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ABSTRACT
A practical metal-free procedure for the synthesis of (E)-vinyl sulfones has been developed
through the coupling of b-nitrostyrenes with sodium sulfinates under microwave irradiation. This
methodology provides a convenient and efficient approach to various (E)-vinyl sulfones from read-
ily available starting materials with excellent regioselectivity. The present oxidative reaction
involves an efficient denitrative radical cross-coupling of b-nitrostyrenes with sodium sulfinates via
using AcOH as an additive.
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Introduction

Vinyl sulfones as an important class of sulfur-containing com-
pounds play a significant role in organic synthesis and material
sciences due to the chemical versatility of the sulfonyl moi-
ety.[1–10] Vinyl sulfone containing molecules have been shown
to exhibit important biological activities; for example, as cyst-
eine protease inhibitors,[11–14] HIV-1 inhibitors,[15] and inhibi-
tors of sortase, and protein tyrosine phosphatases.[16–19] Owing
to the significance of these compounds, various approaches to
produce vinyl sulfones have been developed. Traditionally,
Knoevenagel condensation of aromatic aldehydes with sulfo-
nylacetic acids,[20] b-elimination of selenosulfones or halosul-
fones,[21,22] Wittig reaction of a-sulfinylphosphonium ylides,[23]

and the oxidation of the corresponding sulfides[24,25] are per-
haps the most common methods. However, these methods suf-
fer from inaccessible substrates, the multi-steps, strong bases
and strong oxidants involved in these transformations, which
limits their wide application. Recently, a series of alternative
methods for vinyl sulfones synthesis have also been developed,
such as the transition-metal-catalyzed cross-coupling of sulfi-
nate salts with vinyl bromides, vinyl triflates, or vinylboronic
acids;[26–29] the oxidation of preformed vinyl sulfides with

stoichiometric oxidants,[24, 30] the coupling reactions of alkenes
or cinnamic acids with sulfonyl halides, and sulfonyl hydra-
zides;[31–38] and the addition of sulfinic acids, sulfonyl hydra-
zides, or dimethyl sulfoxide to alkynes.[39–43] Nevertheless,
most of these reactions might suffer from some limitations,
such as the need of inaccessible starting materials, tedious pro-
cedures, harsh reaction conditions, low atom economy, and
poor regioselectivity or toxic metal catalysis.

Sodium arenesulfinates are readily accessible synthetic
intermediates that can be used as aryl sources by means of
C-S bond cleavage. More significantly, they could also serve
as sulfone or thioether sources.[44–47] Compared to other
sulfenylation/sulfonation agents, sodium arenesulfinates are
relative stable and moisture-insensitive.[48–51] They have
been widely used as arylsulfonylation reagents for preparing
organosulfonyl compounds.[52–55] Recently, the oxidative
cross-coupling reaction of alkenes or cinnamic acids with
sodium sulfinates has been developed (Scheme 1a).[56–67]

Nitro-olefins are relatively stable, simply obtained by Henry
reaction from aldehydes and nitromethane, which have been
widely used to synthesized useful organic molecules. In
some cases, b-nitrostyrenes have been used for denitrative
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C-C bond formation by an addition/elimination reac-
tion.[68–71] In 2016, Yadav’s group reported a silver-catalyzed
coupling reaction of nitro-olefins and sodium sulfinates in
the presence of oxidant and under nitrogen atmosphere.[72]

Subsequently, a Mn(III)-mediated coupling reaction of
sodium sulfinates with nitro-olefins has also been developed
by Chen’s group (Scheme 1b).[73] Despite some great advan-
tage of these reactions, there are still certain limitations
including harsh reaction conditions and toxic metal catalysts.
Therefore, it still remains an attractive task to develop more
economic, efficient, and highly selective methods to access
vinyl sulfones under metal-free conditions. The present proto-
col of AcOH-mediated direct oxidative coupling b-nitrostyr-
enes with sodium sulfinates under microwave irradiation
provides a facile and efficient approach to various (E)-vinyl
sulfones in moderate to good yields (Scheme 1c). The advan-
tages of this approach are commercially available substrates,
high regioselectivity, and avoidance to use any metal catalyst.

Results and discussion

Initially, (E)-b-nitrostyrene (1a) and sodium 4-methylbenze-
nesulfinate (2a) were selected as the model substrates to
optimize the reaction conditions under microwave irradi-
ation. As shown in Table 1, only a trace amount of desired
product 3aa was obtained when the model reaction was per-
formed at 80 �C in DMSO for 20min under microwave
irradiation (Table 1, entry 1). Vinyl sulfones have been effi-
ciently synthesized by treatment of alkenes with sodium are-
nesulfinates using potassium iodide and sodium periodate in
the presence of a catalytic amounts of acetic acid by Das’
group,[74] and Zhang’s group has also developed a phos-
phoric acid-mediated synthesis of vinyl sulfones through
decarboxylative coupling reactions of sodium sulfinates with
phenylpropiolic acids.[34] These facts showed that the acid
plays an important role for this cross-coupling reactions.
We envisioned whether the acid could promote this trans-
formation. When 2.0 equiv H3PO4 was added to the reaction
system, much to our excitement 40% of 3aa was obtained
(Table 1, entry 2). The E or Z stereochemistry of 3aa is eas-
ily established by the 1H NMR analysis. The chemical shifts
of the a- and b-protons are 7.65 ppm and 6.85 ppm,

respectively. They have a coupling constant JH-H¼ 15.4Hz
typical of trans positioned protons, which proves that con-
figuration of 3aa is an E stereoisomer. Encouraged by this
result, we examined some different protic acids. However,
moderate yields were achieved when several inorganic and
organic acids such as H2SO4, HNO3, TsOH, TFA, and
MeSO3H were used (Table 1, entries 3–6, 8, 9). It was pleas-
ing to find that 70% of 3aa was isolated when AcOH was
employed in the reaction (Table 1, entry 7). The suitable
amount of AcOH was subsequently screened (Table 1,
entries 7, 10–12). The results indicated that increasing or
decreasing the amount of AcOH did not increase the yield.
Then, the screening of a range of solvents demonstrated that
the reaction performed in DMSO was significantly better
than those conducted in H2O, CH3CN, 1,4-dioxane,
CH3OH, DCE, and THF (Table 1, entries 7, 13–18). The
ratio of (E)-b-nitrostyrene with sodium 4-methylbenzenesul-
finate was investigated, and the ratio of 1:1.5 proved to give
the best result, providing 70% yield of 3aa (Supporting
information, Table S1, entries 1–4). Next, various reaction
temperatures were also examined, and 90 �C was found to
be the best choice (Table 1, entries 7, 19–21). Finally, the
effect of reaction time was investigated, and good yields
(80%) could be obtained in 40min (Table 1, entries 7,
22–25). Therefore, the optimal reaction conditions are: 1.5
equiv of sodium sulfinate, and 2.0 equiv of AcOH in DMSO
at 90 �C for 40min under microwave irradiation as shown
in Table 1, entry 24.

Under the optimized conditions in hand, the scope of the
AcOH-mediated oxidative coupling of b-nitrostyrenes with
various sodium arenesulfinates for the construction of (E)-
vinyl sulfones was explored. The results are summarized in
Table 2. In general, the reaction worked very well for a
range of sodium arenesulfinates with various substituents at
the phenyl ring, and the products were isolated in yields
ranging from 38% to 85%. Sodium arenesulfinates with elec-
tron-donating substituents at the phenyl ring afforded the
desired vinyl sulfones in 78% to 85% yield (3aa–3ad),
whereas sodium arenesulfinates bearing electron-withdraw-
ing substituents at the phenyl ring provided the desired
vinyl sulfones in 38%–55% yield (3ae–3ai). Especially, the
strong electron-withdrawing trifluoromethyl group (CF3) at
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Scheme 1. Synthesis of (E)-vinyl sulfones from sodium sulfinates and alkene derivatives.
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the para-position of the phenyl ring had a noticeable effect,
resulting in relatively lower yield (3ah). It was found that
halogen substituents, such as F, Cl, and Br, were all well tol-
erated, which made this protocol more useful for further
structural modification (3ae–3ag, 3ai). To our delight, sodium
2-chlorobenzenesulfinate 2i reacted smoothly with b-nitro-
styrene, resulting in a moderate yield of the desired product
3ai (55%), which showed that the steric effect played a weak
role during this transformation. It is noteworthy that sodium
alkanesulfinates, such as sodium methanesulfinate, sodium
ethanesulfinate, and sodium cyclopropanesulfinate, could also
be used in the reactions to give the corresponding products
3aj, 3ak, and 3al in moderate yields. The scope of this oxida-
tive coupling reaction was further expanded to a variety of
substituted b-nitrostyrenes. Substituted b-nitrostyrenes with
electron-donating substituents and with electron-withdrawing
substituents were all tolerated under the standard reaction
conditions (3bb–3bd). Unfortunately, when other substrates
such as styrenes and cinnamic acid were employed for this
coupling reaction, the desired products were not formed
under the present conditions.

In order to gain some further insight into the reaction
mechanism, several control experiments were carried out
(Scheme 2). Initially, (E)-1-methyl-4-(styrylsulfonyl)benzene
(3aa) was isolated in 80% yield when the reaction of
b-nitrostyrene with sodium 4-methylbenzenesulfinate was
conducted under the standard conditions. However, (E)-1-
methyl-4-(styrylsulfonyl)benzene (3aa) was isolated in only

35% yield when 1.5 equiv. 2,2,6,6-tetramethylpiperidinyloxy
(TEMPO), a radical scavenger, was added into the reaction
system. Only trace amounts of product (3aa) were dectected
in the presence of TEMPO (2.5 equiv). These facts indicated
that the reaction might occur via a radical mechanism.

Based on the above experimental results and previous
reports,[34,73–75] a possible reaction pathway was proposed as
shown in Scheme 3. Initially, the benzenesulfinate anion is
oxidized by DMSO via a single electron transfer (SET)
to induce the formation of a radical (i. e. a resonance hybrid
A $ B).[76,77] Subsequently, this radical selectively adds to
the b-position of (E)-b-nitrostyrene to form a carbon-cen-
tered radical C. The benzyl radical C adopts a more stable
conformation D, and subsequently abstracts a hydrogen rad-
ical from AcOH to form the compound E. AcOH could also
act as a protonating reagent during the reaction.[34] Finally,
E is converted to the desired product 3ab by elimination
of HNO2.

Conclusion

In summary, we have developed an efficient and practical
method for the preparation of (E)-vinyl sulfones via AcOH-
promoted oxidative cross-coupling reaction of b-nitrostyr-
enes with sodium sulfinates. This reaction is initiated by
generation of a sulfonyl radical from the sodium sulfinate. A
plausible reaction mechanism is proposed on the basis of
control experiments.

Table 1. Optimization of reaction conditions.a

Entry Additive (eq.) Solvent Temp (oC) Time (mins) Yieldb (%)

1 – DMSO 80 20 trace
2 H3PO4 (2.0) DMSO 80 20 40
3 H2SO4 (2.0) DMSO 80 20 48
4 HCl (2.0) DMSO 80 20 <5
5 HNO3 (2.0) DMSO 80 20 40
6 TsOH (2.0) DMSO 80 20 45
7 AcOH (2.0) DMSO 80 20 70
8 TFA (2.0) DMSO 80 20 35
9 MeSO3H (2.0) DMSO 80 20 53
10 AcOH (0.5) DMSO 80 20 10
11 AcOH (1.0) DMSO 80 20 48
12 AcOH (3.0) DMSO 80 20 50
13 AcOH (2.0) H2O 80 20 trace
14 AcOH (2.0) CH3CN 80 20 50
15 AcOH (2.0) 1,4-dioxane 80 20 45
16 AcOH (2.0) CH3OH 80 20 65
17 AcOH (2.0) DCE 80 20 50
18 AcOH (2.0) THF 80 20 60
19 AcOH (2.0) DMSO 70 20 65
20 AcOH (2.0) DMSO 90 20 75
21 AcOH (2.0) DMSO 100 20 73
22 AcOH (2.0) DMSO 90 10 30
23 AcOH (2.0) DMSO 90 30 77
24 AcOH (2.0) DMSO 90 40 80
25 AcOH (2.0) DMSO 90 60 80
aReaction conditions: (E)-(2-nitrovinyl)benzene 1a (0.2mmol, 29.8mg), sodium 4-methylbenzenesulfi-
nate 2a (0.3mmol, 53.4mg), additive and solvent (2.0mL) under microwave irradiation.

bIsolated yield.
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Experimental

General information

All substrates purchased from J & K Scientific Ltd. were
used without further purification. Column chromatography
was performed using 300–400 mesh silica with the indicated
solvent system according to standard techniques. A CEM
Discover microwave reactor with an infrared pyrometer and
a pressure control system was used. NMR spectra were
recorded in CDCl3 on a Bruker Avance 400 spectrometer
(1H: 400MHz, 13C: 100MHz). Chemical shifts for 1H NMR
spectra are recorded in ppm from tetramethylsilane. Data
were reported as follows: chemical shift, multiplicity
(s¼ singlet, d¼ doublet, t¼ triplet, m¼multiplet and

br¼ broad), coupling constant in Hz and integration.
Chemical shifts for 13C NMR spectra were recorded in ppm
from tetramethylsilane. MS were obtained on a Thermo
Scientific LTQ Orbitrap XL instrument using the ESI tech-
nique. IR spectra, �(cm�1), were recorded on a Shimadazu
IR-408 FTIR spectrophotometer using a thin film supported
on KBr pellets. Melting points were measured on an XT4A
microscopic apparatus uncorrected. The Supplemental
Materials contains additional catalyst and product character-
ization results (Figures S 1–S 4).

General experimental procedure for the synthesis of (E)-
vinyl sulfones (3)

b-Nitrostyrenes 1 (0.2mmol), sodium sulfinate 2 (0.3mmol),
and AcOH (0.4mmol, 24mg) in DMSO (2mL) were added
to a 5.0mL microwave reaction tube. The reactant mixture
was heated at 90 �C for 40min under microwave irradiation.
After completion of the reaction, the solvent was distilled
under vacuum. The residue was dissolved in EtOAc (10mL),
washed with 10% NaHCO3 (10mL �2), then washed with
saturated brine (10mL �2). The organic phase was dried
over anhydrous Na2SO4 and concentrated under vacuum.
The crude product was purified by silica gel column chro-
matography to give the desired products 3.

(E)-1-Methyl-4-(styrylsulfonyl)benzene (3aa)

Light yellow solid, mp 95–96 �C [lit.[26] mp 98–99 �C]. IR:
2956, 2918, 2850, 1617, 1558, 1250, 1144. 1H NMR d: 7.82
(d, JH-H¼ 8.2Hz, 2H), 7.65 (d, JH-H¼ 15.4Hz, 1H), 7.48-
7.46 (m, 2H), 7.39-7.33 (m, 5H), 6.85 (d, JH-H¼ 15.4Hz,
1H), 2.43 (s, 3H). 13C NMR d: 144.4, 141.9 (CH), 137.7,
132.5, 131.1 (CH), 129.9 (CH), 129.0 (CH), 128.5 (CH),
127.7 (CH), 127.6 (CH), 21.6 (CH3). MS m/z: 259.2
[MþH]þ (calcd for C15H15O2S

þ 259.1).

(E)-[2-(Benzenesulfonyl)vinyl]benzene (3ab)

Colorless solid, mp 74–75 �C [lit.[78] mp 75–76 �C]. IR: 2956,
2920, 2850, 1558, 1446, 1308, 1147, 1086. 1H NMR d: 7.95
(d, JH-H¼ 7.2Hz, 2H), 7.69 (d, JH-H¼ 15.4Hz, 1H), 7.64-
7.60 (m, 1H), 7.55 (t, JH-H¼ 7.8Hz, 2H), 7.50-7.47 (m, 2H),
7.42-7.39 (m, 3H), 6.86 (d, JH-H¼ 15.4Hz, 1H). 13C NMR d:
142.5 (CH), 140.7, 133.4 (CH), 132.3, 131.2 (CH), 129.4
(CH), 129.1 (CH), 128.6 (CH), 127.7 (CH), 127.3 (CH). MS
m/z: 244.3 [MþH]þ (calcd for C14H12O2S

þ 244.1).

(E)-1-tert-Butyl-4-(styrylsulfonyl)benzene (3ac)[33]

Light yellow solid, mp 98–100 �C. IR: 2956, 2927, 2856,
1743, 1558, 1309, 1147. 1H NMR d: 7.86 (d, JH-H¼ 8.5Hz,
2H), 7.66 (d, JH-H¼ 15.4Hz, 1H), 7.55 (d, JH-H¼ 8.5Hz,
2H), 7.48-7.46 (m, 2H), 7.39-7.35 (m, 3H), 6.68 (d, JH-

H¼ 15.4Hz, 1H), 1.33 (s, 9H). 13C NMR d: 157.4, 141.9
(CH), 137.7, 132.5, 131.1 (CH), 129.1 (CH), 128.5 (CH),
127.7 (CH), 127.6 (CH), 126.4 (CH), 35.3, 31.0 (CH3). MS
m/z: 301.0 [MþH]þ (calcd for C18H21O2S

þ 301.1).

Table 2. Synthesis of (E)-vinyl sulfones from b-nitrostyrenes with sodium
sulfinates.a,b

aReaction conditions: b-nitrostyrenes 1 (0.2mmol), sodium sulfinate 2
(0.3mmol), and AcOH (0.4mmol, 24mg) in 2.0mL DMSO solvent, 90 �C for
40min under microwave irradiation.

bIsolated yield.
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(E)-1-Methoxy-4-(styrylsulfonyl)benzene (3ad)

Light yellow solid, mp 110–111 �C [lit.[72] mp 109–111 �C].
IR: 2956, 2918, 2850, 1596, 1558, 1506, 261, 1142, 1086. 1H
NMR d: 7.87 (d, JH-H¼ 8.9Hz, 2H), 7.64 (d, JH-H¼ 15.4Hz,
1H), 7.48-7.46 (m, 2H), 7.39-7.38 (m, 3H), 7.01 (d, JH-H¼
8.9Hz, 2H), 6.85 (d, JH-H¼ 15.4Hz, 1H), 3.87 (s, 3H). 13C
NMR d: 163.6, 141.4 (CH), 132.5, 132.2, 131.1 (CH), 129.9
(CH), 129.1 (CH), 128.5 (CH), 127.9 (CH), 114.6 (CH), 55.7
(CH3). MS m/z: 275.2 [MþH]þ (calcd for
C15H15O3S

þ 275.1).

(E)-1-Fluoro-4-(styrylsulfonyl)benzene (3ae)

Colorless solid, mp 85–86 �C [lit.[79] mp 85–87 �C]. IR: 2956,
2924, 2850, 1591, 1558, 1495, 1319, 1290, 1144, 1086. 1H
NMR d: 7.98-7.94 (m, 2H), 7.68 (d, JH-H¼ 15.4Hz, 1H),
7.50-7.47 (m, 2H), 7.43-7.39 (m, 3H), 7.21 (d, JH-H¼ 8.6Hz,
2H), 6.84 (d, JH-H¼ 15.4Hz, 1H). 13C NMR d: 142.7 (CH),
132.2, 131.4 (CH), 130.5 (d, JF-C¼ 9.5Hz, CH), 129.2 (CH),
128.6 (CH), 127.1 (CH), 116.6 (d, JF-C¼ 22.6Hz, CH). 19F
NMR (376MHz) d: �103.9. MS m/z: 262.2 [MþH]þ (calcd
for C14H11FO2S

þ 262.0).

(E)-1-Chloro-4-(styrylsulfonyl)benzene (3af)

Colorless solid, mp 82–83 �C [lit.[72] mp 78–80 �C]. IR: 3128,
3039, 1610, 1576, 1473, 1394, 1315, 1147, 1086. 1H NMR d:
7.88 (d, JH-H¼ 8.6Hz, 2H), 7.68 (d, JH-H¼ 15.4Hz, 1H),
7.48-7.45 (m, 4H), 7.38-7.33 (m, 3H), 6.92 (d, JH-H¼
15.4Hz, 1H). 13C NMR d: 143.1 (CH), 139.9, 139.3, 132.2,
131.4 (CH), 129.7 (CH), 129.2 (CH), 129.1 (CH), 128.7
(CH), 126.9 (CH). MS m/z: 279.1 [MþH]þ (calcd for
C14H12ClO2S

þ 279.0).

(E)-1-Bromo-4-(styrylsulfonyl)benzene (3ag)

Light yellow solid, mp 110–112 �C [lit.[72] mp 113–117 �C]. IR:
2956, 2918, 2850, 1558, 1315, 1142, 1082. 1H NMR d: 7.80 (d,
JH-H¼ 8.4Hz, 2H), 7.71-7.67 (m, 3H), 7.48 (d, JH-H¼ 7.4Hz,
2H), 7.43-7.38 (m, 3H), 6.83 (d, JH-H¼ 15.4Hz, 1H). 13C
NMR d: 143.1 (CH), 139.8, 132.7 (CH), 132.2, 131.4 (CH),
129.2 (CH), 129.1 (CH), 128.6 (CH), 126.8 (CH). MS m/z:
322.1 [MþH]þ (calcd for C14H11BrO2S

þ 321.9).

(E)-1-(Styrylsulfonyl)-4-(trifluoromethyl)benzene (3ah)

Light yellow solid, mp 93–94 �C [lit.[72] mp 79–82 �C]. IR:
3047, 2960, 1734, 1558, 1321, 1144, 1061. 1H NMR d: 8.08
(d, JH-H¼ 8.2Hz, 2H), 7.82 (d, JH-H¼ 8.3Hz, 2H), 7.70 (d,
JH-H¼ 15.4Hz, 1H), 7.51-7.48 (m, 2H), 7.44-7.39 (m, 3H),
6.85 (d, JH-H¼ 15.4Hz, 1H). 13C NMR d: 144.4, 144.0 (CH),
135.0 (d, JF-C¼ 32.9Hz), 132.0, 131.6 (CH), 129.2 (CH),
128.7 (CH), 128.3 (CH), 126.4 (t, JF-C¼ 3.7Hz, CH), 126.2
(CH), 124.5. 19F NMR (376MHz) d: -63.2. MS m/z: 312.1
[MþH]þ (calcd for C15H11F3O2S

þ 312.0).

(E)-1-Chloro-2-(styrylsulfonyl)benzene (3ai)

Pale Yellow solid, mp 200–201 �C [lit.[65] mp 75–76 �C]. IR:
1574, 1448, 1311, 1146, 1043. 1H NMR d: 8.22 (dd, JH-H¼
7.9Hz, JH-H¼ 1.4Hz, 1H), 7.77 (d, JH-H¼ 15.4Hz, 1H),
7.56-7.38 (m, 8H), 7.08 (d, JH-H¼ 15.4Hz, 1H). 13C NMR d:
145.3 (CH), 138.3, 134.5 (CH), 132.8, 132.3, 131.9 (CH),
131.4 (CH), 130.7 (CH), 129.1 (CH), 128.7 (CH), 127.4
(CH), 125.4 (CH). MS m/z: 278.1 [MþH]þ (calcd for
C14H11ClO2S

þ 278.0).

Scheme 2. Control experiments.

Scheme 3. Proposed reaction mechanism.
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(E)-[2-(Methanesulfonyl)vinyl]benzene (3aj)

Colorless solid, mp 78–79 �C [lit.[79] mp 79–81 �C]. IR: 3045,
2925, 1622, 1300, 1134. 1H NMR d: 7.62 (d, JH-H¼ 15.5Hz,
1H), 7.52-7.50 (m, 2H), 7.44-7.40 (m, 3H), 6.95 (d, JH-H¼
15.5Hz, 1H), 3.04 (s, 3H). 13C NMR d: 143.9 (CH), 132.1,
131.4 (CH), 129.2 (CH), 128.6 (CH), 126.3 (CH), 43.2 (CH3).
MS m/z: 183.1 [MþH]þ (calcd for C9H11O2S

þ 183.0).

(E)-[2-(Ethanesulfonyl)vinyl]benzene (3ak)[72]

Pale yellow oil. IR: 3056, 2960, 1624, 1304, 1128. 1H NMR
d: 7.61 (d, JH-H¼ 15.5Hz, 1H), 7.52 (d, JH-H¼ 7.3Hz, 2H),
7.45-7.42 (m, 3H), 6.82 (d, JH-H¼ 15.5Hz, 1H), 3.09 (q, JH-H¼
7.4Hz, 2H), 1.39 (t, JH-H¼ 7.4Hz, 3H). 13C NMR d: 145.2
(CH), 132.3, 131.4 (CH), 129.2 (CH), 128.6 (CH), 124.0 (CH),
49.5 (CH2), 7.3 (CH3). MS m/z: 197.2 [MþH]þ (calcd for
C10H13O2S

þ 197.1).

(E)-[2-(Cyclopropanesulfonyl)vinyl]benzene (3al)

Colorless solid, mp 89–90 �C [lit.[80] pale yellow oil]. IR:
3045, 1616, 1577, 1452, 1317, 1292, 1126, 1038. 1H NMR d:
7.56-7.50 (m, 3H), 7.45-7.38 (m, 3H), 6.93 (d, JH-H¼
15.5Hz, 1H), 2.49-2.43 (m, 1H), 1.30-1.26 (m, 2H), 1.08-
1.03 (m, 2H). 13C NMR d: 143.1 (CH), 132.4, 131.2 (CH),
129.1 (CH), 128.5 (CH), 125.7 (CH), 31.4 (CH), 5.4 (CH2).
MS m/z: 209.3 [MþH]þ (calcd for C11H13O2S

þ 209.1).

(E)-1-Methoxy-4-[2-(benzenesulfonyl)vinyl]benzene (3bb)

Colorless solid, mp 200–201 �C [lit.[62] mp 100–101 �C]. IR:
3062, 2918, 2848, 1603, 1512, 1444, 1263, 1144, 1084. 1H
NMR d: 7.94 (d, JH-H¼ 7.3Hz, 2H), 7.65-7.58 (m, 2H), 7.53
(t, JH-H¼ 7.8Hz, 2H), 7.43 (d, JH-H¼ 8.7Hz, 2H), 6.89 (d,
JH-H¼ 8.7Hz, 2H), 6.71 (d, JH-H¼ 15.3Hz, 1H), 3.83 (s,
3H). 13C NMR d: 162.1, 142.3 (CH), 141.1, 133.2 (CH),
130.4 (CH), 129.3 (CH), 127.5 (CH), 124.9, 124.4 (CH),
114.5 (CH), 55.5 (CH3). MS m/z: 275.2 [MþH]þ (calcd for
C15H15O3S

þ 275.1).

(E)-1,2-Dimethoxy-4-[2-(benzenesulfonyl)vinyl] benzene
(3cb)

Colorless solid, mp 145–146 �C [lit.[67] mp 153–154 �C]. IR:
3047, 2935, 2844, 1610, 1510, 1464, 1271, 1142, 1024. 1H
NMR d: 7.95 (d, JH-H¼ 7.3Hz, 2H), 7.64-7.59 (m, 2H), 7.56-
7.52 (m, 2H), 7.09 (dd, JH-H¼ 8.3Hz, JH-H¼ 1.9Hz, 1H),
6.98 (d, JH-H¼ 1.9Hz, 1H), 6.86 (d, JH-H¼ 8.3Hz, 1H), 6.76
(d, JH-H¼ 15.3Hz, 1H), 3.90 (s, 3H), 3.87 (s, 3H). 13C NMR
(CDCl3) d: 151.8, 149.3, 142.6 (CH), 141.1, 133.2 (CH),
129.3 (CH), 127.5 (CH), 125.2, 124.6 (CH), 123.6 (CH),
111.0 (CH), 109.9 (CH), 56.0 (CH3), 55.9 (CH3). MS m/z:
304.0 [MþH]þ (calcd for C16H16O4S

þ 304.1).

(E)-5-[2-(Benzenesulfonyl)vinyl]benzo[d] [1, 3]dioxole
(3db)

Colorless solid, mp 97–98 �C [lit.[33] mp 95–96 �C]. IR: 3058,
2937, 1605, 1460, 1282, 1078. 1H NMR d: 7.93 (d, JH-H¼
7.3Hz, 2H), 7.62-7.51 (m, 4H), 6.99 (dd, JH-H¼ 8.0Hz,
JH-H¼ 1.6Hz, 1H), 6.93 (d, JH-H¼ 1.5Hz, 1H), 6.80 (d,
JH-H¼ 8.0Hz, 1H), 6.68 (d, JH-H¼ 15.3Hz, 1H), 5.99 (s,
2H). 13C NMR d: 150.4, 148.5, 142.3 (CH), 140.9, 133.3
(CH), 129.3 (CH), 127.5 (CH), 126.6, 125.4 (CH), 124.9
(CH), 108.7 (CH), 106.8 (CH), 101.8 (CH2). MS m/z: 289.3
[MþH]þ (calcd for C15H13O4S

þ 289.1).

(E)-1-Fluoro-4-[2-(benzenesulfonyl)vinyl]benzene (3eb)

Colorless solid, mp 91–92 �C [lit.[33] mp 92–93 �C]. IR: 3057,
2924, 1716, 1558, 1508, 1306, 1232, 1146, 1084. 1H NMR d:
7.95-7.93 (m, 2H), 7.67-7.61 (m, 2H), 7.55 (t, JH-H¼ 7.8Hz,
2H), 7.50-7.46 (m, 2H), 7.08 (d, JH-H¼ 8.6Hz, 2H), 6.80 (d,
JH-H¼ 15.4Hz, 1H). 13C NMR d: 164.3 (d, JF-C¼ 251.6Hz),
141.2 (CH), 140.6, 133.5 (CH), 130.6 (d, JF-C¼ 8.7Hz, CH),
129.4 (CH), 128.6 (d, JF-C¼ 3.5Hz), 127.7 (CH), 127.0 (d,
JF-C¼ 2.5Hz, CH), 116.3 (d, JF-C¼ 21.9Hz, CH). 19F NMR
(376MHz) d: -107.7. MS m/z: 263.3 [MþH]þ (calcd for
C14H12FO2S

þ 263.1).
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