃): δ 1.59 (s, 6H), 7.30–7.35 (m, 2H), 7.47–7.52 (m, 3H), 7.60 (d, J =

Scheme 8. One-pot-one-step, microwave-assisted reaction of phenylhydrazine 1a–d and isobutyrophenone 2g.

 Table 5

 Reaction of phenylhydrazines 1a–d and isobutyrophenone 2g.

Entries	1	Power (W)	Time (min)	Product	Yield ^a (%)
$ \begin{array}{c} 1^{\mathbf{b}} \\ 2^{\mathbf{b}} \\ 3^{\mathbf{b}} \\ 4^{\mathbf{c}} \end{array} $	1a	600	3	3g	54
	1b	80	7	4g	78
	1c	80	7	5g	75
	1d	80	4	6g	69

^b**2**: 2.0 mmol.

^c **2**: 3.0 mmol.

7.5 Hz, 1H), 8.12 (dd, J = 7.5 Hz, 7.5 Hz, 2H); ¹³C NMR (CDCl₃): δ 24.6 (q), 53.9 (s), 121.7 (d), 127.9 (d), 128.2 (s), 128.3 (d), 128.6 (d), 130.7 (d), 131.5 (d), 132.9 (s), 149.3 (s), 151.6 (s), 183.5 (s).

5-Methoxy-3-methyl-2-phenylindole (6a). Colorless crystals from hexane: m.p. 114–116°C (lit.[10,37] m.p. 116°C); IR (KBr): 3408 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 2.44 (s, 3H), 3.89 (s, 3H), 6.87 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.04 (d, J = 1.5 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.47 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 7.57 (d, J = 7.5 Hz, 2H), 7.90 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.7 (q), 55.9 (q), 100.8 (d), 108.4 (s), 111.5 (d), 112.4 (d), 127.2 (d), 127.6 (d), 128.7 (d), 130.4 (s), 131.0 (s), 133.3 (s), 135.0 (s), 154.1 (s).

5-Methoxy-2,3-diphenylindole (6b). Orange crystals from hexane: m.p. 155°C (lit.[38] m.p. 155°C); IR (KBr): 3404 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 3.82 (s, 3H), 6.90 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.12 (d, J = 1.5 Hz, 1H), 7.26–7.34 (m, 5H), 7.36–7.45 (m, 6H), 8.12 (br s, 1H); ¹³C NMR (CDCl₃): δ 55.9 (q), 101.2 (d), 111.7 (d), 113.0 (d), 114.9 (s), 126.2 (d), 127.6 (d), 128.0 (d), 128.5 (d), 128.6 (d), 129.2 (s), 130.1 (d), 131.0 (s), 132.7 (s), 134.9 (s), 135.2 (s), 154.8 (s).

2-(2'-Hydroxyphenyl)-5-methoxy-3-methylindole (6c). Brownish liquid: IR (neat): 3328 cm⁻¹ (O—H); ¹H NMR (CDCl₃): δ 2.28 (s, 3H), 3.88 (s, 3H), 5.68 (br s, 1H), 7.07 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 6.98–7.02 (m, 2H), 7.04 (d, J = 1.5 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.29 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.99 (br s, 1H); ¹³C NMR (CDCl₃): δ 9.4 (q), 55.9 (q), 108.4 (d), 110.1 (s), 111.7 (d), 112.6 (d), 112.7 (s), 115.8 (d), 119.3 (s), 120.5 (d), 129.8 (d), 130.3 (d), 130.4 (s), 131.6 (s), 153.3 (s), 154.1 (s).

6-Methoxy-1,2,3,4-tetrahydrocarbazole (6d). Pale orange crystals from hexane: m.p. $95-97^{\circ}C$ (lit.[39] m.p. $96-97^{\circ}C$); IR (KBr): 3388 cm⁻¹ (N–H); ¹H NMR (CDCl₃) [21]: δ 1.84–1.93 (m, 4H), 2.65–2.73 (m, 4H), 3.85 (s, 3H), 6.76 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 6.92 (d, J = 1.5 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.55 (br s, 1H) NH; ¹³C NMR (CDCl₃): δ 20.9 (t), 20.9 (t), 23.2 (t), 23.3 (t), 55.9 (q), 100.2 (d), 109.9 (s), 110.4 (d), 110.9 (d), 128.1 (s), 130.7 (s), 135.1 (s), 153.8 (s).

8-Methoxy-5,10-dihydroindeno[1,2-b]indole (6e). Colorless crystals from benzene: m.p. 208°C (lit.[32] m.p. 207°C); IR (KBr): 3404 cm⁻¹ (N—H); ¹H NMR (CDCl₃): δ 3.70 (s, 2H), 3.88 (s, 3H), 6.84 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.09 (d, J = 1.5 Hz, 1H), 7.21 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.28–7.34 (m, 2H), 7.44 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 8.17 (br s, 1H); ¹³C NMR (CDCl₃): δ 30.3 (t), 55.8 (q), 101.1 (d), 111.5 (d), 112.6 (d), 117.3 (d), 121.5 (s), 124.8 (d), 125.1 (s),

125.5 (d), 126.5 (d), 135.0 (s), 135.7 (s), 144.1 (s), 147.7 (s), 154.5 (s).

8-Methoxy-6,11-dihydro-5H-benzo[a]carbazole (6f). Pale orange needles from hexane/benzene: m.p. 166°C (lit.[40] m.p. 167–168°C); IR (KBr): 3400 cm⁻¹ (N–H); ¹H NMR (CDCl₃): δ 2.92–2.97 (m, 2H), 3.03–3.07 (m, 2H), 3.86 (s, 3H), 6.84 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 6.99 (d, J = 1.5 Hz, 1H), 7.18 (dd, J = 7.5 Hz, 7.5 Hz, 1H), 7.22–7.29 (m, 3H), 7.31 (d, J = 7.5 Hz, 1H), 8.08 (br s, 1H); ¹³C NMR (CDCl₃): δ 19.7 (t), 29.5 (t), 55.9 (q), 100.6 (d), 111.8 (d), 112.3 (s), 112.4 (d), 119.7 (d), 126.5 (d), 126.6 (d), 127.8 (s), 128.4 (d), 128.9 (s), 132.1 (s), 133.9 (s), 136.4 (s), 154.3 (s).

5-Methoxy-3,3-dimethyl-2-phenyl-3H-indole (6g). Orange liquid [41]: IR (neat): 2956 cm⁻¹ (C—H); ¹H NMR (CDCl₃): δ 1.58 (s, 6H), 3.87 (s, 3H), 6.86–6.92 (m, 2H), 7.43–7.51 (m, 3H), 7.60 (d, J = 7.5 Hz, 1H), 8.11 (dd, J = 7.5 Hz, 7.5 Hz, 2H); ¹³C NMR (CDCl₃): δ 24.8 (q), 53.7 (s), 55.7 (q), 107.5 (d), 112.4 (d), 121.2 (d), 127.9 (d), 128.5 (d), 130.1 (d), 133.4 (s), 146.8 (s), 149.3 (s), 158.5 (s), 181.2 (s).

Acknowledgments. ECC thanks the Japan Society for the Promotion of Science (JSPS) for the research grant at Niigata University, Japan.

REFERENCES AND NOTES

[1] Bratulescu, G. Tetrahedron Lett 2008, 49, 984.

[2] (a) Murphy, J. A.; Scott, K. A.; Sinclair, R. S.; Lewis, N. Tetrahedron Lett 1997, 38, 7295; (b) Lehmann, F.; Holm, M.; Laufer, S. Tetrahedron Lett 2009, 50, 1708.

[3] (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem Rev 2010, 110, 2250; (b) Humphrey, G. R.; Kuethe, J. T. Chem Rev 2006, 106, 2875; (c) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem Rev 2009, 109, 4140; (d) Petronijevic, F.; Tommons, C.; Cuzzupe, A.; Wipf, P. Chem Commun 2009, 104.

[4] (a) Gribble, G. W. J Chem Soc Perkin Trans 1 2000, 1045;
(b) Treu, M.; Karner, T.; Kousek, R.; Berger, H.; Mayer, M.; McConnell, D. B.; Stadler, A. J Comb Chem 2008, 10, 863; (c) Akao, A.; Sato, K.; Nonoyama, N.; Mase, T.; Yasuda, N. Tetrahedron Lett 2006, 47, 969.

[5] (a) Kranjc, K.; Kocevar, M. Tetrahedron 2008, 64, 45;
(b) Gilchrist, T. L. J Chem Soc Perkin Trans 1 1999, 2849; (c) Gilchrist, T. L. J Chem Soc Perkin Trans 1 1998, 615.

[6] Cacchi, S.; Fabrizi, G. Chem Rev 2005, 105, 2873.

[7] (a) Sridar, V. Indian J Chem 1997, 36B, 86; (b) Chen, Y.; Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 8908; (c) Bogdal,

D.; Bednarz, S.; Lukasiewicz, M. Tetrahedron 2006, 62, 9440.

[8] Lipińska, T. Tetrahedron Lett 2004, 45, 8831.

[9] Przheval'skii, N. M.; Skvortsova, N. S.; Magedov, I. V. Chem Heterocyc Compd 2002, 38, 1055.

[10] Simoneau, C. A.; Ganem, B. Tetrahedron 2005, 61, 11374.

[11] Xu, D.-Q.; Yang, W.-L.; Luo, S.-P.; Wang, B.-T., Wu, J.; Xu. Z.-Y. Eur J Org Chem 2007, 1007.

[12] (a) Chen, C. Y.; Senanayake, C. H.; Bill, T. J.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. J Org Chem 1994, 59, 3738;
(b) Miyata, O.; Kimura, Y.; Naito, T. Synthesis 2001, 1635; (c) Dhak-

shinamoorthy, A.; Pitchumani, K. Appl Catal A 2005, 292, 305.

[13] (a) Molteni, V.; Ellis, D. A. Curr Org Synth 2005, 2, 333;(b) Caddick, S. Tetrahedron 1995, 51, 10403.

[14] (a) Sridar, V. Indian J Chem 1996, 35B, 737; (b) Algul, O.; Kaessler, A.; Apcin, Y.; Yilmaz, A.; Jose, J. Molecules 2008, 13, 736. [15] Lipińska, T.; Guibe-Jampel, E.; Petit, A.; Loupy, A. Synth Commun 1999, 29, 1349.

[16] Kishan, M. R.; Srinivas, N.; Kulkarni, S. J.; Raghavan, K. V. Indian J Chem 2002, 41B, 1075.

[17] (a) Abramovitch, R. A.; Bulman, A. Synlett 1992, 795;(b) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J Org Chem 2009, 74, 3225.

[18] (a) Liu, K. G.; Robichaud, A. J.; Lo. J. R.; Mattes, J. F.; Cai, Y.
 Org Lett 2006, 8, 5769; (b) Jacob, R. G.; Dutra, L. G.; Radatz, C. S.;
 Mendes, S. R.; Perin, G.; Lenardão, E. J. Tetrahedron Lett 2009, 50, 1495.

[19] A mixture of phenylhydrazine (0.108 g, 1.0 mmol), cyclohexanone (0.147 g, 1.5 mmol) and *p* TSA (0.019 g, 0.1 mmol) was placed in a 50-mL round bottom flask and heated in an oil bath at 120°C for 4 h and yielded 15% (0.026 g) 1,2,3,4-tetrahydrocarbazole. On the other hand, a mixture of phenylhydrazine (0.108 g, 1.0 mmol), cyclohexanone (0.147 g, 1.5 mmol), p-TSA (0.019 g, 0.1 mmol) and xylene (5.0 mL) was placed in a 50-mL round bottom flask and heated in an oil bath at 120°C for 6 h and gave 19% (0.033 g) 1,2,3,4-tetrahydrocarbazole.

[20] Scott, T. L.; Burke, N.; Carrero-Martínez, G.; Söderberg, B. C. G. Tetrahedron 2007, 63, 1183.

[21] Chen, J.; Hu, Y. Synth Commun 2006, 36, 1485.

[22] Carpita, A.; Ribecai, A. Tetrahedron Lett 2009, 50, 6877.

[23] (a) Fürstner, A.; Hupperts, A. J Am Chem Soc 1995, 117, 4468; (b) Baccolini, G. J Chem Soc 1981, 11, 563.

[24] (a) Baccolini, G. J Chem Soc Perkin Trans 1 1983, 3, 535;(b) Ackermann, L. Tetrahedron 2007, 64, 769.

- [25] Robinson, B.; Zubair, M. U. J Chem Soc C 1971, 5, 976.
- [26] (a) Rogers, C. U.; Corson, B. B. Org Synth Coll 1963, 4,884; (b) Banwell, M. G. Org Lett 2003, 5, 2497.

[27] Barolo, S. M.; Lukach, A. E.; Rossi, R. A. J Org Chem 2003, 68, 2807.

[28] (a) Katritzky, A. R. J Heterocycl Chem 1988, 25, 671;

(b) Kulagowski, J. J. J Chem Soc Perkin Trans 1 1985, 12, 2733.

- [29] Tomasulo, M. Org Lett 2005, 7, 1109.
- [30] Kumar, M. P. J Org Chem 2006, 71, 4951.
- [31] Shen, M. Org Lett 2004, 6, 4129.

[32] Sainsbury, M.; Shertzer, H. G. Eur. Pat. Appl. 90306717.1 (1990).

[33] Angelovski, G.; Keränen, M. D.; Linnepe, P.; Grudzielanek, S.; Eilbracht, P. Adv Synth Catal 2006, 348, 1193.

[34] (a) Fan, X.; Zhang, X. J Chem Res-S 2003, 11, 696;(b) Baccolini, G. Tetrahedron 1985, 41, 4615.

[35] RajanBabu, T. V. J Org Chem 1986, 51, 1704.

[36] Jung, E.; Vossius, V.; Coldewey, G.W. DE Pat. 1952019 (1969).

[37] Swenton, J. S.; Shih, C.; Chen, C. P.; Chou, C. T. J Org Chem 1990, 55, 2019.

[38] Strohmeier, J. Arch Pharm (Weinheim, Ger) 1987, 320, 407.

[39] Welch, W. M. Synthesis 1977, 9, 645.

[40] Angerer, E. V.; Prekajac, J. J Med Chem 1986, 29, 380.

[41] Tomasulo, M.; Yildiz, I.; Raymo, F. M. J Phys Chem B 2006, 110, 3853.