130 LETTER

Synthesis of Multisubstituted Indenes via Iron-Catalyzed Domino Reaction of Benzylic Compounds and Alkynes

Yongxin Chen, a,b Kangning Li, a,b Xiang Liu, a,b Jiaoyan Zhu, a,b Baohua Chen*a,b

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China

Received: 18.10.2012; Accepted after revision: 07.11.2012

Abstract: A novel approach to synthesizing multisubstituted indenes by iron-catalyzed domino reaction of benzylic compounds and alkynes under mild conditions was developed. This system could be applied to various available substrates in a one-step synthetic procedure in moderate to good yields.

Key words: indenes, iron catalysis, domino reaction, one-step procedure, annulation

The indene core is one of the most important cyclic motifs that are very common in natural products and biologically active compounds.¹ In addition, it has tremendous applications in various research fields including material chemistry, analytical chemistry, and synthetic organic chemistry.² Great progress has been made to successfully construct this motif, but traditional methods required expensive and difficult-to-prepare catalysts/reagents, tedious reaction procedures, moreover, it is difficult to directly introduce multifunctional groups into the indene core.³ Recently, several new approaches⁴ to generating indenes from the reaction between carbon–carbon triple bonds and benzyl cation intermediates that are obtained by the use of leaving groups have been developed (Scheme 1, A).

In recent years, the direct functionalization of benzylic C(sp³)–H bonds has attracted extensive attention in organic synthesis.^{5–8} For example, Shi and others⁵ have reported the cross-dehydrogenative coupling (CDC) between benzylic C-H bonds and sp³, sp², or sp C-H bonds. Direct benzylic C-H amination through various catalytic systems have also been developed.⁶ Additionally, the Jiao group⁷ demonstrated an iron-catalyzed transformation of benzylic compounds into corresponding amide through C-H and C-C bond cleavage. Among these reactions, iron is a particularly attractive catalyst because of its sustainability, easy availability, low price, and environmentally friendly characteristics. Despite the significant progress that has been achieved in this area, the cyclization reaction is still a relatively unexplored field. Owing to the importance of indene derivatives and the lack of successful direct annulations from benzylic compounds without leaving groups, we initially envisioned a novel and efficient way of synthesizing multisubstituted indenes by in situ generated benzyl bromides as benzyl cation precursors in an iron-catalyzed, one-step synthetic procedure (Scheme 1, B).

$$\begin{array}{c} H \\ Ar \\ R^1 \\ Ar \\ R^2 \\ R^3 \\ R^1 \\ R^1 \end{array}$$

Scheme 1 Synthesis of indene derivatives

At the outset of our study, diphenylacetylene (1a) and diphenylmethane (2a) were chosen as model substrates to optimize the reaction conditions (Table 1). Compounds 3aa and 4aa were obtained in 10% and 56% yields, respectively, with FeCl₂ (10 mol%) as the catalyst and DDQ (2.0 equiv) as the oxidant in DCE at 80 °C (Table 1, entry1). The yield of 3aa increased to 66% when NBS was used as the oxidant, while other oxidants such as NCS, TBHP, and Cu(OAc)2 showed no effect on the promotion of this domino reaction (Table 1, entries 2–5). Subsequently, a series of solvents (toluene, acetonitrile, nitromethane, and tetrahydrofuran) were also evaluated but they showed disappointing results (Table 1, entries 6– 9). Furthermore, we investigated the reaction using other iron, copper, and zinc salts as catalyst, but no better results were obtained (Table 1, entries 10–14). It is noteworthy that the amount of NBS had a significant effect on this reaction. Both 1.5 equivalents and 3.0 equivalents of NBS offered the desired product 3aa in a low yield; 2.2 equivalents of NBS were the most effective and resulted in 75% yield (Table 1, entries 15–17). In addition, the yield was found to decrease with the temperature changed to 60 °C or 120 °C (Table 1, entries 18 and 19), and only a trace amount of product was observed in the absence of NBS or FeCl₂.

Under the optimized reaction conditions, a series of substituted substrates was investigated to establish the scope and limitations of this process (Table 2). The results

b Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China Fax +86(931)8912582; E-mail: chbh@lzu.edu.cn

Table 1 Optimization of the Reaction Conditions^a

24		Jaa	- 744		
Oxidant (equiv)	Catalyst	Solvent	Temp (°C)	Yield of 3aa (%)	Yield of 4aa (%)
DDQ (2.0)	FeCl ₂	DCE	80	10	56
NBS (2.0)	$FeCl_2$	DCE	80	66	12
NCS (2.0)	$FeCl_2$	DCE	80	trace	0
TBHP (2.0)	$FeCl_2$	DCE	80	trace	0
$Cu(OAc)_2(2.0)$	$FeCl_2$	DCE	80	trace	0
NBS (2.0)	$FeCl_2$	PhMe	80	15	42
NBS (2.0)	$FeCl_2$	MeCN	80	0	0
NBS (2.0)	$FeCl_2$	$MeNO_2$	80	0	0
NBS (2.0)	$FeCl_2$	THF	80	0	0
NBS (2.0)	$FeBr_2$	DCE	80	43	0
NBS (2.0)	FeCl ₃	DCE	80	44	15
NBS (2.0)	Fe(acac) ₃	DCE	80	trace	20
NBS (2.0)	$CuCl_2$	DCE	80	trace	0
NBS (2.0)	$ZnCl_2$	DCE	80	trace	0
NBS (1.5)	$FeCl_2$	DCE	80	56	20
NBS (2.2)	$FeCl_2$	DCE	80	75	0
NBS (3.0)	$FeCl_2$	DCE	80	47	0
NBS (2.2)	$FeCl_2$	DCE	60	67	0
NBS (2.2)	$FeCl_2$	DCE	120	60	0
	DDQ (2.0) NBS (2.0) NCS (2.0) TBHP (2.0) Cu(OAc) ₂ (2.0) NBS (2.0)	Oxidant (equiv) Catalyst DDQ (2.0) FeCl ₂ NBS (2.0) FeCl ₂ NCS (2.0) FeCl ₂ TBHP (2.0) FeCl ₂ Cu(OAc) ₂ (2.0) FeCl ₂ NBS (2.0) FeCl ₃ NBS (2.0) Fe(acac) ₃ NBS (2.0) CuCl ₂ NBS (2.0) ZnCl ₂ NBS (2.0) FeCl ₂ NBS (2.0) FeCl ₂ NBS (2.0) FeCl ₂ NBS (3.0) FeCl ₂ NBS (3.0) FeCl ₂ NBS (2.2) FeCl ₂	Oxidant (equiv) Catalyst Solvent DDQ (2.0) FeCl ₂ DCE NBS (2.0) FeCl ₂ DCE NCS (2.0) FeCl ₂ DCE TBHP (2.0) FeCl ₂ DCE Cu(OAc) ₂ (2.0) FeCl ₂ DCE NBS (2.0) FeCl ₂ PhMe NBS (2.0) FeCl ₂ MeCN NBS (2.0) FeCl ₂ MeNO ₂ NBS (2.0) FeCl ₂ THF NBS (2.0) FeCl ₃ DCE NBS (2.0) Fe(acac) ₃ DCE NBS (2.0) Fe(acac) ₃ DCE NBS (2.0) ZnCl ₂ DCE NBS (2.0) ZnCl ₂ DCE NBS (2.0) FeCl ₂ DCE NBS (2.2) FeCl ₂ DCE NBS (3.0) FeCl ₂ DCE NBS (2.2) FeCl ₂ DCE NBS (2.2) FeCl ₂ DCE	Oxidant (equiv) Catalyst Solvent Temp (°C) DDQ (2.0) FeCl ₂ DCE 80 NBS (2.0) FeCl ₂ DCE 80 NCS (2.0) FeCl ₂ DCE 80 TBHP (2.0) FeCl ₂ DCE 80 Cu(OAc) ₂ (2.0) FeCl ₂ DCE 80 NBS (2.0) FeCl ₂ PhMe 80 NBS (2.0) FeCl ₂ MeCN 80 NBS (2.0) FeCl ₂ MeNO ₂ 80 NBS (2.0) FeBr ₂ DCE 80 NBS (2.0) FeCl ₃ DCE 80 NBS (2.0) Fe(acac) ₃ DCE 80 NBS (2.0) ZnCl ₂ DCE 80 NBS (2.2) FeCl ₂ DCE 80 NBS (3.0) FeCl ₂ DCE 80	Oxidant (equiv) Catalyst Solvent Temp (°C) Yield of 3aa (%) DDQ (2.0) FeCl2 DCE 80 10 NBS (2.0) FeCl2 DCE 80 66 NCS (2.0) FeCl2 DCE 80 trace TBHP (2.0) FeCl2 DCE 80 trace Cu(OAc)2 (2.0) FeCl2 DCE 80 trace NBS (2.0) FeCl2 DCE 80 trace NBS (2.0) FeCl2 MeCN 80 0 NBS (2.0) FeCl2 MeNO2 80 0 NBS (2.0) FeCl2 THF 80 0 NBS (2.0) FeCl3 DCE 80 43 NBS (2.0) Fe(acac)3 DCE 80 trace NBS (2.0) Fe(acac)3 DCE 80 trace NBS (2.0) ZnCl2 DCE 80 trace NBS (2.0) ZnCl2 DCE 80 trace N

^a Reaction conditions: **1a** (0.25 mmol), **2a** (1.25 mmol), catalyst (0.025 mmol), solvent (2 mL), under N₂, 12 h.

showed that substrates with various weakly electron-donating and electron-withdrawing functional groups on either alkynes or benzylic compounds gave the corresponding indenes in moderate to good yields, and other strongly electron-donating and electron-withdrawing substituents gave no desired products probably because of strong electronic effect (Table 2, entries 7, 8, and 17). The corresponding product **3da** was obtained in good yield when the substrate with an *ortho*-substituted aryl group was employed (Table 2, entry 4). Moreover, substrates with different substituents on R¹ and R² gave a mixture of regioisomers; due to electronic effects, the ratio of isomers varied from 3.7:1 to 1.3:1 (Table 2, entries 2, 4, 5, see also the Supporting Information). ^{4a,b} The aliphatic alkynes gave lower but still acceptable yields with perfect regioselectivity (Table 2, entries 9 and 10). 4a,b When unsymmetric diphenylmethanes were employed, exclusive regioselectivity of indenes were observed except for **3ab** and **3ad** (Table 2, entries 11, 13–19; see also the Supporting Information). Confirmed by ¹H NMR and ¹³C NMR analyses of intermediate product **4ae**, we assumed the favorable isomer would be **3ae**. ^{4b} A low yield was obtained when the bis[4-(*tert*-butyl)phenyl]methane was used, probably because of the steric effects of the *tert*-butyl substituent (Table 2, entry 12). Besides diarylmethanes, simple benzylic substrates such as ethyl benzene also worked smoothly and gave a mixture of diastereomers (1:1 ratio) in 56% yield (Table 2, entry 16).

Interestingly, it was found that substrates with a *para*-methoxy group on the aryl ring could react smoothly by using DDQ as oxidant (Table 3, entry 1). Good yield was still achieved when the bis[4-(*tert*-butyl)phenyl]methane was used (Table 3, entry 2).

To gain an insight into the mechanism of the above-mentioned process, the following control experiments were performed. As shown in Scheme 2, (bromometh-

132 Y. Chen et al. LETTER

ylene)dibenzene **A** was obtained via reaction of diphenylmethane (**2a**) with NBS in DCE under optimized conditions (Scheme 2, A), and then diphenylacetylene (**1a**) and FeCl₂ were added to the reaction mixture (Scheme 2, B), and **3aa** was obtained in 74% yield.

On the basis of the above results, a tentative reaction mechanism is illustrated in Scheme 2 (C). Treatment of diphenylmethane (2a) with NBS produces (bromomethylene)dibenzene A. The reaction of iron salt on A can lead to benzylic cation, which regioselectively attacks 1a resulting in the formation of vinyl cation C. Then C undergoes cyclization and subsequent aromatization to provide 4aa. 4a,b,10 Finally, 4aa and a second A react to afford the desired product 3aa. 11

In summary, we have developed a novel iron-catalyzed direct cyclization for the synthesis of multisubstituted indenes with benzylic compounds and alkynes in moderate to good yields. This system could be applied to various available substrates in a one-step synthetic procedure. We believe that this is one of the simplest and most straightforward methods available for the synthesis of indenes to date.

Acknowledgment

We are grateful to the project sponsored by the Project of National Science Foundation of P. R. of China (No. J11003307).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.

 Table 2
 Synthesis of Indenes Derivatives from Alkynes and Benzylic Compounds^a

Entry	1 R ¹ , R ²	2 Ar, R ³	NBS (equiv)	Yield of 3 (%)
1	1a Ph, Ph	2a Ph, Ph	2.2	3aa 75
2	1b Ph, 4-MeC ₆ H ₄	2a Ph, Ph	1.9	3ba/3ba' (1:3.7) 72
3	1c 4-MeC ₆ H ₄ , 4-MeC ₆ H ₄	2a Ph, Ph	1.6	3ca 53
4	1d Ph, 2 -MeC ₆ H ₄	2a Ph, Ph	1.8	3da/3da' (1:1.3) 69
5	1e Ph, 4-ClC ₆ H ₄	2a Ph, Ph	2.2	3ea/3ea' (1:1.3) 83
6	1f 4-ClC ₆ H ₄ , 4-ClC ₆ H ₄	2a Ph, Ph	2.5	3fa 74
7	1g Ph, 4-O ₂ NC ₆ H ₄	2a Ph, Ph	2.2	3ga 0
8	1h Ph, 4-MeOC ₆ H ₄	2a Ph, Ph	2.2	3ha 0
9	1i Ph, Bu	2a Ph, Ph	3.0	3ia 55
10	1j <i>n</i> -Pr, <i>n</i> -Pr	2a Ph, Ph	2.2	3ja 42
11	1a Ph, Ph	2b Ph, 4-MeC ₆ H ₄	2.2	$3ab (Ar = Ph)/3ab' (Ar = 4-MeC_6H_4) (1:1) 62$
12	1a Ph, Ph	2c 4- <i>t</i> -BuC ₆ H ₄ , 4- <i>t</i> -BuC ₆ H ₄	2.6	3ac 48°
13	1a Ph, Ph	2d Ph, 4-FC ₆ H ₄	2.6	3ad (Ar = Ph)/ 3ad' (Ar = 4-FC ₆ H ₄) (2:1) 58
14	1a Ph, Ph	2e Ph, 4-ClC ₆ H ₄	2.4	3ae 57
15	1a Ph, Ph	2f Ph, 4-F ₃ CC ₆ H ₄	3.0	3af 63°
16	1a Ph, Ph	2g Ph, Me	2.2	3ag 56 ^d
17	1a Ph, Ph	2h Ph, 4-MeOC ₆ H ₄	2.2	3ah 0
18	1f 4-ClC ₆ H ₄ , 4-ClC ₆ H ₄	2e Ph, 4-ClC ₆ H ₄	2.8	3fe 72
19	1f 4-ClC ₆ H ₄ , 4-ClC ₆ H ₄	2f Ph, 4-F ₃ CC ₆ H ₄	3.0	3ff 45 ^b

^a Reaction conditions: 1 (0.25 mmol), 2 (1.25 mmol), FeCl₂ (0.025 mmol), DCE (2 mL), 80 °C, 10 h, under N₂.

^b At 100 °C, 24 h.

c At 100 °C.

^d At 60 °C.

Table 3 Synthesis of Indene Derivatives Using DDQ as Oxidant^a

Entry	$1 R^1, R^2$	2 Ar, R ³	Yield of 4 (%)
1	1h Ph, 4-MeOC ₆ H ₄	2a Ph, Ph	4ha 55
2	1a Ph, Ph	$2c$ 4 - t -Bu C_6H_4 , 4 - t -Bu C_6H_4	4ac 65

^a Reaction conditions: 1 (0.25 mmol), 2 (1.25 mmol), FeCl₂ (0.025 mmol), DDQ (0.625 mmol), DCE (2 mL), 100 °C, 10 h, under N₂.

Scheme 2 A tentative reaction mechanism

References and Notes

- (a) Nugiel, D. A.; Etzkom, A.-M.; Vidwans, A.; Benfield, P. A.; Boisclair, M.; Burton, C. R.; Cox, S.; Czerniak, P. M.; Doleniak, D.; Seitz, S. P. J. Med. Chem. 2001, 44, 1334.
 (b) Frédérick, R.; Dumont, W.; Ooms, F.; Aschenbach, L.; van der Schyf, C. J.; Castagnoli, N.; Wouters, J.; Krief, A. J. Med. Chem. 2006, 49, 3743. (c) Heintzelman, G. R.; Averill, K. M.; Dodd, J. H.; Demarest, K. T.; Tang, Y.; Jackson, P. F. WO 2003088963, 2003. (d) Safak, C.; Simsek, R.; Altas, Y.; Boydag, S.; Erol, K. Boll. Chim. Farm. 1997, 136, 665.
- (2) (a) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1989, 32, 2163. (b) Wang, B. Coord. Chem. Rev. 2006, 250, 242. (c) Xi, Q.; Zhang, W.; Zhang, X. Synlett 2006, 945. (d) Barberá, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem. Int. Ed. 1998, 37, 296. (e) Banide, E. V.; O'Connor, C.; Fortune, N.; Ortin, Y.; Milosevic, S.; Müller-Bunz, H.; McGlinchey, M. J. Org. Biomol. Chem. 2010, 8, 3997. (f) Zargarian, D. Coord. Chem. Rev. 2002, 233-234, 157. (g) Morinaka, K.; Ubukata, T.; Yokoyama, Y. Org. Lett. 2009, 11, 3890. (h) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R. J. Org. Chem. 2000, 65, 6739. (i) Alt, H. G.; Köppl, A. Chem. Rev. 2000, 100, 1205.
- (3) (a) Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958. (b) Marion, N.; Díez-González, S.; de Frémont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem. Int. Ed. 2006, 45, 3647. (c) Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807. (d) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Heyer, C. A. J. Org. Chem. 2007, 72, 7046. (e) Zhu, Z.-B.; Shi, M. Chem. Eur. J. 2008, 14, 10219. (f) Zhang, X.-M.; Tu, Y.-Q.; Jiang, Y.-J.; Zhang, Y.-Q.; Fan, C.-A.; Zhang, F.-M. Chem. Commun. 2009. 4726. (g) Li, C.; Zeng, Y.; Wang, J. Tetrahedron Lett. 2009. 50, 295. (h) Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229. (i) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett. 2005, 7, 4963. (j) Bi, H.-P.; Liu, X.-Y.; Gou, F.-R.; Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Org. Lett. 2007, 9, 3527. (k) Bryan, C. S.; Lautens, M. Org. Lett. 2010, 12, 2754 (1) Rayabarapu, D. K.; Cheng, C.-H. Chem. Commun. 2002, 9, 942. (m) Deng, R.; Sun, L.; Li, Z. Org. Lett. 2007, 9, 5207. (n) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2005, 127, 13498. (o) Miyamoto, M.; Harada, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2008, 10, 2975. (p) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. (q) Chang, K.-J.; Rayabarapu, D. K.; Cheng, C.-H. J. Org. Chem. 2004, 69, 4781.
- (4) (a) Bu, X.; Hong, J.; Zhou, X. Adv. Synth. Catal. **2011**, *353*, 2111. (b) Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma, X.-T.;

134 Y. Chen et al. LETTER

Cheng, D.-J.; Li, N.; Tian, S.-K. *Org. Lett.* **2010**, *12*, 3832. (c) Li, H.; Li, W.; Liu, W.; He, Z.; Li, Z. *Angew. Chem. Int. Ed.* **2011**, *50*, 2975.

- (5) (a) Rong, Y.; Li, R.; Lu, W. Organometallics 2007, 26, 4376. (b) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem. Int. Ed. 2007, 46, 6505. (c) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem. Int. Ed. 2009, 48, 3817. (d) Correia, C. A.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 1446
- (6) (a) Liu, X.; Zhang, Y.; Wang, L.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008, 73, 6207. (b) Pelletier, G.; Powell, D. A. Org. Lett. 2006, 8, 6031. (c) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726. (d) Ye, Y.-H.; Zhang, J.; Wang, G.; Chen, S.-Y.; Yu, X. Q. Tetrahedron 2011, 67, 4649. (e) Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2008, 10, 1863. (f) Xia, Q.; Chen, W.; Qiu, H. J. Org. Chem. 2011, 76, 7577.
- (7) Qin, C.; Zhou, W.; Chen, F.; Ou, Y.; Jiao, N. Angew. Chem. Int. Ed. 2011, 50, 12595.
- (8) (a) Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870. (b) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (c) Coperet, C. Chem. Rev. 2010, 110, 656. (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (e) Ramesh, D.; Ramulu, U.; Rajaram, S.; Prabhakar, P.; Venkateswarlu, Y. Tetrahedron Lett. 2010, 51, 4898. (f) Li, Z.; Yu, R.; Li, H. Angew. Chem. Int. Ed. 2008, 47, 7497. (g) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
- (9) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Bolm, C. Nat. Chem. 2009, 1, 420.
 (c) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed.

- **2008**, *47*, 3317. (d) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. *J. Am. Chem. Soc.* **2002**, *124*, 13856. (e) Sherry, B. D.; Fürstner, A. *Acc. Chem. Res.* **2008**, *41*, 1500. (f) Bauer, E. B. *Curr. Org. Chem.* **2008**, *12*, 1341.
- (10) (a) Stang, P. J.; Anderson, A. G. J. Am. Chem. Soc. 1978, 100, 1520. (b) Viswanathan, G. S.; Wang, M. W.; Li, C. J. Angew. Chem. Int. Ed. 2002, 41, 2138. (c) Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. Vinyl Cations; Academic Press: New York, 1979.
- (11) General Procedure for the Iron-Catalyzed Domino Reaction – Synthesis of 6-Benzhydryl-1,2,3-triphenyl-1*H*-indene (3aa)

Diphenylacetylene 1a (44.5 mg, 0.25 mmol), FeCl₂ (3.1 mg, 10 mmol%), and NBS (97.9 mg, 0.55 mmol) were added to a flask with a magnetic stirring bar. The tube was evacuated and refilled with N_2 , and then diphenylmethane (2a, 210 μ L, 1.25 mmol) and DCE (2 mL) was added. The resulting mixture was stirred at 80 °C for 10 h. After cooling to r.t., the mixture was diluted with EtOAc and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (PE as eluent) to give product 3aa (75% yield); white solid; mp 155-157 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.28$ (m, 5 H), 7.22-7.13 (m, 8 H), 7.10-6.98 (m, 14 H), 6.98-6.94 (m, 1 H), 5.50 (s, 1 H), 5.03 (s, 1 H). 13 C NMR (75 MHz, CDCl₃): $\delta = 148.4$, 145.5, 144.1, 144.0, 143.4, 141.6, 140.4, 139.7, 135.5, 129.4, 129.2, 129.1, 128.6, 128.5, 128.2, 128.1, 127.8, 127.4, 126.5, 126.1, 125.3, 120.1, 57.9, 56.8.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.