DOI: 10.1002/cmdc.201200246

2-Aminopyridine Derivatives as Potential $\sigma_{\scriptscriptstyle 2}$ Receptor Antagonists

Carmen Abate,^{*[a]} Savina Ferorelli,^[a] Mauro Niso,^[a] Cesarea Lovicario,^[a] Vittoria Infantino,^[b] Paolo Convertini,^[c] Roberto Perrone,^[a] and Francesco Berardi^[a]

 $σ_2$ Receptor research is receiving increasing interest with regard to the potential of $σ_2$ proteins as targets for tumor therapy and diagnosis. Nevertheless, knowledge about the $σ_2$ receptor is far from conclusive. The paucity and modest affinity of known $σ_2$ antagonists represent one of the limitations to $σ_2$ receptor research. Previous studies of the high-affinity $σ_2$ agonist 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propyl]piperazine **4** (PB28) suggested that a decrease in lipophilicity might lead to $σ_2$ ligands devoid of antiproliferative activity (potential $σ_2$ antagonists). With the aim of producing $σ_2$ receptor antagonists, we replaced the tetralin nucleus of compound **4** with a 2-aminopyridine moiety. A series of compounds with high affinity for both σ subtypes and with no antiproliferative activity in various cells (mouse HT-22, human SK-N-SH, MCF-7wt, and MCF-7 σ_1) were obtained. The effect on Ca²⁺ mobilization was investigated for high-affinity compounds **18** and **4**, which showed opposite effects. All of the data support the new 2-aminopyridines as high-affinity σ ligands with σ_2 antagonist and σ_1 agonist activity, and, despite the lack of significant σ_2 versus σ_1 selectivity, these novel compounds may be better tools for σ receptor research than the known low-affinity σ_2 antagonists.

Introduction

The two subtypes of sigma (σ) receptors, namely σ_1 and σ_2 , represent potential and interesting targets for the diagnosis and therapy of different kinds of tumors and a number of central nervous system (CNS) diseases.^[1,2] Since their discovery, impressive progress has been made in σ receptor research, although several pieces of information are still missing for comprehensive knowledge about their mechanisms of action. Of the two subtypes, only σ_1 has been cloned from different sources.^[3] Increasing evidence links this protein to neuroprotective and neuroregulatory functions and to CNS pathologies such as schizophrenia, depression, and Alzheimer's and Parkinson's diseases.^[4-6] Recently, it has been shown that juvenile amyotrophic lateral sclerosis is caused by a mutation to the gene encoding the σ_1 receptor.^[7] Diverse mechanisms of action have been proposed for the σ_1 protein, which has been assigned a chaperone function for cross-talk between the endoplasmic reticulum (ER) and the mitochondrion through Ca²⁺ signaling, as well as a role in lipid compartmentalization.^[8] The lesserknown σ_2 subtype has yet to be cloned. Attempts to isolate σ_2 receptors led to the hypothesis that they are related to histone proteins.^[9,10] Nevertheless, later studies showed accumulation of σ_2 fluorescent ligands in diverse organelles except the nucleus.^[11,12] Very recently, the σ_2 receptor has been identified as progesterone receptor the membrane component 1 (PGRMC1).^[13] Increasing interest in σ_2 receptor research is mostly due to the diagnostic and therapeutic potentials that σ_2 ligands possess. This subtype is overexpressed in a number of cancer tissues, thus σ_2 radioligands and fluorescent ligands have been developed for the imaging of these proteins as biomarkers of tumors. Recently, a σ_2 receptor ¹⁸F-labeled radioligand entered a phase I clinical trial for application in positron emission tomography (PET) imaging of three kinds of tumors.^[14] In addition, diverse fluorescent σ_2 receptor ligands have been employed to clarify the pathways activated by σ_2 proteins in tumor cells.^[11,12] As for therapeutic potential, σ_2 ligands are under investigation for cancer treatment, as activation of σ_2 receptors leads to tumor cell death, and encouraging results have been shown for in vivo studies with σ_2 agonists for the treatment of tumors.^[15,16]

On the other hand, it has been suggested that σ_2 antagonists mitigate many cocaine induced behaviors.^[17] However, only a few σ_2 receptor antagonists are known in the literature, such as 1-(2-phenylethyl)piperidine (**1**, AC927, Figure 1),^[18] 1-(2-phenylethyl)-4-(2-pyridyl)piperazine (**2**, UMB24, Figure 1),^[17] and (\pm) -3 α -tropanyl-2-(4-chlorophenoxy)butyrate (**3**, (\pm) -SM21, Figure 1).^[19] In addition, these antagonists display low affinity for the σ_2 receptor (K_i values \geq 100 nm), so results obtained

Dr. C. Abate, Prof. S. Ferorelli, Dr. M. Niso, Dr. C. Lovicario, Prof. Dr. R. Perrone, Prof. Dr. F. Berardi
Dipartimento Farmaco-Chimico
Università degli Studi di Bari ALDO MORO
Via Orabona 4, 70125 Bari (Italy)
E-mail: carmen.abate@uniba.it
Dr. V. Infantino
Dipartimento di Chimica, Università della Basilicata
Viale dell'Ateneo Lucano 10, 85100 Potenza (Italy)
Dr. P. Convertini
Dipartimento Farmaco-Biologico
Laboratorio di Biochimica e Biologia Molecolare
Università degli Studi di Bari ALDO MORO
Via Orabona 4, 70125 Bari (Italy)
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cmdc.201200246.

© 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

WILEY ONLINE LIBRARY

1

Figure 1. Known σ_2 receptor antagonists and agonist PB28.

with these ligands are hardly conclusive.^[20,21] Therefore, there is a need for higher-affinity σ_2 antagonists as pharmacological tools to clarify the role of the σ_2 subtype in both in vitro and in vivo studies. In our previous work, we studied several analogues of 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (4, PB28, Figure 1),^[18] which is one of the highest-affinity σ_2 receptor ligands known, displaying potent agonist activity in diverse tumor cells.^[22,23] According to these structure-affinity relationship (SAfiR) studies, the N-cyclohexylpiperazine moiety was confirmed as an important feature for conferring high σ_2 receptor affinity.^[24-26] Moreover, the σ_2 -mediated antiproliferative activity of several analogues of compound 4 appeared to be correlated to lipophilicity. In fact, less lipophilic compounds do not exert antiproliferative activity and may therefore have an antagonist effect at the σ_2 receptor.^[27,28] Keeping this hypothesis in mind, we developed a series of N-cyclohexylpiperazines linked to a less lipophilic nucleus than tetralin with the aim of producing high-affinity potential σ_2 receptor antagonists. A tetrahydro-1,8-naphthyridine nucleus was used, in spite of the tetralin, to keep the bicyclic structure while the lipophilicity of the ligands was decreased. The corresponding monocyclic structure was also investigated, and a series of N-cyclohexylpiperazine derivatives in which the tetralin was replaced by the N-(pyridin-2-yl)ethylamino moiety was obtained. Both in the bicycle-bearing and monocycle-bearing cyclohexylpiperazine derivatives, the alkyl chain length was varied from three to five methylene moieties. Also, the effect of the insertion of an oxygen atom was investigated both in the bicyclic and monocyclic rings, generating the pyrido-oxazine and the 4-methoxy-2-aminopyridine moieties, respectively. The nitrogen atom adjacent to the pyridine was made into an amide to provide diverse electron lone pair availabilities.

Results and Discussion

Chemistry

The syntheses of final compounds **12–15**, **18**, **19**, **22**, **23**, **26–29**, **35**, and **36** are depicted in Schemes 1–3. The preparation of final compounds **12–15**, **18**, and **19** is depicted in Scheme 1. 2-Amino-3-(bromomethyl)pyridine hydrobromide (**5**), obtained by bromination of 2-amino-3-hydroxymethylpyridine,^[29] was reacted with dimethylmalonate and NaOCH₃ to afford intermediate **6**. Ester hydrolysis, followed by decarboxy-

Scheme 1. Synthesis of final bicyclic 2-aminopyridine derivatives. *Reagents and conditions*: a) H₃COOCCH₂COOCH₃, NaOCH₃, CH₃OH, RT, 18 h; b) NaOH, CH₃OH, reflux, 4 h; c) HCl, CH₃OH, reflux, 18 h; d) NaH, DMF, RT, 48 h; e) BH₃·THF, THF, reflux, 3 h.

lation, provided key intermediate 3,4-dihydro-1,8-naphthyridin-2-(1*H*)-one (**7**). *N*-cyclohexylpiperazine moieties **8–10** were prepared by alkylation of *N*-cyclohexylpiperazine with 1-bromo-3chloro-propane to afford intermediate **8**, and by acylation with 4-chlorobutanoyl chloride and 5-chloropentanoyl chloride to afford, respectively, intermediates **9** and **10**. Treatment of compound **7**, as well as of the commercially available 2*H*-pyrido-[3,2-*b*]-1,4-oxazin-3-(4*H*)-one **11**, with NaH and chloropropylpiperazine **8** afforded final compounds **12** and **13**, respectively. These amide compounds were reduced with borane–tetrahydrofuran (BH₃·THF) complex to afford final compounds **14** and **15**, respectively. Treatment of compound **7** with NaH and intermediates **9** or **10** furnished intermediate **16** or **17** which, upon reduction with BH₃·THF complex, provided final compounds **18** and **19** (Scheme 1).

The preparation of final compounds 22, 23, and 26–29 is depicted in Scheme 2. Acetamides 20 and 21, respectively obtained by acetylation of 2-aminopyridine and 4-methoxy-2-aminopyridine,^[30] were reacted with intermediate 8 in the presence of NaH to afford compounds 22 and 23, respectively. Intermediate 20 was reacted with chloroalkylpiperazine derivatives 9 and 10 to afford compounds 24 and 25, respectively. Reduction with BH₃·THF complex of the amidic functionalities of compounds 22–25 provided final amine compounds 26–29.

The synthesis of final compounds **35** and **36** is depicted in Scheme 3. Key intermediate pyridine-1-oxide derivatives **30** and **31** were commercially available. However, the latter was synthesized through a previously reported synthesis^[31] starting from 2-chloro-4-nitropyridine-1-oxide via 2-chloro-4-methoxy-pyridine.^[31] Compounds **30** and **31** underwent nucleophilic

Scheme 2. Synthesis of final monocyclic 2-aminopyridine derivatives. Reagents and conditions: a) NaH, DMF, RT, 48 h; b) BH₃·THF, THF, reflux, 3 h.

substitution with 3-(4-cyclohexylpiperazin-1-yl)propanamine^[32] 32 to afford intermediates 33 and 34, which were converted with PCl₃ to the final amine compounds 35 and 36, respectively.

All of the final amine compounds were converted into their hydrochloride or oxalate salts with gaseous HCl or oxalic acid, respectively, in anhydrous diethyl ether. Physical properties of these salts are listed in the Table of Physical Properties of Novel Compounds in the Supporting Information, along with the values of the calculated logarithm of distribution coefficient (Clog D) for the corresponding free bases.^[33]

As 2-aminopyridine is endowed with fluorescence proper-

 NH_2 32 ò 33: R = H 34: R = OCH₃ 30: R = H, X = Br 31: R = OCH3. X = CI b 35: R = H 36: R = OCH₃

Scheme 3. Synthesis of final monocyclic 2-aminopyridine derivatives. Reagents and conditions: a) Et₃N, n-butanol, 120 °C, 20 h; b) PCl₃, CHCl₃, 80 °C, 1 h.

none of the newly synthesized 2-aminopyridine derivatives displayed sub-nanomolar binding affinities similar to that of 4 at both σ receptors, appreciable affinity values were reached. No selectivity between the two $\boldsymbol{\sigma}$ subtypes was obtained, and most of the new compounds displayed a slight preference for the σ_1 receptor (14, 15, 19, 26, 27, 35, and 36). On the other hand, compounds 12, 18, 22, and 23 displayed slight σ_2 selectivity, with only 12 and 18 characterized by appreciable σ affinity.

Binding values displayed by bicyclic 1,8-naphthyridine compounds (14, 18, and 19) and by corresponding open monocyclic 2-aminopyridine analogues (26, 28, and 29) were similar (K_i : 2.06–5.66 nм for σ_1 ; K_i : 1.64–14.6 nм for σ_2), demonstrating that a decrease in conformational freedom does not affect the affinity at σ receptors. In addition, no significant effect of chain

ties, the fluorescence spectra of all compounds were recorded to evaluate whether fluorescence of these new compounds could be exploited in biological assays. Fluorescence spectra of final compounds as free bases (at 10⁻⁵-10⁻⁷ м concentrations) were recorded in organic solvents (CHCl₃ and EtOH) and in aqueous buffer (pH 7.4), but the quantum yields (calculated using 2-aminopyridine as the reference compound) were too low for imaging purposes, so the fluorescence properties of these molecules were no longer considered.

Radioligand binding and σ_1 and σ_2 receptor affinities

Results from binding assays are expressed as inhibition constants (K_i values) in Table 1. Although

ChemMedChem 0000, 00, 1 – 12

3 www.chemmedchem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! 77

Table 1. Binding data of final 2-aminopyndine derivatives.									
$Z = \left(\begin{array}{c} X \\ N \\ N \\ N \end{array} \right)_{n} - \left(CH_{2} \right)_{n} - Z \\ A \\ B \end{array} \right)_{n} - \left(CH_{2} \right)_{n} - Z \\ A \\ B \\ B$									
Compd	Z	n	R ¹	R ²	х	Y	_κ [n σ ₁	м] ^[а]	
4[20]							0.28 ± 0.10	0.68 + 0.20	
10	Δ	3			CH	0	0.30 ± 0.10	0.00 ± 0.20	
12	A	3			0	0	12.0 ± 3.1	16.1 ± 7.4	
14	A	3			CH.	Ũ	2.0 ± 5.1 2.06 ± 0.71	9.87 ± 0.13	
15	A	3			0		4.19 ± 0.75	18.5 ± 4.1	
18	A	4			CH ₂		4.87 ± 1.26	1.64 ± 0.3	
19	A	5			CH ₂		3.44 ± 0.91	6.53 ± 1.23	
22	В	3	н	COCH₃	C 1.2		353 ± 14	246±53	
23	В	3	OCH,	COCH			402 ± 10	309 ± 3	
26	В	3	H	CH,CH,			3.65 ± 1.46	14.6±3.2	
27	В	3	OCH ₃	CH,CH,			7.68 ± 0.24	30.1 ± 0.7	
28	В	4	н	CH,CH,			2.27 ± 1.09	3.54 ± 1.01	
29	В	5	н	CH ₂ CH ₃			5.66 ± 0.32	6.70 ± 1.55	
35	В	3	н	н			16.4 ± 1.6	70.5 ± 13.0	
36	В	3	OCH ₃	Н			35.5 ± 3.7	59.8 ± 7.3	
(+)-pentazocine							3.31 ± 0.39		
DTG								32.0 ± 1.7	
[a] Values are the	\pm means \pm	SEM of	$n \ge 2$ separa	ate experimer	its.				

length (3–5 methylene groups) on σ receptor affinity was recorded. The three-methylene chain analogues were further investigated both in the bicyclic and in the monocyclic series. In the latter series, the insertion of a methoxy group in the 4-position of the pyridine (compound 27) left affinity at both σ subtypes almost unchanged (K_i values of 7.68 and 30.1 nm for σ_1 and σ_2 , respectively). The importance of the ethyl group on the 2-aminopyridine moiety was investigated with pyridine and 4-methoxypyridine analogues. Elimination of the ethyl residue resulted in a two- to fivefold decrease in affinity at both σ subtypes (comparison of 35 with 26 and 36 with 27). Replacement of the ethyl with an acetyl group (compounds 22 and 23) in both pyridine and 4-methoxypyridine analogues led to a dramatic decrease in affinity at the σ receptors (K_i: 353– 402 nm for the σ_1 receptor; K_i : 246–309 nm for the σ_2 receptor). This evidence suggests that a certain availability of the electron lone pair in the 2-aminopyridine portion is important for a high-affinity interaction with σ receptors. In addition, the small decrease in σ binding that was recorded for secondary amines 35 and 36 suggests that, besides the lone pair availability, a certain bulk is useful for binding σ proteins.

To study the effect of decreasing lone pair availability in the bicyclic series as well, 1,8-naphthyridin-2-one derivative 12 was produced. Apparently, the electron lone pair availability in the 2-aminopyridine moiety is not a strict requirement for the interaction of bicyclic derivatives with σ_2 receptors. In fact, 12 showed an insignificant decrease in σ_2 affinity ($K_i = 16.1 \text{ nM}$) relative to the non-amidic counterpart **14** ($K_i = 9.87 \text{ nm}$). On the other hand, **12** showed a 30-fold lower σ_1 receptor affinity than 14. The bicyclic series was extended with the synthesis of two isosteres in which the 1,8-naphthyridine nucleus was replaced by a pyrido-oxazine in derivative 15 and by a pyrido-oxazinone in 13. Insertion of an oxygen atom (15) did not lead to pharmacodynamic changes at σ receptors relative to 1,8naphthyridine derivative 14. Presence of an amidic functionality (13) led to a decrease in $\sigma_{\!\!1}$ receptor affinity but not as significant as the decrease recorded for 1,8-naphthyridin-2-one **12.** Conversely, no difference was recorded at the σ_2 receptor between the amidic (13) and non-amidic (15) derivatives, as in the 1,8-naphthyridine series. Overall, the bicyclic amide derivatives (12 and 13) did not show the same decrease in affinity as the monocyclic derivatives (22 and 23), particularly at σ_2 receptors, suggesting the hypothesis that diverse binding modes for the bicyclic and monocyclic series may be possible.

Functional assays: antiproliferative activity in human neuroblastoma, human breast cancer, and mouse hippocampal cells

The antiproliferative activities of compound **4** and the newly synthesized compounds are reported as EC₅₀ values in Table 2. Four cell lines, HT-22 hippocampal mouse cells, SK-N-SH human neuroblastoma cells, and MCF-7 wild-type human breast adenocarcinoma cells (MCF-7wt) and MCF-7 cells transfected with σ_1 receptor (MCF-7 σ_1) were selected for activity assays. As previously reported, the SK-N-SH cell line proved to be a good model for the evaluation of σ_2 receptor-mediated

EC ₅₀	[μм]	
SK-N-SH	MCF-7wt ^[c]	$MCF-7\sigma_1^{[d]}$
12.4±1.2 ^[e] >100	27.4 ± 4.1 ^[f] > 100	31.2±4.2 >100
	$\frac{5K-N-5H^{(e)}}{12.4\pm1.2^{(e)}} > 100$	$\frac{\text{SK-N-SH}^{(e)}}{12.4 \pm 1.2^{(e)}} \frac{\text{MCF-/Wt}^{e,e}}{27.4 \pm 4.1^{(f)}}$ $> 100 > 100$

Antiproliferative effect measured in: [a] mouse H1-22 hippocampal cells, [b] human SK-N-SH neuroblastoma cells, [c] human MCF-7 breast adenocarcinoma cells, and [d] human MCF-7 σ_1 cells. [e] Other results for compound **4** previously reported in references [20] and [22]. [f] Other results for compound **4** previously reported in reference [23]. Values are the means \pm SEM of $n \ge 2$ separate experiments.

antiproliferative activity, as σ_1 receptors were reported to be present in a low affinity state.^[22] HT-22 cells have been used as a model for σ_1 receptor-mediated neuroprotection.^[34] Scatchard analysis, which we performed on HT-22 cells to determine the content of both σ subtypes, surprisingly revealed a low σ_1 receptor density ($B_{max} = 0.169 \text{ pmol mg}^{-1}$ of protein), and a sevenfold higher σ_2 receptor content ($B_{max} = 1.23 \text{ pmol mg}^{-1}$ of protein, Figure 2). Therefore, this cell line was also mainly used for evaluation of σ_2 receptor-mediated action. To have a cell

Figure 2. Saturation analysis of A) $\sigma_1 [K_d = 4.25 \text{ nM}, B_{max} = 0.169 \text{ pmol} (mg \text{ protein})^{-1}] \text{ and B}) \sigma_2 [K_d = 7.032 \text{ nM}, B_{max} = 1.23 \text{ pmol} (mg \text{ protein})^{-1}] \text{ receptors in membrane preparations from HT-22 cells: <math>\blacksquare$ total binding; \blacktriangle nonspecific binding; \blacktriangledown specific binding.

www.chemmedchem.org © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim These are not the final page numbers!

ChemMedChem **0000**, 00, 1 – 12

line expressing the σ_1 receptor with an appreciable density, transfection of MCF-7wt cells with the σ_1 receptor gene was conducted according to the literature.^[35] The density of both subtypes was determined before transfection, and the increase in σ_1 receptor content in the newly created MCF-7 σ_1 cell line was evaluated after transfection (Figure 3). Therefore, MCF-7 σ_1 was mainly used for the evaluation of σ_1 -mediated action, whereas MCF-7wt was used for evaluation of σ_2 receptor-mediated action. Reference compound 4, which was previously defined as a σ_2 receptor agonist and a σ_1 receptor antagonist,^[22,23] was studied in the four cell lines where it showed antiproliferative activity (Table 2), as expected for a σ_2 receptor

Figure 3. Saturation analysis of A) $\sigma_1 [K_d = 2.97 \text{ nm},$ $B_{\rm max}$ = 0.172 pmol (mg protein)⁻¹] and B) σ_2 [K_d = 9.3 nм, $B_{max} = 0.323 \text{ pmol} (\text{mg protein})^{-1}$] receptors in membrane preparations from MCF-7wt cells, and saturation analysis of C) σ_1 [K_d=7.6 nm, $B_{\rm max} = 3.45 \text{ pmol} (\text{mg protein})^{-1}$] in membrane preparations from MCF-7 σ_1 cells: ∎total binding; ▲nonspecific binding; ▼specific binding.

agonist and a σ_1 receptor antagonist. On the other hand, all of the new 2-aminopyridine derivatives did not display antiproliferative activity, with EC_{50} values $>100\;\mu\text{M}$ in all of the cell lines studied. Although the involvement of other proteins in the overall action of these σ receptor ligands cannot be ruled out, these data are in agreement with previous results obtained with σ_2 ligands less lipophilic than **4**, leading to the hypothesis that lower lipophilicity values lead to lower σ_2 -mediated antiproliferative activity.^[27] In addition, compound 18, which represents the highest σ_2 affinity compound among the novel 2-aminopyridines, was further investigated in an antiproliferative assay in co-administration with 4. At the concentration used, 18 partially reversed the antiproliferative effect exerted by compound 4 in MCF-7wt cells (see the figure in the Supporting Information), showing that 18 is able to antagonize the σ_2 -mediated antiproliferative action exerted by the σ_2 receptor agonist 4.

σ Receptor effect on intracellular Ca²⁺ mobilization

Effects on intracellular Ca²⁺ mobilization were evaluated for representative 2-aminopyridine 18 and for reference compound 4 with the aim of understanding whether the opposite effect exerted on cell proliferation corresponds to differences in intracellular Ca²⁺ mobilization. Therefore, bradykinin-triggered Ca²⁺ response was measured for 4, 18, and the prototypical σ_1 agonist (+)-pentazocine ((+)-[2S-(2 α ,6 α ,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6methano-3-benzazocine-8-ol) in SK-N-SH, MCF-7wt, and MCF- $7\sigma_1$ cells (Figure 4); none of the ligands affected intracellular Ca²⁺ concentration when administered alone.

Although 4 and 18 do not display σ selectivity, results obtained through experiments in the cell lines selected should allow retrieval of compound effects on each σ subtype: SK-N-SH cells express both σ receptors, with σ_1 subtype in a low affinity state; MCF-7 σ_1 cells overexpress σ_1 receptors; MCF-7wt cells overexpress σ_2 receptors. As previously reported, the selective σ_1 agonist (+)-pentazocine increased bradykinin-induced Ca²⁺ mobilization in SK-N-SH and MCF-7 σ_1 cells, whereas no effect was exerted in MCF-7wt cells where the σ_1 density is too low (Figure 3A).^[35, 36] Compound 4, as previously shown with carbachol in SK-N-SH cells,[37] inhibited bradykinin-triggered Ca²⁺ response in all of the cell lines studied, whereas it did not exert any effect in LoVo colon adenocarcinoma cells in which none of the σ subtypes were detected through Scatchard analysis.^[36] These results support the idea that effects exerted by compound **4** in bradykinin-triggered Ca²⁺ response are σ -mediated and suggest that agonist activity at σ_2 (from SK-N-SH and MCF-7wt) and antagonist activity at σ_1 (from MCF-7 σ_1) decrease such response. On the other hand, 2-aminopyridine derivative 18, increased bradykinin-triggered Ca²⁺ response in SK-N-SH and MCF-7 σ_1 cells, similar to (+)-pentazocine, implying agonist activity at the σ_1 receptor. No effect was exerted by 18 in MCF-7wt cells, where the action may be mediated by the σ_2 receptor.

Together, these data show that compounds 4 and 18 have opposite behavior and suggest that while agonist activity at

5 www.chemmedchem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim These are not the final page numbers! 77

Figure 4. σ Receptor ligand effects on intracellular Ca²⁺ mobilization induced by bradykinin. Cells were pretreated with σ receptor ligands before the addition of bradykinin. Bk: bradykinin (1 μ M); +Ptz: 10 min pretreatment with (+)-pentazocine (1 μ M); +4: 3 min pretreatment with compound 4 (1 μ M); +18: 3 min pretreatment with compound 18 (1 μ M); *p < 0.05. In SK-N-SH and MCF-7 σ_1 cells, the Ca²⁺ response induced by bradykinin was inhibited by 4 and stimulated by 18. In MCF-7wt cells, the Ca²⁺ response induced by bradykinin was inhibited by 4 and unaffected by 18.

the σ_2 receptor decreases bradykinin-induced Ca²⁺ response, antagonist activity may not alter such response. Therefore, compound **18** may be proposed as a σ_2 receptor antagonist and a σ_1 receptor agonist.

Conclusions

6

A certain number of σ_2 receptor ligands with considerable σ_2 versus σ_1 selectivities are known,^[26, 32, 38] but no selective and high-affinity $\sigma_{\!2}$ antagonist has been reported yet, thus there is a need for σ_2 antagonists as tools for σ receptor research. Therefore, with the aim of compensating for the paucity of σ_2 antagonists, we based the development of σ_2 ligands with potential antagonist activity on previous studies. Less lipophilic analogues than σ_2 receptor agonist 4 were obtained by replacement of the tetralin nucleus with a 2-aminopyridine moiety. Compounds with high affinity for both σ receptor subtypes were obtained, and most were characterized by Clog D values within the optimal range for entry into cells, as demonstrated for σ_2 PET radiotracers by other authors.^[38] None of the new compounds displayed antiproliferative activity in the four cell lines selected (mouse HT-22 and human SK-N-SH, MCF-7wt, and MCF-7 σ_1 cells), in contrast with lead compound **4**, which consistently showed micromolar antiproliferative activity. The highest-affinity $\sigma_{\!2}$ ligand $\boldsymbol{18}$ was co-administered with $\boldsymbol{4}$ in MCF-7wt cells and partially decreased the antiproliferative effect exerted by 4. To investigate whether the lack of antiproliferative action of the newly synthesized compounds corresponds to a different effect on Ca²⁺ mobilization, representative compounds 18 and 4 were evaluated in three tumor cell lines with diverse σ subtype content. Actually, compound **18** displayed an opposite effect than compound 4 on bradykinininduced Ca²⁺ response. All of the results together suggest a σ_2 receptor antagonist and a σ_1 receptor agonist activity for compound **18**. In conclusion, despite the lack of σ_2 versus σ_1 selectivities, these new compounds may represent better tools for σ receptor research than the low affinity and poorly selective σ_2 receptor antagonists known.

Experimental Section

Chemistry

Both column chromatography and flash column chromatography were performed with 60 Å pore size silica gel as the stationary phase (1:30 w/w, 63-200 µm particle size from ICN and 1:15 w/w, 15-40 μm particle size from Merck, respectively). Melting points were determined in open capillaries on a Gallenkamp electrothermal apparatus. Purity of tested compounds was established by combustion analysis, confirming purity \geq 98%. Elemental analyses (C, H, N) were performed on an Eurovector Euro EA 3000 analyzer; the analytical results were within $\pm 0.4\%$ of theoretical values. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Mercury Varian spectrometer using CDCl₃ and CH₃OD, respectively, as solvent. The following data were reported: chemical shift (δ) in ppm, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration,

and coupling constant(s) in Hertz. Recording of mass spectra was done on an Agilent 6890-5973 MSD gas chromatograph/mass spectrometer and on an Agilent 1100 series LC–MSD trap system VL mass spectrometer; only significant m/z peaks, with their percentage of relative intensity in parentheses, are reported. Chemicals were from Sigma–Aldrich and Alfa Aesar and were used without any further purification.

General procedure for the synthesis of compounds 12, 13, 16, 17, and 22–25: NaH (1.2 mmol, 0.29 g, 60% w/w) was added to a stirred solution of the corresponding amide compound (7, 11, 20, or 21; 1.0 mmol) in dry DMF (10 mL) under N₂. After 1 h, a solution of the appropriate chloride (1.0 mmol) in DMF was added to the suspension under N₂. The reaction mixture was stirred at room temperature for 48 h. Then, water was added to the reaction mixture, and the organic layer was separated. The aqueous phase was extracted with EtOAc (3×10 mL). The collected organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to afford a crude residue, which was purified as reported below for each target compound.

1-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-3,4-dihydro-1,8-naph-

thyridin-2(1H)-one (12): The yellow semi-solid was purified by column chromatography with CH₂Cl₂/CH₃OH (98:2) as eluent to afford the title compound as a yellow oil (0.125 g, 35%): ¹H NMR $\delta = 1.06 - 1.38$ [m, 5H, cyclohexyl NCH(CHH)₅], 1.58-1.70 (m, 1H, cyclohexyl), 1.72-2.05 [m, 6H, cyclohexyl NCH(CHH)₄, $CONCH_2CH_2CH_2N$], 2.30–2.48 (m+t, 3 H, CHN, J=7.55 Hz, CONCH₂CH₂CH₂N), 2.54-2.80 (m, 10H, piperazine and CH₂CH₂CO), 2.86 (t, 2H, J=7.9 Hz, ArCH₂CH₂CO), 4.17 (t, 2H, J=7.4 Hz, CONCH₂CH₂CH₂N), 6.87-6.92 (m, 1 H, aromatic), 7.42 (d, 1 H, aromatic), 8.20 ppm (d, 1 H, aromatic); GC-MS m/z 358 (M⁺+2, 0.4), 357 (*M*⁺+1, 4), 356 (*M*⁺, 13), 232 (52), 218 (100), 189 (95), 181 (63), 133 (45); LC-MS (ESI⁺) *m/z* 357 [*M*+H]⁺, 379 [*M*+Na]⁺; LC-MS-MS 357: 161, 188; Anal. (C₂₁H₃₂N₄O·2HCl·⁵/₄H₂O) C, H, N.

4-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-2H-pyrido[3,2-b]-[1,4]oxazin-3-(4H)-one (13): The brown semi-solid was purified by a flash column chromatography using CH₂Cl₂/CH₃OH (95:5) as eluent to afford the title compound as a yellow oil (0.093 g, 26%): ¹H NMR δ = 1.06–1.36 [m, 5H, cyclohexyl, NCH(CHH)₅], 1.58-1.70 (m, 1 H, cyclohexyl), 1.72–1.98 [m, 6 H, cyclohexyl NCH(CHH)₄, CONCH₂CH₂CH₂N], 2.24–2.38 (m, 1H, CHN), 2.44 (t, 2H, J=7.10 Hz, CONCH₂CH₂CH₂N), 2.48–2.75 (m, 8H, piperazine), 4.17 [t, 2H, J= 7.40 Hz, CONCH₂(CH₂)₂], 4.64 (s, 2H, OCH₂CO), 6.87–6.92 (m, 1H, aromatic), 7.18–7.25 (m, 1H, aromatic), 7.98–8.05 ppm (m, 1H, aromatic); GC–MS *m/z* 360 (M^+ +2, 1), 359 (M^+ +1, 7), 358 (M^+ , 31), 248 (50), 234 (59), 220 (92), 191 (100), 181 (81), 133 (42); Anal. (C₂₀H₃₀N₄O₂·2HCl·H₂O) C, H, N.

1-(4-Cyclohexylpiperazin-1-yl)-4-[2(1H)-oxo-3,4-dihydro-1,8-

naphthyridin-1-yl]butan-1-one (16): The yellow solid was purified by column chromatography with CH₂Cl₂/CH₃OH (98:2) as eluent to give the target compound as a white semi-solid (0.123 g, 32%): ¹H NMR δ = 1.06–1.32 [m, 5H, cyclohexyl NCH(CH*H*)₃], 1.58–1.70 (m, 1H, cyclohexyl), 1.75-1.90 [m, 4H, cyclohexyl, NCH(CH*H*)₄], 1.98 (m, 2H, CONCH₂CH₂CQ), 2.23–2.32 (m, 1H, CHN), 2.38 [t, 2H, *J*= 7.4 Hz, CON(CH₂)₂CH₂CO], 2.5–2.56 [m, 4H, piperazine, CHN(CH₂)₂], 2.66 (t, 2H, *J*=8.2 Hz, ArCH₂CH₂CO), 2.87 (t, 2H, *J*=8.2 Hz, ArCH₂CH₂CO), 3.42 (t, 2H, piperazine, *J*=4.8 Hz, CONCH₂), 3.58 (t, 2H, piperazine, *J*=4.8 Hz, CONCH₂), 4.20 [t, 2H, *J*=7.1 Hz, CON-(CH₂)₂CH₂N], 6.87–6.91 (m, 1H, aromatic), 7.41–7.44 (m, 1H, aromatic), 8.20–8.22 ppm (m, 1H, aromatic); GC–MS *m/z* 386 (*M*⁺+2, 1), 385 (*M*⁺+1, 6), 384 (*M*⁺, 25), 341 (65), 217 (100), 175 (58).

1-(4-Cyclohexylpiperazin-1-yl)-5-[2(1H)-oxo-3,4-dihydro-1,8-

naphthyridin-1-yl]pentan-1-one (17): The yellow semi-solid was purified by column chromatography with CH₂Cl₂/CH₃OH (98:2) as eluent to afford the title compound as a yellow semi-solid (0.179 g, 45%): ¹H NMR δ = 1.07–1.36 [m, 5H, cyclohexyl, NCH(CHH)₅], 1.56–1.98 [m, 9H, cyclohexyl NCH(CHH)₅ and CONCH₂(CH₂)₂CH₂CO], 2.28–2.43 [m, 3H, CHN and CON(CH₂)₃CH₂CO], 2.45–2.70 [m + t, 6H, J = 8.2 Hz, piperazine N(CH₂)₂ and ArCH₂CH₂CO], 2.86 (t, 2H, J = 8.2 Hz, ArCH₂CH₂CO), 3.42–3.75 [m, 4H, piperazine CON(CH₂)₂], 4.16 [t, 2H, J = 7.1 Hz, CONCH₂(CH₂)₃CO], 6.87–6.91 (m, 1H, aromatic), 7.41–7.43 (m, 1H, aromatic), 8.20–8.22 ppm (m, 1H, aromatic); GC–MS m/z 399 (M^+ +1, 3), 398 (M^+ , 14), 355 (44), 231 (100), 138 (85), 126 (47).

N-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-N-(2-pyridyl)acetamide

(22): The brown residue was purified by column chromatography with CHCl₃ as eluent to give the title compound as pale brown oil (0.14 g, 40%): ¹H NMR $\delta = 1.00$ -1.37 [m, 5H, cyclohexyl, NCH-(CH*H*)₅], 1.58–1.95 [m, 7H, cyclohexyl NCH(CH*H*)₅ and CONCH₂C*H*₂C*H*₂N], 1.99 (s, 3H, CH₃CO), 2.15–2.22 (m, 1H, NCH), 2.29–2.54 [m+t, 10H, *J*=7.1 Hz, CON(CH₂)₂C*H*₂N and piperazine], 3.87 [t, 2H, *J*=7.4 Hz, CONCH₂(CH₂)₂N], 7.19–7.21 (m, 2H, aromatic), 7.71–7.77 (m, 1H, aromatic), 8.50 ppm (m, 1H, aromatic); ¹³C NMR (title compound as oxalate salt): $\delta = 21.79$, 22.32, 24.34, 24.42, 26.60, 45.12, 45.62, 54.34, 66.37, 12299, 124.74, 141.24, 149.01, 153.17, 165.84, 174.25 ppm; GC–MS *m/z* 345 (*M*⁺ + 1, 1), 344 (*M*⁺, 1), 219 (42), 206 (100), 181 (49), 177 (39), 135 (21); LC–MS (ESI⁺) *m/z* 345 [*M*+H]⁺, 367 [*M*+Na]⁺; LC–MS–MS 345: 135, 177; Anal. (C₂₀H₃₂N₄O·2C₂H₂O₄·H₂O) C, H, N.

N-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-N-(4-methoxy-2-pyridy-

I)acetamide (23): The brown residue was purified by column chromatography with CH₂Cl₂/CH₃OH (9:1) as eluent to give the title compound as a yellow oil (0.12 g, 31%): ¹H NMR δ = 1.04–1.27 [m, 5H, cyclohexyl, NCH(CHH)₅], 1.59–1.91 [m, 7H, cyclohexyl, NCH-(CHH)₅ and CONCH₂CH₂CH₂N], 1.99 (s, 3H, CH₃CO), 2.15–2.25 (m, 1H, NCH), 2.32 [t, 2H, *J* = 7.4 Hz, CON(CH₂)₂CH₂N], 2.34–2.54 (m, 8H, piperazine), 3.81–3.86 [m, 5H, CONCH₂(CH₂)₂N and OCH₃], 6.71–6.76 (m, 2H, aromatic), 8.31 ppm (d, 1H, aromatic); GC–MS *m/z* 359 (2), 236 (88), 207 (40), 151 (55), 137 (100); LC–MS–MS (ESI⁺

) m/z 375 $[M+H]^+$, 397 $[M+Na]^+$; LC–MS–MS 375: 137, 165, 207, 333; Anal. (C₂₁H₃₄N₄O₂·2C₂H₂O₄·3/2H₂O) C, H, N.

1-(4-Cyclohexylpiperazin-1-yl)-N-acetyl-N-(2-pyridyl)-4-aminobu-

tan-1-one (24): The brown semi-solid was purified by flash column chromatography using CH₂Cl₂/CH₃OH (95:5) as eluent, affording the title compound as a yellow oil (0.026 g, 7%): ¹H NMR δ = 1.08–1.48 [m, 5 H, cyclohexyl, NCH(CH*H*)₅], 1.50–2.04 [m, 10 H, cyclohexyl NCH(CH*H*)₅, CONCH₂C*H*₂CH₂N and CH₃CO], 2.05–2.25 (m, 1H, NCH), 2.39 (t, 2 H, *J* = 7.1 Hz, CH₂CON), 2.65–3.10 (m, 4H, *CH*₂NC*H*₂ piperazine), 3.70–4.10 [m, 6H, CH₃CONC*H*₂ and (CH₂)₂NCO piperazine], 7.19–7.34 (m, 2 H, aromatic), 7.72–7.85 (m, 1 H, aromatic), 8.48–8.58 ppm (m, 1 H, aromatic); LC–MS–MS (ESI⁺) *m/z* 373 [*M*+H]⁺, 395 [*M*+Na]⁺; LC–MS–MS 373: 163, 237, 331.

1-(4-Cyclohexylpiperazin-1-yl)-N-acetyl-N-(2-pyridyl)-5-aminobu-

tan-1-one (25): The yellow residue was purified by column chromatography with CH₂Cl₂ as eluent to afford the title compound as a yellow oil (0.12 g, 30%): ¹H NMR δ = 1.02-1.32 [m, 5H, cyclohexyl NCH(CHH)₅], 1.52–1.68 [m, 5H, cyclohexyl NCH(CHH)₅], 1.75–1.93 [m, 4H, CONCH₂(CH₂)₂CH₂CO], 1.97 (s, 3H, CH₃CO), 2.18-2.38 [m, 3H, CHN, (CH₂)₃CH₂CO], 2.47–2.58 (m, 4H, piperazine CH₂NCH₂), 3.38–3.48 (m, 2H, piperazine CH₂NCO), 3.52–3.65 (m, 2H, piperazine CH₂NCO), 3.85 [t, 2H, *J*=6.8 Hz, CONCH₂(CH₂)₃CON], 7.20–7.25 (m, 2H, aromatic), 7.72–7.78 (m, 1H, aromatic), 8.50 ppm (m, 1H, aromatic); GC–MS *m/z* 386 (*M*⁺, 4), 343 (32), 219 (31), 177 (85), 138 (100), 126 (58), 107 (35); LC–MS (ESI⁺) *m/z* 409 [*M*+Na]⁺; LC–MS– MS 409: 367.

General procedure for the synthesis of compounds 14, 15, 18, 19, and 26-29: A solution of BH₃·THF complex (1 м) in THF (2.5 mL for 12, 13, 22, and 23, and 5 mL for 16, 17, 24, and 25) was added to one of the appropriate amide compounds (1.0 mmol) in anhydrous THF under N₂. The solution was stirred at reflux for 3 h. The reaction mixture was cooled, then MeOH was added to destroy the excess hydride. The solvent was removed under reduced pressure to give a white solid that was re-dissolved in MeOH. A solution of *i*PrOH saturated with HCl_(gas) was added to this suspension, and the mixture was held at reflux for 30 min. After cooling, the solvent was evaporated under reduced pressure. The residue was re-dissolved with Na2CO3 (saturated solution), and the mixture was extracted with CH_2CI_2 (3×10 mL). The collected organic layers were dried over Na2SO4 and evaporated under reduced pressure to give crude residues which were purified as reported below for each compound.

1-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-1,2,3,4-tetrahydro-1,8-

naphthyridine (14): The yellow residue was purified by column chromatography with CH₂Cl₂/CH₃OH (95:5) as eluent to give the final compound as a light yellow semi-solid (0.212 g, 62%): ¹H NMR $\delta = 1.07-1.38$ [m, 5H, cyclohexyl NCH(CHH)₅], 1.58–2.05 [m, 9H, cyclohexyl NCH(CHH)₅ and ArCH₂CH₂CH₂NCH₂CH₂N], 2.28–2.50 [m+t, 3H, CHN, J = 7.1 Hz, N(CH₂)₂CH₂N], 2.55–2.88 (m+t, 10H, piperazine, J = 6.3 Hz, ArCH₂), 3.36 [t, 2H, J = 5.6 Hz, Ar(CH₂)₂CH₂N], 3.59 [t, 2H, J = 7.1 Hz, NCH₂(CH₂)₂N], 6.38 (t, 1H, J = 4.9 Hz, aromatic); GC–MS m/z 342 (M^+ , 2), 204 (100), 161 (43), 147 (86); Anal. (C₂₁H₃₄N₄:3HCl·5/4H₂O) C, H, N.

4-[3-(4-Cyclohexylpiperazin-1-yl)propyl]-3,4-dihydro-2H-pyrido-

[3,2-b]-[1,4]-oxazine (15): The yellow residue was purified by column chromatography with CH_2CI_2/CH_3OH (9:1) as eluent to give the title compound as a light yellow oil (0.210 g, 61%): ¹H NMR δ = 1.05–1.38 [m, 5H, cyclohexyl NCH(CH*H*)₅], 1.58–1.72 [m, 1H, cyclohexyl NCH(CH*H*)], 1.75–1.94 [m, 4H, cyclohexyl NCH(CH*H*)₄], 1.95–2.12 [m, 2H, NCH₂CH₂CH₂N], 2.42–2.59 (m, 3H, CHN, and

```
ChemMedChem 0000, 00, 1 – 12
```

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! 77

www.chemmedchem.org

7

NCH₂CH₂CH₂N), 2.62–2.98 (m, 8H, piperazine), 3.47 (t, 2H, J= 4.54 Hz, OCH₂CH₂N), 3.62 [t, 2H, J=7.15 Hz, NCH₂(CH₂)₂N], 4.19 (t, 2H, J=4.54 Hz, OCH₂CH₂N), 6.44–6.50 (m, 1H, aromatic), 6.86–6.92 (m, 1H, aromatic), 7.68–7.72 ppm (m, 1H, aromatic); GC–MS m/z 346 (M^+ +2, 0.4), 345 (M^+ +1, 3), 344 (M^+ , 13), 206 (100), 163 (41), 149 (59), 97 (38); Anal. (C₂₀H₃₂N₄O·3 HCl·1/2 H₂O) C, H, N.

1-[4-(4-Cyclohexylpiperazin-1-yl)butyl]-1,2,3,4-tetrahydro-1,8-

naphthyridine (18): The yellow residue was purified by column chromatography with CH₂Cl₂/CH₃OH (98:2) as eluent, affording the title compound as a light brown semi-solid (0.257 g, 72%): ¹H NMR $\delta = 1.02-1.36$ [m, 5H, cyclohexyl NCH(CHH)₅], 1.42-1.69 [m, 5H, cyclohexyl NCH(CHH)₅], 1.72-2.00 [m, 6H, ArCH₂CH₂CH₂NCH₂-(CH₂)₂CH₂N], 2.21-2.78 [m+t, 13H, CHN, J = 6.8 Hz, N(CH₂)₃CH₂N, piperazine, and ArCH₂(CH₂)₂N], 3.35 [t, 2H, J = 5.6 Hz, Ar(CH₂)₂CH₂N], 3.57 [t, 2H, J = 7.1 Hz, NCH₂(CH₂)₃N], 6.36 (t, 1H, J = 4.9 Hz, aromatic); GC-MS m/z 358 (M^+ +2, 0.1), 357 (M^+ +1, 0.2), 356 (M^+ , 1), 218 (100), 147 (39); LC-MS (ESI⁺) m/z 357 [M+H] ⁺; LC-MS-MS 357: 147, 189, 223; Anal. (C₂₂H₃₆N₄·3 HCI-5/2 H₂O) C, H, N.

1-[5-(4-Cyclohexylpiperazin-1-yl)pentyl]-1,2,3,4-tetrahydro-1,8-

naphthyridine (19): The yellow residue was purified by column chromatography with CH₂Cl₂/CH₃OH (98:2) as eluent to give the title compound as an orange semi-solid (0.333 g, 90%): ¹H NMR δ = 1.06–1.42 [m, 7H, cyclohexyl NCH(CH*H*)₅, N(CH₂)₂CH₂(CH₂)₂N], 1.49–1.70 [m, 5H, cyclohexyl NCH (CH*H*)₅], 1.78–2.04 [m, 7H, ArCH₂CH₂CH₂NCH₂CH₂CH₂CH₂CH₂N, and CHN], 2.35 [t, 2H, *J* = 7.8 Hz, (CH₂)₄CH₂N], 2.55–2.71 [m+t, 10H, *J*=6.0 Hz, piperazine, ArCH₂(CH₂)₄N], 3.35 [t, 2H, *J*=5.6 Hz, Ar(CH₂)₂CH₂N], 3.55 [t, 2H, *J* = 7.4 Hz, NCH₂(CH₂)₄N], 6.37 (t, 1H, *J*=4.9 Hz, aromatic), 7.05 (d, 1H, *J*=5.5 Hz, aromatic), 7.91 ppm (d, 1H, *J*=4.9 Hz, aromatic); ¹³C NMR (title compound as hydrochloride salt): δ =17.99, 21.44, 21.75, 23.12, 23.44, 24.69, 25.14, 36.89, 39.98, 42.03, 45.20, 49.55, 52.17, 64.17, 109.99, 122.51, 131.55, 138.69, 148.17 ppm; GC–MS *m/z* 371 (*M*⁺+1, 1), 370 (*M*⁺, 3), 232 (100), 147 (30); Anal. (C₂₃H₃₈N₄·3HCl·3H₂O) C, H, N.

3-(4-Cyclohexylpiperazin-1-yl)-N-Ethyl-N-(2-pyridyl)propanamine

(26): The yellow residue was purified by column chromatography with CH₂Cl₂/CH₃OH (95:5) as eluent to give the title compound as a light brown oil (0.248 g, 75%): ¹H NMR δ = 1.02–1.30 [m+t, 8H, *J*=7.1 Hz, CH₃ and cyclohexyl NCH(CHH)₅,], 1.58–1.94 [m, 7H, cyclohexyl NCH(CHH)₅ and NCH₂CH₂CH₂N], 2.20–2.30 (m, 1H, CHN), 2.37 (t, 2H, *J*=7.1 Hz, NCH₂CH₂CH₂N), 2.40–2.71 (m, 8H, piperazine), 3.43-3.55 [m, 4H, CH₃CH₂NCH₂(CH₂)₂], 6.44-6.48 (m, 2H, aromatic), 7.35-7.41 (m, 1H, aromatic), 8.11 ppm (d, 1H, *J*=4.9 Hz, aromatic); ¹³C NMR (title compound as oxalate salt): δ = 10.91, 21.49, 24.43, 26.59, 44.97, 45.75, 46.28, 53.73, 66.34, 112.14, 135.89, 144.15, 151.13, 166.14 ppm; GC–MS *m*/z 331 (*M*⁺+1, 2), 330 (*M*⁺, 4), 192 (100), 149 (37), 135 (73), 107 (33); Anal. (C₂₀H₃₄N₄·3C₂H₂O₄) C, H, N.

3-(4-Cyclohexylpiperazin-1-yl)-N-Ethyl-N-(4-methoxy-2-pyridyl)-

propanamine (27): The yellow oil was purified by column chromatography with CH₂Cl₂/CH₃OH/NH₄OH (9:1:0.1) as eluent to give the title compound as a pale yellow oil (0.198 g, 55%): ¹H NMR δ = 1.07–1.29 [m+t, 8H, *J*=7.1 Hz, CH₃ and cyclohexyl NCH(CH*H*)₅], 1.60–1.99 [m, 7H, cyclohexyl NCH(CH*H*)₅ and NCH₂CH₂CH₂N], 2.30–2.33 (m, 1H, CHN), 2.40 [t, 2H, *J*=7.1 Hz, (CH₂)₂CH₂N], 2.56–2.67 (m, 8H, piperazine), 3.42–3.54 [m, 4H, CH₃CH₂NCH₂(CH₂)₂N], 3.78 (s, 3H, OCH₃), 5.93 (d, 1H, *J*=2.2 Hz, aromatic), 6.12–6.14 (dd, 1H, *J*=5.7 Hz and *J*' = 2.2 Hz, aromatic), 7.96 ppm (d, 1H, *J*=5.7 Hz, aromatic); GC–MS *m/z* 360 (*M*⁺, 1), 222 (100), 179 (50), 165 (83), 137 (48); Anal. (C₂₁H₃₆N₄O·3C₂H₂O₄) C, H, N.

3-(4-Cyclohexylpiperazin-1-yl)-N-Ethyl-N-(2-pyridyl)butanamine

(28): The yellow solid residue was purified by column chromatography with CH₂Cl₂/CH₃OH (95:5) as eluent to give the title compound as a pale yellow semi-solid (0.248 g, 73%): ¹H NMR δ = 0.98– 1.38 [m+t, 8H, *J*=7.1 Hz, CH₃ and cyclohexyl NCH(CH*H*)₅], 1.45– 1.64 [m, 5H, cyclohexyl NCH(CH*H*)₅], 1.70–2.05 [m, 4H, NCH₂-(CH₂)₂CH₂N], 2.22–2.44 [m, 3H, CHN and N(CH₂)₃CH₂N)], 2.50–2.80 (m, 8H, piperazine), 3.35–3.56 [m, 4H, CH₃CH₂NCH₂(CH₂)₃N], 6.38– 6.50 (m, 2H, aromatic), 7.32–7.45 (m, 1H, aromatic), 8.11 ppm (d, 1H, *J*=4.9 Hz, aromatic); LC–MS (ESI⁺) *m/z* 345 [*M*+H]⁺; LC–MS– MS 345: 149, 177, 223; Anal. (C₂₁H₃₆N₄·3 C₂H₂O₄·3/4H₂O) C, H, N.

3-(4-Cyclohexylpiperazin-1-yl)-N-Ethyl-N-(2-pyridyl)pentanamine

(29): The yellow solid residue was purified by column chromatography with CH₂Cl₂/CH₃OH (85:15) as eluent to give the title compound as a yellow oil (0.194 g, 54%): ¹H NMR $\delta = 1.06-1.38$ [m+t, 10H, J = 7.1 Hz, CH₃CH₂N, cyclohexyl NCH(CHH)₅, and N(CH₂)₂CH₂-(CH₂)₂N], 1.44–1.69 [m, 5H, cyclohexyl NCH(CHH)₅], 1.70–1.98 (m, 4H, NCH₂CH₂CH₂CH₂CH₂CH₂N), 2.20–2.38 [m+t, 3H, J = 7.9 Hz, N(CH₂)₄CH₂N and CHN], 2.43–2.78 (m, 8H, piperazine), 3.40 [t, 2H, J = 7.4 Hz, NCH₂(CH₂)₄N], 3.49 (q, 2H, J = 7.1 Hz, CH₃CH₂N), 6.40–6.47 (m, 2H, aromatic), 7.35-7.41 (m, 1H, J = 6.8 Hz, aromatic), 8.11 ppm (d, 1H, J = 4.9 Hz, aromatic); GC–MS *m/z* 359 (*M*⁺+1, 1), 358 (*M*⁺, 5), 220 (100), 181 (34), 135 (26), 125 (43); Anal. (C₂₂H₃₈N₄·2C₂H₂O₄·1/2H₂O) C, H, N.

General procedure for the synthesis of intermediate compounds 33 and 34: Amine 32 (1.0 mmol, 0.22 g) was added to a solution of pyridine-1-oxide derivative 30 or 31 (1.0 mmol) in *n*-butanol (4 mL) in the presence of Et₃N (1.0 mmol, 0.14 mL). The reaction mixture was heated at 120 °C for 20 h. After cooling, the solvent was evaporated under reduced pressure to give a brown oil residue.

3-(4-Cyclohexylpiperazin-1-yl)-*N***-(2-pyridyl-***N***-oxide)propanamine** (**33**): The brown oil was purified by column chromatography with $CH_2CI_2/MeOH$ (9:1) as eluent affording the title compound as a yellow semi-solid (0.178 g, 56%): ¹H NMR δ = 1.10–1.74 (m, 7H, cyclohexyl), 1.84–2.03 [m, 5H, 3H of cyclohexyl and NHCH₂CH₂], 2.16–2.29 (m, 1H, cyclohexyl CHN), 2.69 [t, 2H, *J*=5.7 Hz, (CH₂)₂CH₂N], 2.79–2.98 (m, 4H, piperazine), 3.26–3.37 (m, 6H, 4 piperazine and NHCH₂), 6.49–6.54 (m, 2H, aromatic), 7.15–7.24 (m, 1H, aromatic), 8.06–8.16 (m, 1H, aromatic), 8.26 ppm (broad s, 1H, NH, D₂O exchanged); LC–MS (ESI⁺) *m/z* 319 [*M*+H]⁺; LC–MS–MS 319: 135, 181, 237.

3-(4-Cyclohexylpiperazin-1-yl)-N-(4-methoxy-2-pyridyl-N-oxide)-

propanamine (34): The brown oil was purified by column chromatography with CHCl₃/MeOH (9:1) as eluent affording the title compound as an orange oil (0.30 g, 86%): ¹H NMR δ = 1.11–1.78 (m, 7H, cyclohexyl), 1.90–2.16 (m, 5H, 3H of cyclohexyl and NHCH₂CH₂), 2.16–2.35 (m, 1H, cyclohexyl CHN), 2.74 [t, 2H, *J* = 5.2 Hz, (CH₂)₂CH₂N], 3.03–3.11 (m, 4H, piperazine), 3.30–3.40 [m, 6H, 4 piperazine and NHCH₂(CH₂)₂], 3.84 (s, 3H, OCH₃), 5.95–6.00 (m, 1H, aromatic), 6.15–6.20 (m, 1H, aromatic), 7.95–8.00 (m, 1H, aromatic), 8.06 ppm (broad s, 1H, NH, D₂O exchanged); LC–MS (ESI⁺) *m/z* 349 [*M*+H]⁺; LC–MS–MS 349: 137, 165, 267.

General procedure for the synthesis of Final Compounds 35 and 36: To a suspension of intermediate 33 or 34 (1.0 mmol) in CHCl₃ (15 mL) cooled at 0°C, PCl₃ (3.0 mmol, 0.26 mL) was added in a dropwise manner, and the mixture was heated for 1 h at 80°C. After cooling, water was added, and the reaction mixture was made alkaline by adding NaOH and extracted with CHCl₃ (3× 70 mL). The collected organic solutions were dried (Na₂SO₄) and the crude residue was purified as reported below.

www.chemmedchem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

3-(4-Cyclohexylpiperazin-1-yl)-N-(2-pyridyl)propanamine (35): The crude yellow oil was purified by column chromatography with CH_2Cl_2/CH_3OH (9:1) as eluent to give the title compound as a yellow semi-solid (0.142 g, 47%): ¹H NMR $\delta = 1.02 - 1.36$ [m, 5 H, cyclohexyl NCH(CHH)₅,], 1.55–1.75 [m, 1H, cyclohexyl NCH(CHH)], 1.76-1.98 [m, 6H, cyclohexyl NCH(CHH)₄ and NHCH₂CH₂CH₂N], 2.17-2.30 (m, 1H, CHN), 2.37 [t, 2H, J=7.1 Hz, NH(CH₂)₂CH₂N], 2.40-2.71 (m, 8H, piperazine), 3.33 [t, 3H, J=6.6 Hz, NHCH₂(CH₂)₂], 5.28 (broad s, 1 H, NH, D₂O exchanged), 6.35 (d, 1 H, J=8.2 Hz, aromatic), 6.50-6.54 (m, 1H, aromatic), 7.34-7.40 (m, 1H, aromatic), 8.04-8.07 ppm (m, 1 H, aromatic); ¹³C NMR (title compound as oxalate salt): 22.75, 24.45, 26.62, 38.69, 45.78, 49.97, 54.15, 66.33, 113.02, 135.06, 135.26, 144.09, 152.09, 166.70; GC-MS m/z 303 (M+ +1, 0.2), 302 (*M*⁺, 0.8), 164 (100), 121 (52); Anal. (C₁₈H₃₀N₄·5/ 2C₂H₂O₄·1/2H₂O) C, H, N.

3-(4-Cyclohexylpiperazin-1-yl)-N-(4-methoxy-2-pyridyl)propana-

mine (36): The crude brown semi-solid was purified by column chromatography with EtOAc and petroleum ether (8:2) as eluent to give the title compound as a yellow semi-solid (0.160 g, 48%): ¹H NMR δ = 1.06-1.29 [m, 5H, cyclohexyl NCH(CH*H*)₅,], 1.59–1.63 [m, 1H, cyclohexyl NCH(CH*H*)], 1.73–1.91 [m, 6H, cyclohexyl NCH(CH*H*)₄ and NHCH₂C*H*₂CH₂N], 2.23–2.29 (m, 1H, cyclohexyl CHN), 2.42-2.65 [t+m, 10H, *J*=6.8 Hz, (CH₂)₂C*H*₂N and piperazine), 3.02 (broad s, 1H, NH, D₂O exchanged), 3.26–3.32 [m, 2H, NHCH₂(CH₂)₂N], 3.77 (s, 3H, OCH₃), 5.82 (d, 1H, *J*=2.2 Hz, aromatic), 6.15–6.17 (m, 1H, *J*=5.7 Hz, aromatic), 7.88 ppm (d, 1H, *J*=5.7 Hz, aromatic); LC–MS (ESI⁺) *m/z* 333 [*M*+H]⁺, 355 [*M*+Na]⁺; LC–MS–MS 333: 137, 165; Anal. (C₁₉H₃₂N₄O·3C₂H₂O₄·1/2 H₂O) C, H, N.

Biology

Competition binding assays: All of the procedures for the binding assays were previously described. σ_1 And σ_2 receptor binding were carried out according to Matsumoto et al.^[39] [³H]-DTG, 1,3-di-2-tolylguanidine (30 Cimmol⁻¹) and (+)- $[^{3}H]$ -pentazocine (34 Cimmol⁻¹) were purchased from PerkinElmer Life Sciences (Zavantem, Belgium). DTG was purchased from Tocris Cookson Ltd. (UK). (+)-Pentazocine was obtained from Sigma-Aldrich-RBI s.r.l. (Milan, Italy). Male Dunkin guinea pigs and Wistar Hannover rats (250-300 g) were from Harlan (Italy). The specific radioligands and tissue sources were, respectively: (a) $\sigma_{\!\!1}$ receptor, (+)-[3H]-pentazocine, guinea pig brain membranes without cerebellum; (b) σ_2 receptor, [³H]-DTG in the presence of 1 μ M (+)-pentazocine to mask σ_1 receptors, rat liver membranes. The following compounds were used to define the specific binding reported in parentheses: (a) (+)-pentazocine (73-87%), (b) DTG (85-96%). Concentrations required to inhibit 50% of radioligand specific binding (IC_{50}) were determined using six to nine different concentrations of the drug studied in two or three experiments with samples in duplicate. Scatchard parameters $(K_d \text{ and } B_{max})$ and apparent inhibition constants $(K_i \text{ values})$ were determined by nonlinear curve fitting, using Prism GraphPad software (version 3.0).[40]

Saturation binding assay: Saturation experiments were carried out as described by Vilner et al. with minor modifications.^[41] Membranes of human MCF-7wt and MCF-7 σ_1 breast adenocarcinoma cells and mouse HT-22 hippocampal cells were prepared according to Colabufo et al.^[22] σ_1 Receptors were radiolabeled using (+)-[³H]pentazocine concentrations of 0.4–40 nm. Samples contained 200 µg membrane protein, radioligand, and 10 µm (+)-pentazocine to determine nonspecific binding. Samples were incubated in a final volume of 500 µL (50 mm Tris, pH 8.0) for 120 min at 25 °C. Incubations were stopped by addition of 1 mL ice-cold buffer (50 mM Tris, pH 7.4), then the suspension was filtered through GF/ C presoaked in 0.5% polyethylenimine (PEI) for at least 30 min prior to use. The filters were washed twice with 1 mL ice-cold buffer. σ_2 Receptors were radiolabeled using [³H]-DTG concentrations of 0.5–40 nM. Samples containing 200 µg membrane protein, radioligand, 10 µM DTG (to determine nonspecific binding), and 1 µM (+)-pentazocine (to mask σ_1 receptors) were equilibrated in a final volume of 500 µL (50 mM Tris, pH 8.0) for 120 min at 25 °C; the subsequent manipulations were as described above for σ_1 receptors. Scatchard parameters (K_d and B_{max}) were determined by nonlinear curve fitting, using the Prism GraphPad software (version 3.0).^[40]

Cell culture: The human SK-N-SH neuroblastoma and the human MCF-7 breast adenocarcinoma were obtained from Interlab Cell Line Collection (ICLC, Genoa, Italy). The MCF-7 σ_1 line was created in our laboratory. The HT-22 cell line was a gift from Dr. Alessandra Rossi, (Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany). MCF-7wt, MCF-7 σ_1 , and HT-22 cells were grown in DMEM high glucose supplemented with 10% fetal bovine serum, 2 mm glutamine, 100 UmL^{-1} penicillin, 100 μgmL^{-1} streptomycin, in a humidified incubator at 37 °C with a 5% CO₂ atmosphere. SK-N-SH cell line was routinely cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 2 mm glutamine, 100 UmL⁻¹ penicillin, 100 µgmL⁻¹ streptomycin, 1 mм sodium pyruvate, and 1% non-essential amino acids in a humidified incubator at 37 $^\circ\text{C}$ with a 5% CO_2 atmosphere. Cell culture reagents were purchased from EuroClone (Milan, Italy). MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide), G418 (geneticin), and fura-2-acetoxymethyl ester (Fura-2-AM) were obtained from Sigma-Aldrich (Milan, Italy); FuGENE HD transfection reagent was purchased from Promega (Milan, Italy); Opti-MEM was obtained from Invitrogen.

Cell viability: Determination of cell growth was performed using the MTT assay at 48 h.^[23] On day 1, 25000 cells per well were seeded into 96-well plates in a volume of 100 μ L. On day 2, the various drugs at concentrations between 0.1–100 μ M were added. In all of the experiments, the various drug solvents (EtOH, DMSO) were added in each control to evaluate a possible solvent cytotoxicity. After the established incubation time with drugs, MTT (0.5 mg mL⁻¹) was added to each well, and after 3-4 h incubation at 37 °C, the supernatant was removed. The formazan crystals were solubilized using 100 μ L of DMSO/EtOH (1:1) and the absorbance values at 570 and 630 nm were determined on a Victor 3 microplate reader from PerkinElmer Life Sciences.

Construction of expression vector harboring σ_1 receptor complete coding sequence (CDS): Total RNA was extracted from 1×10⁶ MCF-7wt cells using a GenElute Mammalian Total RNA Miniprep kit (Sigma-Aldrich) and reverse transcribed with GeneAmp RNA PCR core kit (Applied Biosystems). The full-length coding region of the human σ_1 receptor (GenBank accession number NM_005866.2) was amplified from MCF-7wt cDNA using iProof High Fidelity DNA Polymerase (Bio-Rad), 10 pmol of each primer (Table 3) and 1 μ L of dNTPs (10 mm for each nucleotide) in a final volume of 50 µL of regular buffer reaction mixture. PCR was run under the following conditions: pre-incubation at 94°C for 1 min, run for 30 cycles at 94°C for 10 sec, 55°C for 30 sec, and 72°C for 1 min, extension at 72°C for 7 min. The PCR amplification product was purified using the High Pure PCR Product Purification kit (Roche) and digested with HindIII and BamHI (Roche). The digested DNA fragment was ligated with purified HindIII- and BamHI-digested pcDNA3.1(+) vector (Invitrogen) in the sense orientation. Top10 chemically competent Escherichia coli cells (Invitrogen) were transformed with the

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! 77

www.chemmedchem.org

Table 3.Primers usedCDS.	for amplification and sequencing of $\sigma_{\!\scriptscriptstyle 1}$ receptor
Name	Sequence $5' \rightarrow 3'$
SIGMA1FOR	CGAAAGCTTATGCAGTGGGCCGTGGGC
SIGMA1REV	CAGGGATCCTCAAGGGTCCTGGCCAAAGAGG
pcDNAF	AATACGACTCACTATAGGGA
SIGMA1FOR300	TCCGAGTATGTGCTGCTCTT
pcDNAR	AGAAGGCACAGTCGAGGC

construct described above and the vector amplified. The plasmid DNA was isolated using a High Pure Plasmid Isolation kit (Roche).^[42] The fidelity of the final human σ_1 receptor insert in pcDNA3.1(+) plasmid was verified by DNA sequencing using a BigDye Terminator kit (Applied Biosystems) and the primers shown in Table 3.

MCF-7 transfection with σ_1 *receptor:* To develop stable MCF-7 σ_1 cell lines, MCF-7wt cells were plated at a density of 3×10⁶ cells in 10 mL growth medium in 100 mm Petri dishes, and incubated at 37 °C overnight. Cells were transfected with 17 μ g of pcDNA3.1(+) vector containing the target σ_1 DNA sequence as per standard protocol, using FuGENE HD transfection reagent in Opti-MEM medium without serum. Vector-expressing cells were selected using geneticin (G418). After transfection, cells were placed in normal DMEM growth medium. After 1 day, cells were detached with trypsin/ EDTA and replated into DMEM growth medium containing geneticin (800 $\mu g\,mL^{-1}\!)$ and cultured for 25 days. Surviving cell clones were picked out and propagated separately in 60 mm Petri dishes in the same medium with $800 \,\mu g \,m L^{-1}$ geneticin. To suppress reversion of the phenotype, all subsequent cell culture was carried out in DMEM growth medium as described above, supplemented with 800 $\mu g\,mL^{-1}$ geneticin. $^{[35]}$

Fluorescence measurements for intracellular Ca^{2+} response detection: Cells were seeded onto glass cover-slips at a density of 20,000 cm² and used for fluorescence measurements after 5 days. Intracellular [Ca²⁺] was estimated using the dual-wavelength ratiometric probe Fura-2; protocols have been described elsewhere (Galiano et al., 2004).^[43] A HEPES buffer was used containing 120 mм NaCl, 5.4 mм KCl, 1.8 mм CaCl₂, 1.6 mм MgCl₂, 11 mм glucose, and 25 mM HEPES (pH 7.4). Agonists or other drugs were directly pipetted into the chamber without perfusion. The experiment was run at 22 °C. Each trace shown is the mean of values from at least eight representatives and at least 50 total cells from four experiments, performed with different cell batches; only one in four S.E.M. values was plotted. In Figure 3, " $(R-R_0)$ in 60 s" is the difference between the mean value of 12 and 10 fluorescence ratio values, measured every 5 s before and after addition of the drug under investigation. Where indicated, data were statistically analyzed with Student's t-test for unpaired values.[36]

Supporting Information

10

Elemental analyses of the novel end products; formulas of hydrochloride and oxalate salts, crystallization solvents, melting points and Clog *D* values, antiproliferative effects in MCF-7wt cells of compound **4** alone and in co-administration with **18**, description of the preparation and spectroscopy data for the intermediate compounds **6–10**, **20**, and **21**.

Acknowledgements

The authors thank Dr. Alessandra Rossi for kindly providing HT-22 cells and Prof. Giuseppe Cassano and Giuseppe Gasparre (Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università degli Studi di Bari ALDO MORO, Bari, Italy) for support with experiments on Ca^{2+} response.

Keywords: 2-aminopyridines \cdot calcium \cdot *N*-cyclohexylpiperazines $\cdot \sigma$ receptors

- A. van Waarde, A. A. Rybczynska, N. Ramakrishnan, K. Ishiwata, P. H. Elsinga, R. A. Dierckx, *Curr. Pharm. Des.* 2010, *16*, 3519–3537.
- [2] E. J. Cobos, J. M. Entrena, F. R. Nieto, C. M. Cendan, E. Del Pozo, Curr. Neuropharmacol. 2008, 6, 344–366.
- [3] M. Hanner, F. F. Moebius, A. Flandorfer, H. G. Knaus, J. M. Striessnig, E. Kempner, H. Glossmann, Proc. Natl. Acad. Sci. USA 1996, 93, 8072–8077.
- [4] K. L. Jansen, R. L. Faull, P. Storey, R. A. Leslie, Brain Res. 1993, 623, 299– 302.
- [5] M. Mishina, K. Ishiwata, K. Ishii, S. Kitamura, Y. Kimura, K. Kawamura, K. Oda, T. Sasaki, O. Sakayori, M. Hamamoto, S. Kobayashi, Y. Katayama, *Acta Neurol. Scand.* **2005**, *112*, 103–107.
- [6] M. Mishina, M. Ohyama, K. Ishii, S. Kitamura, Y. Kimura, K. Oda, K. Kawamura, T. Sasaki, S. Kobayashi, Y. Katayama, K. Ishiwata, Ann. Nucl. Med. 2008, 22, 151–156.
- [7] A. Al-Saif, F. Al-Mohanna, S. Bohlega, Ann. Neurol. 2011, 70, 913-919.
- [8] S.-Y. Tsai, T. Hayashi, T. Mori, T.-P. Su, Cent. Nerv. Syst. Agents Med. Chem.
- 2009, 9, 184 189.
 [9] N. A. Colabufo, F. Berardi, C. Abate, M. Contino, M. Niso, R. Perrone, J. Med. Chem. 2006, 49, 4153 4158.
- [10] C. Abate, J. Elenewski, M. Niso, F. Berardi, N. A. Colabufo, A. Azzariti, R. Perrone, R. A. Glennon, *ChemMedChem* 2010, *5*, 268–273.
- [11] C. Zeng, S. Vangveravong, J. Xu, K. C. Chang, R. S. Hotchkiss, K. T. Wheeler, D. Shen, Z.-P. Zhuang, H. F. Kung, R. H. Mach, *Cancer Res.* 2007, *67*, 6708–6716.
- [12] C. Abate, J. R. Hornick, D. Spitzer, W. G. Hawkins, M. Niso, R. Perrone, F. Berardi, J. Med. Chem. 2011, 54, 5858–5867.
- [13] J. Xu, C. Zeng, W. Chu, F. Pan, J. M. Rothfuss, F. Zhang, Z. Tu, D. Zhou, D. Zeng, S. Vangveravong, F. Johnston, D. Spitzer, K. C. Chang, R. S. Hotchkiss, W. G. Hawkins, K. T. Wheeler, R. H. Mach, *Nat. Commun.* 2011, *2*, 380.
- [14] Phase I clinical trial, Assessment of Cellular Proliferation in Tumors by Positron Emission Tomography (PET) Using [¹⁸F]ISO-1 (FISO PET/CT), http://ClinicalTrials.gov ID: NCT00968656.
- [15] H. Kashiwagi, J. E. McDunn, P. O. Simon, P. S. Goedegebuure, J. Xu, L. Jones, K. Chang, F. Johnston, K. Trinkaus, R. S. Hotchkiss, R. H. Mach, W. G. Hawkins, *Mol. Cancer* **2007**, *6*, 48.
- [16] J. R. Hornick, J. Xu, S. Vangveravong, Z. Tu, J. B. Mitchem, D. Spitzer, P. Goedegebuure, R. H. Mach, W. G. Hawkins, *Mol. Cancer* 2010, 9, 298.
- [17] R. R. Matsumoto, B. Pouw, A. L. Mack, A. Daniels, A. Coop, *Pharmacol. Biochem. Behav.* 2007, 86, 86–91.
- [18] F. Berardi, S. Ferorelli, C. Abate, N. A. Colabufo, M. Contino, R. Perrone, V. Tortorella, J. Med. Chem. 2004, 47, 2308–2317.
- [19] C. Ghelardini, N. Galeotti, A. Bartolini, Pharmacol. Biochem. Behav. 2000, 67, 659–662.
- [20] F. Berardi, C. Abate, S. Ferorelli, N. A. Colabufo, R. Perrone, Cent. Nerv. Syst. Agents Med. Chem. 2009, 9, 205-219.
- [21] C. Mésangeau, S. Narayanan, A. M. Green, J. Shaikh, N. Kaushal, E. Viard, Y. T. Xu, J. A. Fishback, J. H. Poupaert, R. R. Matsumoto, C. R. McCurdy, J. Med. Chem. 2008, 51, 1482–1486.
- [22] N. A. Colabufo, F. Berardi, M. Contino, M. Niso, C. Abate, R. Perrone, V. Tortorella, *Naunyn-Schmiedeberg's Arch. Pharmacol.* 2004, 370, 106–113.
- [23] A. Azzariti, N. A. Colabufo, F. Berardi, L. Porcelli, M. Niso, M. G. Simone, R. Perrone, A. Paradiso, *Mol. Cancer Ther.* 2006, 5, 1807–1816.
- [24] C. Abate, P. D. Mosier, F. Berardi, R. A. Glennon, Cent. Nerv. Syst. Agents Med. Chem. 2009, 9, 246-257.

www.chemmedchem.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [25] C. Abate, M. Niso, M. Contino, N. A. Colabufo, S. Ferorelli, R. Perrone, F. Berardi, *ChemMedChem* 2011, 6, 73–80.
- [26] C. Abate, R. Perrone, F. Berardi, Curr. Pharm. Des. 2012, 18, 938-949.
- [28] F. Berardi, C. Abate, S. Ferorelli, V. Uricchio, M. Niso, N. A. Colabufo, R. Perrone, J. Med. Chem. 2009, 52, 7817–7828.
- [29] A. A. Thomas, Y. Le Huerou, J. De Meese, I. Gunawardana, T. Kaplan, T. T. Romoff, S. S. Gonzales, K. Condroski, S. A. Boyd, J. Ballard, B. Bernat, W. DeWolf, M. Han, P. Lee, C. Lemieux, R. Pedersen, J. Pheneger, G. Poch, D. Smith, F. Sullivan, S. Weiler, S. K. Wright, J. Lin, B. Brandhuber, G. Vigers, *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2206–2210.
- [30] R. J. Sundberg, S. Jiang, Org. Prep. Proced. Int. 1997, 29, 117-122.
- [31] S. J. Connon, A. F. Hegarty, Eur. J. Org. Chem. 2004, 3477-3483.
- [32] C. Abate, S. Ferorelli, M. Contino, R. Marottoli, N. A. Colabufo, R. Perrone, F. Berardi, *Eur. J. Med. Chem.* 2011, 46, 4733–4741.
- [33] ACD Labs, version 7.07, Advanced Chemistry Development Inc., Toronto, ON (Canada), 2003.
- [34] J. A. Schetz, E. Perez, R. Liu, S. Chen, I. Lee, J. W. Simpkins, Brain Res. 2007, 1181, 1–9.
- [35] Z. Wu, W. D. Bowen, J. Biol. Chem. 2008, 283, 28198-28215.

- [36] G. Gasparre, C. Abate, F. Berardi, G. Cassano, Eur. J. Pharmacol. 2012, 684, 59–63.
- [37] G. Cassano, G. Gasparre, M. Contino, M. Niso, F. Berardi, R. Perrone, N. A. Colabufo, *Cell Calcium* 2006, 40, 23–28.
- [38] R. H. Mach, K. T. Wheeler, Cent. Nerv. Syst. Agents Med. Chem. 2009, 9, 230-245.
- [39] R. R. Matsumoto, W. D. Bowen, M. A. Tom, D. D. Truong, B. R. De Costa, *Eur. J. Pharmacol.* **1995**, *280*, 301–310.
- [40] Prism Software, version 3.0 for Windows, GraphPad Software Inc., San Diego, CA (USA), 1998.
- [41] B. J. Vilner, C. S. John, W. D. Bowen, Cancer Res. 1995, 55, 408-413.
- [42] V. Infantino, P. Convertini, F. Iacobazzi, I. Pisano, P. Scarcia, V. Iacobazzi, Biochem. Biophys. Res. Commun. 2011, 412, 86–91.
- [43] M. Galiano, G. Gasparre, C. Lippe, G. Cassano, Cell Calcium 2004, 35, 123-130.

Received: May 11, 2012 Revised: July 20, 2012 Published online on ■■ ■, 0000

FULL PAPERS

C. Abate,* S. Ferorelli, M. Niso, C. Lovicario, V. Infantino, P. Convertini, R. Perrone, F. Berardi

2-Aminopyridine Derivatives as Potential σ₂ Receptor Antagonists

A reduced fat option: *N*-Cyclohexylpiperazine derivatives linked to a 2-aminopyridine moiety were generated as less lipophilic analogues of the σ_2 agonist PB28. The new *N*-cyclohexylpiperazines, which display high affinity for σ subtypes, are devoid of antiproliferative activity and may be proposed as σ_2 receptor antagonists.