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Summary

In the conventional discrete velocity method (DVM), the local solution of col-
lisionless Boltzmann equation with a piecewise constant distribution for the
distribution function is utilized to reconstruct distribution function at the cell
interface and then calculate numerical flux of Boltzmann equation for updating
the distribution function at cell center. In this process, a numerical dissipation
will be introduced into the solution due to neglecting of the collision effect at the
cell interface. This numerical dissipation may deteriorate the solution accuracy
of conventional DVM in the continuum flow regime, in which the particle col-
lision happens frequently. To overcome this defect, two improved schemes are
first presented in this work, in which the local discrete solution of Boltzmann
equation with Shakhov model is adopted to evaluate the distribution function at
the cell interface, while the equilibrium state of the local solution is computed
by different ways. One of the improved schemes evaluates the equilibrium state
exactly by the moments of distribution functions according to the compatibil-
ity condition, while the other computes the equilibrium state approximately by
a simple average at the cell interface. Since the collision effect is incorporated
in evaluation of numerical flux, the improved schemes can provide reasonable
solutions in all flow regimes. On the other hand, they introduce some extra
computational efforts for determining the collision term at the cell interface as
compared with the conventional DVM. To assess the performance of different
methods for simulation of flows in all flow regimes, a comprehensive study is
then carried out in this work.

KEYWORDS

all flow regimes, computational efficiency, discrete velocity method, solution accuracy, solution
reconstruction

1 INTRODUCTION

The discrete velocity method (DVM) or discrete ordinate method (DOM) has been widely used to solve rarefied flow prob-
lems in recent years.1-10 Its applications include the field of spacecraft and re-entry vehicle,11,12 microelectromechanical
system,13,14 plasma transport,15,16 and phonon heat transfer and multiple frequency radiative transport.17-20 The DVM is to
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resolve the Boltzmann equation in both the physical space and particle velocity space. After discretization in the particle
velocity space, a set of partial differential equations, which is generally called the discrete velocity Boltzmann equation
(DVBE), is obtained. For ease of solving flow problems with curved boundary, the finite volume method (FVM) is com-
monly adopted to discretize the DVBE in the physical space. Furthermore, to update the discrete distribution function at
cell center, the numerical flux at the cell interface has to be determined in advance, which is equivalent to reconstruct the
distribution function at the cell interface from those at cell centers of two neighboring cells. The way of solution recon-
struction at the cell interface has a significant effect on the performance of DVM in different flow regimes, which will be
investigated comprehensively in this work.

In the conventional DVM, the distribution function at the cell interface is evaluated by upwind scheme directly, such
as the second-order scheme with slope limiter function,21,22 third-order upwind scheme,23 essentially non-oscillatory
scheme,24 and weighted essentially non-oscillatory scheme.25,26 Taking the second-order scheme with slope limiter func-
tion as an example. An initial piecewise constant distribution, which is constructed by the second-order scheme with
slope limiter function, is first assumed for the distribution functions at the left and right sides of cell interface.22 The
numerical flux at the cell interface is then computed by multiplying the initial distribution function with the discrete par-
ticle velocity according to the direction of particle velocity. With this way, the evolution of distribution functions at cell
centers is independent of each other at each time level. As a result, the computation of the conventional DVM is relatively
simple and efficient. On the other hand, it should be indicated that this process is equivalent to reconstructing the local
solution by solving collisionless Boltzmann equation, in which the collision effect at the cell interface is ignored.27,28 As
compared to the solution of Boltzmann equation with collision term, the collisionless solution will introduce a numeri-
cal dissipation that is proportional to the mesh size.29 This numerical dissipation may deteriorate the solution accuracy
of conventional DVM in the continuum flow regime, in which the particle collision happens frequently and the physical
viscosity is relatively small. To get reasonable solutions, the conventional DVM usually requires to use very small cell size
in comparison with the mean free path as commented by Xu and Liu.29

Within the framework of DVM, the unified gas kinetic scheme (UGKS)30-33 and the discrete unified gas kinetic scheme
(DUGKS)34-37 have been developed to overcome the defect of poor accuracy of the conventional DVM in the continuum
flow regime. Different from the conventional DVM, both UGKS and DUGKS calculate the distribution function at cell
interface by the local solution of Boltzmann equation with collision term. Specifically, UGKS adopts the local integral
solution of DVBE to reconstruct the distribution function at the cell interface, while DUGKS evaluates this distribution
function from the local characteristic solution of DVBE. In the calculation of the local solution of DVBE, both the particle
transport and collision processes are considered, and the piecewise linear distribution for the distribution function is
assumed at the cell interface. Owing to the fact that the collision effect is considered in the solution reconstruction at
cell interface, both UGKS and DUGKS can provide good predictions of flow prosperities in all flow regimes. However,
in these two methods, the equilibrium distribution function at the cell interface has to be calculated for determining the
collision term. Moreover, a large number of coefficients related to the conservative variables and their derivatives are
required for calculating the local integral solution of DVBE in UGKS, and in DUGKS, several transformations are needed
for updating the distribution function. These extra manipulations lead the UGKS and DUGKS to be more complicated
than the conventional DVM. Accordingly, more computational efforts are required by these two methods.

From the above discussions, it is found that the physical reconstruction of the local solution with collision effect at
the cell interface is the key to improve the solution accuracy of conventional DVM in the continuum flow regime. Given
this realization, two improved methods for solution reconstruction at the cell interface are presented in this work. In the
developed schemes, the local characteristic solution of DVBE with Shakhov model is utilized to compute the distribution
function at the cell interface. For ease of implementation, the first-order implicit scheme is used to discretize the collision
term in deriving the local solution of DVBE. By this way, the local solution can be expressed as a linear combination of
the distribution function at the surrounding points of cell interface and the equilibrium state on the cell interface. The
distribution function at the surrounding points of cell interface is computed by the initial piecewise linear distribution for
the distribution function. For calculation of the equilibrium state on the cell interface, the conservative variables and heat
flux at the same physical location have to be determined in advance. In the first improved scheme, these flow variables are
calculated by the distribution function at the surrounding points of cell interface according to the compatibility condition.
In this process, the moments of distribution function in the whole particle velocity space need to be computed. To reduce
the computational effort, the second improved scheme is further presented. In this method, the conservative variables
and heat flux at the cell interface are approximated by a simple average of those at the left and right cells of cell interface.
As compared with the conventional DVM, the improved methods only use different ways to reconstruct distribution
function at the cell interface, and the basic procedure for updating the distribution function at cell center is still retained.
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Accordingly, the inherent simplicity of the conventional DVM is well kept in the improved schemes. To investigate the
performances of different methods in terms of accuracy, efficiency, and stability, a comparative study is then performed
in this work by simulating several flow problems varied from low to high speed and from continuum to free molecular
flow regime.

2 DISCRETE VELOCITY METHOD

2.1 Discrete velocity Boltzmann equation
The DVM is intended to solve the Boltzmann equation in the discretized particle velocity space, which is generally called
the DVBE. In order to simulate flows with different Prandtl number, the DVBE with Shakhov model38 is considered

𝜕𝑓𝛼

𝜕t
+ 𝛏𝛼 · ∇𝑓𝛼 =

𝑓 S
𝛼 − 𝑓𝛼

𝜏
, (1)

where f𝛼 and 𝑓 S
𝛼 are the discrete distribution function and its equilibrium state along the direction of discrete velocity 𝛏𝛼 ,

(𝛼 = 1,… , NV, where NV is the number of discrete particle velocity). 𝜏 is the collision time scale. For the Shakhov model,
the equilibrium state has a form of

𝑓 S = 𝑓 eq
[

1 + (1 − Pr)
c · q

5pRT

(
c2

RT
− 5

)]
. (2)

Here, f eq is the Maxwellian distribution function given by

𝑓 eq = 𝜌

(2𝜋RT)3∕2 exp
[
− c2

2RT

]
. (3)

Pr is the Prandtl number, c = 𝛏 − u is the peculiar velocity of particle, u is the velocity of mean flow, q is the heat flux,
𝜌 is the density, p is the pressure, T is the temperature, and R is the gas constant. Note that, in this work, the vector is
expressed by the bold style and its magnitude is represented by the italic style (such as c = |c|).

The conservative flow variables W, heat flux q, and stress tensor =𝛕 can be obtained by taking moments of f𝛼 as follows:

W = (𝜌, 𝜌u, 𝜌𝐸)T = ⟨𝛙𝑓⟩𝛼 (4)

q = 1
2
⟨

cc2𝑓
⟩
𝛼

(5)

=𝛕 = ⟨cc𝑓⟩𝛼 − p=I, (6)

where𝝍 = (1, 𝛏, 𝜉2/2)T is the moment, E is the total energy, and =I is the unit tensor. The symbol ⟨ f ⟩𝛼 denotes the quadrature
of f in the discrete particle velocity space, ie, the summation, ⟨𝑓⟩𝛼 =

∑NV
𝛼=1 w𝛼𝑓𝛼 , where w𝛼 is the associated quadrature

weight at the discrete particle velocity point 𝛏𝛼 . In this work, the Gauss-Hermite quadrature and Newton-Cotes quadrature
will be adopted.

2.2 DVM for solving DVBE
Since the aim of this work is to assess the performance of different solution reconstructions at cell interface in DVM for
simulation of flows in all flow regimes, we would like to make a fair comparison between the schemes while keeping
the implementation as simple as possible. A natural way to solve DVBE is the standard explicit DVM,22,24,39 in which the
collision term is discretized explicitly. If the explicit Euler method is used for temporal discretization, Equation (1) can be
discretized as

𝑓 n+1
𝛼 − 𝑓 n

𝛼

Δtn + 𝛏𝛼 · ∇𝑓 n
𝛼 =

𝑓
S,n
𝛼 − 𝑓 n

𝛼

𝜏n , (7)

where the superscript n represents the current time level. Δt is the time interval, which is restrained by the following
conditions22,39:

Δtn = min
{
ΔtCFL, 𝜏

n} (8a)

ΔtCFL = 𝜎
Δ𝑥

𝜉max + cs
. (8b)
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Here, 𝜎 is the Courant-Friedrichs-Lewy (CFL) number. 𝜉max is the maximum discrete particle velocity, Δx is the grid
spacing, and cs is the sound speed.

To facilitate the simulation of flows with curved boundary, the FVM is utilized to discretize Equation (7) in this work.
Integrating Equation (7) over a control volume V yields

V
Δtn

(
𝑓 n+1
𝛼 − 𝑓 n

𝛼

)
+ ∫

𝜕V
n · 𝛏𝛼𝑓 n

𝜕V ,𝛼
𝑑𝑆 = V

𝜏n

(
𝑓

S,n
𝛼 − 𝑓 n

𝛼

)
, (9)

where n denotes the outward normal vector on the surface of the control volume, and 𝜕V represents the surface of the
control volume. The second term on the left-hand side of Equation (9) is the numerical flux of DVBE at the cell interface.
For simplicity, this flux is denoted as

Fs
𝑖𝑗,𝛼 = 𝛏𝛼𝑓 n

𝑖𝑗,a. (10)

Here, Fs
𝑖𝑗,𝛼

is the numerical flux at the cell interface shared by cell i and cell j. 𝑓 n
𝑖𝑗,a is the distribution function at the cell

interface, which should be reconstructed from known values at neighboring cell centers i and j.
By using Equation (9), for grid cell i, the distribution function at cell center can be marched to a new time level n + 1 via

𝑓 n+1
i,𝛼 =

𝜏n
i − Δtn

i

𝜏n
i

𝑓 n
i,𝛼 +

Δtn
i

𝜏n
i
𝑓

S,n
i,𝛼 −

Δtn
i

Vi

∑
𝑗∈N(i)

n𝑖𝑗 · Fs
𝑖𝑗,𝛼S𝑖𝑗 , (11)

where N(i) denotes the set of neighboring cells of cell i, Si j is the area of the interface shared by cell i and cell j, and ni j
is the normal vector of the cell interface directing from cell i to cell j. After that, the conservative flow variables, heat
flux, and stress tensor can be updated by Equations (4)-(6). It can be seen from Equation (11) that the key to evolve the
distribution function at cell center is the calculation of numerical flux at the cell interface, Fs

𝑖𝑗,𝛼
. Furthermore, as shown

in Equation (10), the key to calculate Fs
𝑖𝑗,𝛼

is to reconstruct the distribution function at the cell interface, 𝑓 n
𝑖𝑗,a. This issue

will be discussed in the following text.

2.3 Conventional method for calculation of f n
ij,a

In the conventional DVM, the distribution function at the cell interface is actually calculated by the local solution of the
following collisionless Boltzmann equation with a piecewise constant distribution for the distribution function:

𝜕𝑓𝛼

𝜕t
+ 𝛏𝛼 · ∇𝑓𝛼 = 0 (12a)

𝑓 (x, 𝛏𝛼, 0) =
{

𝑓
L,n
𝑖𝑗,𝛼

, n𝑖𝑗 ·
(
x𝑖𝑗 − x

) ≥ 0
𝑓

R,n
𝑖𝑗,𝛼

, n𝑖𝑗 ·
(
x𝑖𝑗 − x

)
< 0,

(12b)

where xi j ∈ 𝜕V is the location of the midpoint on cell interface shared by cell i and cell j. 𝑓 L,n
𝑖𝑗,𝛼

and 𝑓
R,n
𝑖𝑗,𝛼

are the piecewise
constant distributions at the left and right sides of cell interface, which can be obtained by interpolation scheme. In this
work, the second-order interpolation scheme with van Leer slope limiter function is adopted40

𝑓
L,n
𝑖𝑗,𝛼

= 𝑓 n
i,𝛼 + (x𝑖𝑗 − xi) · 𝛔n

i,𝛼

𝑓
R,n
𝑖𝑗,𝛼

= 𝑓 n
𝑗,𝛼 + (x𝑖𝑗 − x𝑗) · 𝛔n

𝑗,𝛼.
(13)

Here, xi and xj are the coordinates of cell centers of cell i and cell j, respectively. 𝛔n
i,𝛼 and 𝛔n

𝑗,𝛼
are the slopes with the slope

limiter of 𝑓 n
i,𝛼 and 𝑓 n

𝑗,𝛼
.

The local solution of Equation (12a) at the cell interface xi j yields

𝑓 n
𝑖𝑗,a = 𝑓 (x𝑖𝑗 , 𝛏𝛼,Δtp) = 𝑓 (x𝑖𝑗 − 𝛏𝛼Δtp, 𝛏𝛼, 0). (14)

Here, Δtp is a virtual time step size used in the solution reconstruction. In the conventional DVM, Δtp has nothing to do
with the local solution since a piecewise constant distribution for the distribution function at the cell interface is utilized.
By substituting Equation (12b) into Equation (14), we have

𝑓 n
𝑖𝑗,a = H(n𝑖𝑗 · 𝛏𝛼)𝑓 L,n

𝑖𝑗,𝛼
+ [1 − H(n𝑖𝑗 · 𝛏𝛼)]𝑓R,n

𝑖𝑗,𝛼
, (15)

where H(ni j · 𝛏𝛼) is the Heaviside function, H(ni j · 𝛏𝛼) = 1 for ni j · 𝛏𝛼 ≥ 0 and H(ni j · 𝛏𝛼) = 0 for ni j · 𝛏𝛼 < 0. The illustration
of the local solution of collisionless Boltzmann equation is depicted in Figure 1. Once 𝑓 n

𝑖𝑗,𝛼
is obtained, the numerical
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f

f

Cell interface 

FIGURE 1 Distribution function at the cell interface determined by the local solution of collisionless Boltzmann equation

flux at the cell interface can be calculated straightforwardly by substituting Equation (15) into Equation (10), and the
distribution function at cell center can be marched to a new time level n + 1 via Equation (11).

2.4 Improved Scheme I for calculation of f n
ij,a

As shown in Section 2.3, the collision effect on the calculation of distribution function at the cell interface 𝑓 n
𝑖𝑗,a is ignored

in the conventional DVM. In high Knudsen number flows, the particle collision effect is not significant. As a result,
the conventional method for calculation of 𝑓 n

𝑖𝑗,a is a good approximation. However, in the continuum flow regime, the
conventional model would produce a large numerical dissipation because the particle collision happens frequently.

To overcome the above defect, an improved method is presented in this section. In the method, the distribution func-
tion at the cell interface is reconstructed physically by the local solution of Boltzmann equation with Shakhov model
(Equation (1)) and the following initial distribution:

𝑓 (x, 𝛏𝛼, 0) =
{

𝑓 n
i,𝛼 + (x − xi) · 𝛔n

i,𝛼 , n𝑖𝑗 · (x𝑖𝑗 − x) ≥ 0
𝑓 n
𝑗,𝛼

+ (x − x𝑗) · 𝛔n
𝑗,𝛼
, n𝑖𝑗 · (x𝑖𝑗 − x) < 0.

(16)

The initial distribution of Equation (16) is depicted in Figure 2. Note that the piecewise linear distribution is assumed in
the improved scheme, which is different from the piecewise constant distribution shown in Equation (12b) and Figure 1.

For ease of implementation, the first-order implicit scheme is utilized to discretize the collision term in reconstructing
the local solution of DVBE with Shakhov model at the cell interface xi j. As a result, we have

𝑓 n
𝑖𝑗,a = 𝑓 (x𝑖𝑗 , 𝛏𝛼,Δtp)

= 𝑓 (x𝑖𝑗 − 𝛏𝛼Δtp, 𝛏𝛼, 0) +
Δtp

𝜏𝑖𝑗

[
𝑓 S(x𝑖𝑗 , 𝛏𝛼,Δtp, ) − 𝑓 (x𝑖𝑗 , 𝛏𝛼,Δtp)

]
,

(17)

where 𝜏 i j = 𝜏(xi j,Δtp) is the collision time scale at the cell interface. In Equation (17), the principle for the choice of Δtp is
that the location of f (xi j − 𝛏𝛼Δtp, 𝛏𝛼 , 0) must be within the cell of the interface in order to avoid extrapolation. The effect
of Δtp on the numerical solution has been investigated comprehensively by Shu et al.41 It was found that the value of Δtp
has almost no effect on the solution accuracy, as long as it satisfies the above constraint. For simplicity, Δtp = (Δti +Δtj)/4
is used in this work. Here, Δti and Δtj are the time step sizes determined by Equation (8) for cell i and cell j, respectively.
SinceΔti andΔtj are restrained by CFL condition, the selectedΔtp can avoid extrapolation automatically. The second term
on the right-hand side of Equation (17) is the collision term, which represents the collision effect at the cell interface.
Equation (17) can be rearranged as

𝑓 n
𝑖𝑗,a =

𝜏𝑖𝑗

𝜏𝑖𝑗 + Δtp
𝑓
(
x𝑖𝑗 − 𝛏𝛼Δtp, 𝛏𝛼, 0

)
+

Δtp

𝜏𝑖𝑗 + Δtp
𝑓 S (x𝑖𝑗 , 𝛏𝛼,Δtp

)
. (18)

f

f

Cell interface 

FIGURE 2 Distribution function at the cell interface determined by the local solution of Boltzmann equation with Shakhov model. The
symbol “o” denotes the location of cell center
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It can be seen from Equation (18) that the distribution function at the cell interface is a linear combination of the distribu-
tion function at the surrounding points of cell interface f (xij − 𝛏𝛼Δtp, 𝛏𝛼 , 0) and the equilibrium state on the cell interface
f S(xij, 𝛏𝛼 ,Δtp). By using the initial distribution of Equation (16), the distribution function at the surrounding points of cell
interface can be computed by

𝑓 (x𝑖𝑗 − 𝛏𝛼Δtp, 𝛏𝛼, 0) = H(n𝑖𝑗 · 𝛏𝛼)
(
𝑓 n

i,𝛼 + (x𝑖𝑗 − 𝛏𝛼Δtp − xi) · 𝛔n
i,𝛼

)
+
[
1 − H(n𝑖𝑗 · 𝛏𝛼)

] (
𝑓 n
𝑗,𝛼 + (x𝑖𝑗 − 𝛏𝛼Δtp − x𝑗) · 𝛔n

𝑗,𝛼

)
.

(19)

In order to calculate the equilibrium distribution function on the cell interface, the conservative flow variables W(xi j,Δtp)
and heat flux q(xi j,Δtp) at the same physical location have to be determined in advance. Taking conservative moments of
Equation (17) and according to the compatibility condition, we have

W(x𝑖𝑗 ,Δtp) =
⟨
𝛙𝑓 (x𝑖𝑗 − 𝛏Δtp, 𝛏, 0)

⟩
𝛼
. (20)

It can be seen from Equation (20) that the conservative flow variables at the cell interface are determined by the dis-
tribution function at the surrounding points of cell interface. Once W(xi j,Δtp) is obtained, the primitive flow variables
and collision time scale 𝜏 i j at the cell interface can then be calculated straightforwardly. Furthermore, by substituting
Equation (18) into Equation (5), we have

q(x𝑖𝑗 ,Δtp) =
𝜏𝑖𝑗

𝜏𝑖𝑗 + PrΔtp

⟨1
2

cc2𝑓
(
x𝑖𝑗 − 𝛏Δtp, 𝛏, 0

)⟩
𝛼
. (21)

Finally, the equilibrium distribution function at the cell interface f S(xi j, 𝛏𝛼 ,Δtp) can be computed by substituting
W(xi j,Δtp) and q(xi j,Δtp) into Equation (2).

As compared with the conventional method, the collision effect is incorporated into the evaluation of distribution func-
tion at the cell interface in the improved scheme. This improvement makes the present scheme be more accurate than
the conventional DVM in the continuum flow regime, which will be demonstrated in the numerical examples presented
in Section 3. However, some extra computational efforts for determining the conservative flow variables, heat flux, and
equilibrium distribution function at the cell interface, which relate to the moments of distribution functions in the whole
particle velocity space, are required by the improved method. These manipulations trade-off its computational efficiency
in simulation. For the convenience of elaboration, we denote this improved method as “Scheme I” in the following text.

2.5 Improved Scheme II for calculation of f n
ij,a

In Scheme I, to incorporate the collision effect into the solution reconstruction at cell interface, the moments of distribu-
tion functions in the whole particle velocity space need to be computed. The computational cost of this manipulation is
related to the scale of discrete velocity point. To reduce the computational effort, and at the same time retain the collision
effect in evaluating of distribution function at the cell interface, the second improved scheme is developed in this section.
In the method, the conservative flow variables and heat flux at the cell interface are approximated by

W(x𝑖𝑗 ,Δtp) =
1
2
(Wi + W𝑗) (22)

q(x𝑖𝑗 ,Δtp) =
1
2
(qi + q𝑗), (23)

where Wi and Wj are the conservative variables at cell centers of cell i and cell j, respectively. qi and q j are the heat flux
at cell centers of cell i and cell j. Once W(xi j,Δtp) and q(xi j,Δtp) are determined, the rest of implementation is the same
as Scheme I. To differ it from Scheme I, the current scheme is denoted as “Scheme II” in this work.

3 NUMERICAL EXAMPLES

Since the numerical quadrature is utilized to fulfill the calculation of conservative variables in DVM, the fundamental
property of mass, momentum, and energy conservation may not be satisfied accurately. Hence, the numerical error will
accumulate and prevent the system from converging to its physical solution. To overcome this drawback, a large number
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of studies have been carried out for both Bhatnagar-Gross-Krook (BGK) model21,26 and Shakhov model.12,42-44 For Shakhov
model, the conservation condition can be written as12⟨

𝛙1(𝑓 S − 𝑓 )
⟩
𝛼
= (0, 𝟎, 0,−𝑃 𝑟q)T , (24)

where 𝛙1 = (1, 𝛏, 𝜉2/2, cc2/2)T. Equation (24) is actually a nonlinear system for ℏ = (𝜌,u,T,q)T because 𝑓 S
𝛼 is the function

of ℏ as shown in Equation (2). To resolve this nonlinear system, we introduce a function𝚽(ℏ) as follows:

𝚽 (ℏ) =
⟨
𝛙1(𝑓 S − 𝑓 )

⟩
𝛼
− (0, 𝟎, 0,−𝑃 𝑟q)T = 0. (25)

Equation (25) can then be solved by Newton iterations as26

ℏl+1 = ℏl −
[
𝜕𝚽(ℏl)
𝜕ℏl

]−1

𝚽(ℏl), l = 1, 2, … . (26)

In this work, to start the iterative process, we set the initial guess ℏ1 as the quadrature of f𝛼 given by Equations (4)-(5).
As pointed out by Titarev,42 one or two iterations are enough since Newton algorithm converges rapidly. In our cal-
culation, the above method is utilized to enforce the conservative property of Shakhov model at each cell and the
convergence criterion of Newton iterations is set by the condition that the error ofℏ at two adjacent iteration steps does not
exceed 10−10.

To investigate the accuracy, efficiency, and stability of different solution reconstructions at cell interface in DVM for
simulation of flows in all flow regimes, the force-driven Poiseuille flow, lid-driven cavity flow, and hypersonic flow around
a cylinder are simulated in this section. Unless otherwise stated, the Prandtl number is taken as Pr = 2/3, the specific heat
ratio is chosen as 𝛾 = 5/3, and the CFL number is set as 𝜎 = 0.9. In the simulations, the dynamic viscosity 𝜇 and collision
time scale 𝜏 are determined by

𝜇 = 𝜇0

(
T
T0

)w

(27)

𝜏 = 𝜇

p
, (28)

where T0 and 𝜇0 are the temperature and dynamic viscosity at the reference state. w is the coefficient related to the
intermolecular interaction model. In addition, all the computations were done on a personal computer with a processor
of Intel(R) Xeon(R) E5–2687 CPU@3.0 GHz, and no parallel computation is adopted here.

Case 1: Force-driven Poiseuille flow
The first test case is the force-driven Poiseuille flow with different Knudsen numbers.23,45,46 This problem can be con-

sidered as a viscous fluid flow between two infinite parallel plates with temperature of T0 = 273 K separated by a distance
of L in the y-direction. An external force is exerted in the x-direction, so that Equation (1) can be rewritten as

𝜕𝑓𝛼

𝜕t
+ 𝛏𝛼 · ∇𝑓𝛼 =

𝑓 S
𝛼 − 𝑓𝛼

𝜏
+ F𝛼,x, (29)

where F𝛼,x is the force term given by

F𝛼,x = −G
𝜕𝑓 S

𝛼

𝜕𝜉𝛼,x
. (30)

Here, 𝜉𝛼,x is the x-component of the discrete particle velocity 𝛏𝛼 , and G is the magnitude of the external acceleration. For
simplicity, the Prandtl number is set as Pr = 1 in current simulation. As a result, we have

𝜕𝑓 S
𝛼

𝜕𝜉𝛼,x
= −

𝜉𝛼,x − ux

RT
𝑓

eq
𝛼 , (31)

where ux is the x-component of the velocity of mean flow u.
The Knudsen number of this test case is defined as

𝐾𝑛 = 𝜆0∕L. (32)

Here, 𝜆0 is the particle mean free path at the reference state given by

𝜆0 = 𝜇0

𝜌0

√
𝜋

2RT0
, (33)



552 YANG ET AL.

FIGURE 3 Apparent gas permeability for Poiseuille flow at different Kn. (A) 10−4 ≤ Kn ≤ 0.1. (B) 0.1 ≤ Kn ≤ 10. DUGKS, discrete unified
gas kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]

where 𝜌0 is the density at the reference state. For this test example, the apparent gas permeability 𝜅 is often used to quantify
the simulation results, which is defined as

𝜅 = 𝐾𝑛√
𝜋𝐺𝐿2 ∫

L

0
ud𝑦. (34)

In the present simulation, the computational domain in y-direction is discretized uniformly by 40 cells; the isothermal
boundary condition is implemented on the bottom and upper walls; and the periodic boundary condition is adopted on
the left and right boundaries. The convergence criterion is set by the condition that the error of 𝜅 at two adjacent iteration
steps does not exceed 10−10.

Consistent with previous study,23 in our simulation, the hard-sphere (HS) model is utilized to calculate the dynamic
viscosity, where the exponent w in Equation (27) is 0.5. The Knudsen number is varied from Kn = 10−4 to 10, which covers
the free molecular flow regime (Kn ⩾ 10), transition flow regime (10−1 ⩽ Kn < 10), slip flow regime (10−2 ⩽ Kn < 10−1),
and continuum flow regime (Kn < 10−2). The magnitude of the external acceleration is taken as G = 10−5 for the case
of 10−4 ⩽ Kn < 10−3, G = 10−4 for 10−3 ⩽ Kn < 10−2, G = 10−3 for 10−2 ⩽ Kn < 10−1, and G = 10−2 for 10−1 ⩽ Kn. For
discretization of the particle velocity space, the Gauss-Hermite quadrature with 8× 8 mesh points and 28× 28 mesh points
are respectively used in the cases of Kn < 10−2 and 10−2 ⩽ Kn < 1, and the Newton-Cotes quadrature with 201 × 201 mesh
points and 301 × 301 mesh points uniformly distributed in [−4

√
2𝑅𝑇 0, 4

√
2𝑅𝑇 0] × [−4

√
2𝑅𝑇 0, 4

√
2𝑅𝑇 0] are adopted

in the cases of 1 ⩽ Kn < 10 and Kn = 10.
Figure 3 shows the apparent gas permeability for Poiseuille flow in different flow regimes. Also displayed in this figure

is the result obtained by DUGKS.23 It can be seen from Figure 3B that the simulation results of three different methods
for solution reconstructions at the cell interface are basically the same and they compare well with that of DUGKS in
the free molecular flow regime, transition flow regime and slip flow regime. However, in the continuum flow regime, the
results of improved methods (Scheme I and Scheme II) are better than that of the original model as shown in Figure 3A,
and the improvement becomes more evident as the Knudsen number is decreased. This observation can also be validated
via Figure 4, which depicts the comparison of velocity profiles along the channel cross-section calculated by different
schemes. Note that, in this Figure, the velocity is normalized by

√
2RT0. For the test cases of Kn = 0.1, 1, and 10, the

results of three schemes and DUGKS compare well with each other, while for the test case of Kn = 10−3, the simulation
results of two improved schemes are closer to that of DUGKS than the original one. This test example well demonstrates
that the developed methods for solution reconstruction with particle collision effect can effectively improve the solution
accuracy of conventional DVM in the continuum flow regime.

Case 2: Lid-driven cavity flow
To compare the solution accuracy and computational efficiency of different methods in the two-dimensional case, the

lid-driven cavity flow with various Knudsen and Reynolds numbers is simulated. This problem has been widely studied
both in the rarefied flow regime13,27,33,34,47-49 and in the continuum flow regime.50-54 The computational domain of this test

http://wileyonlinelibrary.com


YANG ET AL. 553

FIGURE 4 Velocity profiles along the channel cross-section at (A) Kn = 10−3, (B) Kn = 0.1, (C) Kn = 1, and (D) Kn = 10. DUGKS, discrete
unified gas kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Lid-driven cavity flow at Kn = 10. (A) Velocity profiles along the central lines. (B) Convergence history. UGKS, unified gas
kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]
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example is a square cavity with the edge length of L. At the top wall, the temperature and velocity are fixed at T0 = 273 K
and u0 = 0.15

√
2𝑅𝑇 0, respectively. Remaining three walls are stationary and in constant temperature of T0. For the

rarefied case, the reference viscosity is calculated by

𝜇0

L
= 5𝜌0(2𝜋𝑅𝑇 0)1∕2

16
𝐾𝑛, (35)

and for the continuous case, the reference viscosity is determined by

𝜇0 = 𝜌0u0L
𝑅𝑒

, (36)

where Re is the Reynolds number. In the simulation, the variable HS model is utilized, which gives w = 0.81 in
Equation (27). For discretization of the physical space, the uniform mesh with 40 × 40 cells is used for the rarefied case,
and the uniform mesh with 100 × 100 cells is utilized for the continuous case. The convergence criteria for the rarefied
and continuous cases are set by the condition that the maximum errors of all primitive variables at two adjacent iteration
steps do not exceed 10−7 and 10−8, respectively.

FIGURE 6 Lid-driven cavity flow at Kn = 1. (A) Velocity profiles along the central lines. (B) Convergence history. UGKS, unified gas
kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Lid-driven cavity flow at Kn = 0.075. (A) Velocity profiles along the central lines. (B) Convergence history. UGKS, unified gas
kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Lid-driven cavity flow at Re = 100. (A) Velocity profiles along the central lines. (B) Convergence history [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 9 Lid-driven cavity flow at Re = 1000. (A) Velocity profiles along the central lines. (B) Convergence history [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Computational time (hours) of different methods for
lid-driven cavity flow at different Knudsen and Reynolds numbers

Kn or Re Original Scheme I Scheme II

Kn = 10 0.730 1.102 1.051
Kn = 1 0.426 0.652 0.618
Kn = 0.075 0.092 0.146 0.138
Re = 100 1.084 1.628 1.535
Re = 1000 15.616 22.123 20.857

http://wileyonlinelibrary.com
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FIGURE 10 Simulation results for hypersonic flow around a cylinder at Ma = 10 and Kn = 0.1 (Original: colored background with black
solid line; Scheme II: white dash line). (A) Pressure contours. (B) Temperature contours. (C) u-velocity contours [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 11 Simulation results for hypersonic flow around a cylinder at Ma = 10 and Kn = 0.01 (Original: colored background with black
solid line; Scheme II: white dash line). (A) Pressure contours. (B) Temperature contours. (C) u-velocity contours [Colour figure can be viewed
at wileyonlinelibrary.com]
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In our simulation, five test cases with three different Knudsen numbers of Kn = 10, 1, and 0.075 and two different
Reynolds numbers of Re = 100 and 1000 are resolved. The test examples of Kn= 10, 1, and 0.075 respectively correspond to
the free molecular flow regime, transition flow regime, and slip flow regime, and the test cases of Re= 100 and 1000 belong
to the continuum flow regime. For discretization of the particle velocity space, the Newton-Cotes quadrature with 81 × 81
mesh points uniformly distributed in [−4

√
2𝑅𝑇 0, 4

√
2𝑅𝑇 0] × [−4

√
2𝑅𝑇 0, 4

√
2𝑅𝑇 0] is utilized in the cases of Kn = 10

and 1, and the Gauss-Hermite quadrature with 28× 28 mesh points and 8× 8 mesh points are respectively used in the case
of Kn = 0.075 and continuum flow. Figures 5 to 9 show the velocity profiles along the central lines and the convergence
history for the test cases of Kn = 10, 1, and 0.075, and Re = 100 and 1000, respectively. It can be observed that both velocity
profiles and convergence history for the cases of Kn = 10, 1, and 0.075, and Re = 100 computed by three different schemes
are consistent with each other, and their velocity profiles compare well with those of UGKS48 and the benchmark data.50

However, for the test case of Re= 1000, the velocity profiles obtained by the improved schemes are closer to the benchmark
data50 than those of the original model. As far as the computational efficiency is concerned, the conventional DVM is
more efficient than the improved schemes as reported in Table 1. The reason is that some extra computational efforts
regarding to the calculation of conservative variables, heat flux, and equilibrium state at the cell interface are required for
the improved schemes. In addition, the computation of Scheme II is relatively efficient as compared with Scheme I since

FIGURE 12 Profiles along the stagnation line for hypersonic flow around a cylinder at Ma = 10 and Kn = 0.1. (A) Density. (B) u-velocity.
(C) Temperature. DSMC, direct simulation Monte Carlo; UGKS, unified gas kinetic scheme [Colour figure can be viewed at
wileyonlinelibrary.com]
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the moments of distribution functions in the whole particle velocity space for computing the conservative variables and
heat flux are approximated by a simple average. Overall, the computational time of Scheme II is about 1.3-1.5 times of
that of the conventional DVM. This test case further shows that the solution accuracy of the improved schemes is better
than that of the conventional DVM in the continuum flow regime, while the latter is more efficient.

Case 3: Hypersonic flow around a cylinder
Hypersonic flows exist widely in aerospace engineering.36,55-59 To assess the performance of the improved schemes for

high-speed rarefied flows, the hypersonic flow around a cylinder with radius of R0 = 0.01 m at Mach number of Ma = 10
and Knudsen numbers of Kn = 0.1 and 0.01 is simulated. Consistent with previous study,59 in the present work, the refer-
ence density for the cases of Kn = 0.1 and 0.01 are respectively given as 𝜌0 = 8.585 × 10−5 kg/m3 and 8.585 × 10−4 kg/m3.
The reference temperature is taken as T0 = 273 K, the temperature of the cylinder is fixed at T0, and the reference viscosity
is determined by

𝜇0

R0
= 15𝜌0(2𝜋RT0)1∕2

2 (5 − 2w) (7 − 2w)
Kn, (37)

where w= 0.81 is the coefficient related to the intermolecular interaction model. The CFL number is set as𝜎= 0.2 to ensure
convergence. Due to symmetry of the flow field, only upper half of the cylinder is considered to reduce the computational

FIGURE 13 Profiles along the stagnation line for hypersonic flow around a cylinder at Ma = 10 and Kn = 0.01. (A) Density. (B) u-velocity.
(C) Temperature. DSMC, direct simulation Monte Carlo; UGKS, unified gas kinetic scheme [Colour figure can be viewed at
wileyonlinelibrary.com]
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effort. In the calculation, a nonuniform mesh with 60 cells in the circumferential direction and 70 cells in the surface
normal direction is used to discretize the physical space. The far-field boundary is put at 11R0 away from the center of
the cylinder. The distance from the wall to the nearest grid point in the computational domain is taken as Δr = 0.00012 m
and 0.00008 m for the cases of Kn = 0.1 and Kn = 0.01, respectively. The ratio of mesh spacing along the surface normal
direction is controlled by the hyperbolic tangent function. In the particle velocity space, the Newton-Cotes quadrature
with 161 × 161 mesh points uniformly distributed in [−20

√
2𝑅𝑇 0, 20

√
2𝑅𝑇 0] × [−20

√
2𝑅𝑇 0, 20

√
2𝑅𝑇 0] is utilized. The

convergence criteria are set by the condition that the maximum errors of all primitive variables at two adjacent iteration
steps do not exceed 10−6.

The comparison of pressure, temperature, and u-velocity contours computed by the conventional DVM and Scheme II
for the cases of Kn= 0.1 and 0.01 are shown in Figures 10 and 11, respectively. It can be seen that the results of two schemes
are in line with each other. The smaller the Knudsen number, the thinner and steeper the bow shock wave. In Figures 12
and 13, the density, u-velocity, and temperature profiles along the stagnation line in front of the cylinder computed by three
different methods for solution reconstruction are compared with those of Yu59 obtained by the UGKS with adaptive mesh
refinement in the particle velocity space and the direct simulation Monte Carlo (DSMC) method. Further comparisons of
the computed surface quantities such as pressure, shear stress, and normal heat flux in our simulation and those obtained
by UGKS and DSMC59 are carried out in Figures 14 and 15 for the cases of Kn = 0.1 and 0.01, respectively. Overall,

FIGURE 14 Distribution of the surface quantities along the cylinder wall from the stagnation point to the trailing edge for hypersonic flow
around a cylinder at Ma = 10 and Kn = 0.1. (A) Pressure. (B) Shear stress. (C) Normal heat flux. DSMC, direct simulation Monte Carlo;
UGKS, unified gas kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Distribution of the surface quantities along the cylinder wall from the stagnation point to the trailing edge for hypersonic flow
around a cylinder at Ma = 10 and Kn = 0.01. (A) Pressure. (B) Shear stress. (C) Normal heat flux. DSMC, direct simulation Monte Carlo;
UGKS, unified gas kinetic scheme [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 16 Convergence history of different methods for hypersonic flow around a cylinder at Ma = 10. (A) Kn = 0.1. (B) Kn = 0.01
[Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Computational time (hours) of different
methods for hypersonic flow around a cylinder

Kn Original Scheme I Scheme II

Kn = 0.1 104.856 149.284 137.535
Kn = 0.01 207.200 293.003 269.392

the results of three different methods are basically the same, and they agree well with the reference data.59 It indicates
that the solution accuracy and numerical stability of two improved schemes are consistent with the original model for
simulation of hypersonic rarefied flows. In addition, the comparison of convergence history of three schemes is depicted
in Figure 16 and the comparison of computational time is made in Table 2. Basically, there is no apparent difference
among these three schemes in terms of convergence rate. Accordingly, the conventional DVM is more efficient than the
improved schemes.

4 CONCLUSIONS

In this work, two improved schemes for local solution reconstruction at the cell interface in DVM are presented for sim-
ulation of flows in all flow regimes. As compared with the conventional scheme, which evaluates the local solution at
the cell interface by solving collisionless Boltzmann equation, the improved schemes use the local solution of Boltzmann
equation with Shakhov model. To determine this local solution, the equilibrium distribution function at the cell interface
has to be calculated in advance. In the first improved scheme, this equilibrium distribution function is computed by the
compatibility condition, and in the second one, it is approximated by a simple average technique. The performances of
two improved schemes are then compared with the conventional model by simulating several flow problems in different
flow regimes.

Numerical results show that both the conventional DVM and the improved schemes can provide accurate prediction
for simulation of rarefied flows, while in the continuum flow regime, the solution accuracy of two improved schemes is
better than that of the conventional DVM. As far as the computational efficiency is concerned, the conventional DVM
is better than the improved schemes. Specifically, the computational time of Scheme II is about 1.3-1.5 times of that of
the conventional DVM. In addition, the numerical stability of three schemes is basically the same. It verifies that the
approximation for equilibrium state at the cell interface by a simple average technique is reasonable and acceptable.
Overall, for simulation of flows in all flow regimes, Scheme II could be the best choice among the three schemes. However,
in the rarefied flow regime, the conventional DVM is preferred.
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