Synthesis and n.m.r. spectral properties of grape monoterpenyl glycosides

Stephane Voirin, Raymond Baumes*, Claude Bayonove

INRA, Institut des Produits de la Vigne, Laboratoire des Arômes et des Substances Naturelles, 2, place Viala, F-34060 Montpellier (France)

Oubadjim M'Bairaroua' and Claude Tapiero'

USTL, Laboratoire de Chimie Bioorganique, Place Eugène Bataillon, F-34060 Montpellier (France) (Received March 30th, 1989; accepted for publication in revised form, January 20th, 1990)

ABSTRACT

Several grape 6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosides and 6-O- α -L-arabinofuranosyl- β -D-glucopyranosides having (E)- and (Z)-3,7-dimethyl-2,6-octadien-1-yl, (R,S)-3,7-dimethyl-1,6-octadien-3-yl, (R,S)-1-methyl-1-(4-methyl-3-cyclohexen-1-yl)ethyl, benzyl, and 2-phenylethyl as aglycon group, as well as such diglycosides of chromogenic 4-nitrophenol, were synthesized by two methods, one involving mercuric cyanide-catalyzed glycosylation with glycosyl halides, and the other by acid-catalyzed glycosylation with glycosyl trichloracetimidates. Their 1 H- and 13 C-n.m.r. spectra, especially the glycosylation shifts of the 13 C-signals, were investigated.

INTRODUCTION

Since Cordonnier and Bayonove¹ first suggested that the fruit of *Vitis vinifera* var. Muscat of Alexandria contained monoterpene glycosides, extensive research has been carried out on their structural, chemical, and biochemical properties². Indeed, they make up a stock for aroma which may be more abundant than the free odoriferous components³.

Williams $et\ al.^{4.5}$ first identified them as 6-O-(6-deoxy- α -L-mannopyranosyl)- β -D-glucopyranosides (β -rutinosides) and 6-O- α -L-arabinofuranosyl- β -D-glucopyranosides with monoterpenyl aglycons at the linalool oxidation state, and benzyl and 2-phenylethyl aglycons. Subsequent work has shown that other volatile flagrant compounds (or their precursors) are also present as disaccharide glycosides⁶⁻¹⁰. We report herein the chemical synthesis and the ¹H- and ¹³C-n.m.r. caracteristics of these glycosides, as well as such diglycosides of 4-nitrophenol required as chromatographic standards and as models for enzymic studies¹¹.

^{*} To whom correspondence should be addressed.

RESULTS AND DISCUSSION

In a previous note¹², we have shown that the method described earlier by Bourbouze¹³ for the synthesis of 4-nitrophenyl β -rutinoside hexaacetate (17) from 2,3,4,2',3',4'-hexa-O-acetyl- α -rutinosyl chloride (3) and 4-nitrophenol could not be used to prepare (E)-3,7-dimethyl-2,6-octadienyl β -rutinoside hexaacetate (11) (geranyl β -rutinoside hexaacetate). The latter compound was stereoselectively synthesized by condensation of 2,3,4-2',3',4'-hexa-O-acetyl- α -rutinosyl bromide (4) with geraniol in the presence of the Helferich catalyst [mercury(II) cyanide] in acetonitrile. These conditions gave a low but better yield than those already reported⁴; they were also used by us to synthesize (R,S)-1-methyl-1-(4-methyl-3-cyclohexen-1-yl)-ethyl β -rutinoside hexaacetate (14), as well as some monoterpenyl β -D-glucoside tetraacetates from commercial 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide¹⁴.

However, the sensitive, less-reactive tertiary allylic alcohol, 3,7-dimethyl-1,6-octadien-3-ol (linalool), gave very poor yield when treated with 4 under the same conditions. Another main drawback of this glycosidation method is the low thermal stability and the highly sensitivity to hydrolysis of the starting diglycosyl halide¹⁵ 4, generated in mixture with the 1-O-deacetylated product 5 under relatively harsh conditions from commercial β -rutinose heptaacetate (1); rather than purify 4, it was preferable to use it as a crude product in the glycosidation step, owing to the easy separation by column chromatography of the monoterpenyl β -rutinoside hexaacetates from the hydrolysis product 5.

The starting material 2 for the synthesis of 32–38 is not readily available. The most efficient synthesis¹⁶ requires several steps from D-glucose and L-arabinose, the key step being the triphenylmethylium perchlorate-catalyzed, stereocontrolled glycosylation of 1,2,3,4-tetra-O-acetyl-6-O-trityl- β -D-glucopyranose by 3,5-di-O-acetyl-1,2-O-[(1-exo- and 1-endo-cyano)ethylidene]- β -L-arabinofuranose. Therefore, we developed a more efficient glycosylation¹⁷ by the stereoselective anomeric activation of the O-acetyl derivatives 1 and 2 through formation of the stable O-glycosyl trichloracetimidates 9 and 10. These compounds are readily available from unsubstituted 5–8 by base catalysis¹⁸ of OAc-1 of 1 and 2 using either benzylamine in chloroform¹⁸ for 1 or ammonia in methanol-oxolan¹⁹ for 2. The ratios of α to β anomers in 5, 6 and 7, 8 are about the same, as determined by ¹H-n.m.r. (4:1 and 3:1, respectively). Owing to the reversibility of O-glycosyl imidate formation, the thermodynamically more stable 1-O- α -(trichloracetimidates) 9 and 10 were obtained highly diastereoselectively and were substantially pure, as shown by ¹H- and ¹³C-n.m.r. spectrometry.

Glycosylation of the monoterpenols [geraniol, (Z)-3,7-dimethyl-2,6-octadienol (nerol), (\pm) -linalool, and (\pm) - α -terpineol], of the aromatic alcohols (benzyl and 2-phenylethyl alcohol), and of 4-nitrophenol with the trichloroacetimidates 9 and 10 was carried out with a slight excess of the nucleophiles under acid catalysis (boron trifluoride etherate) at room temperature in dichloromethane as solvent. With the monoterpenols, known to rearrange under acid conditions, glycosylated products of rearrangment were hardly observed. The glycosylation proceeded highly stereoselectively through the

formation of a transient α -acyloxonium ion by C-2 acetyloxy participation^{17,18}, giving in fairly good yield the acetylated β -D-glycosides 11–24. Compounds 11–24 were efficiently deacetylated in methanol under base catalysis, as previously reported^{12,14} for 11 and 14, to give the expected β -diglycosides 25–38.

Another approach to the synthesis of the diglycosides 18–24 was to glycosylate the readily available 2,3,4-tri-O-acetyl-6-O-trityl- β -D-glucosides of the above mentioned alcohols (monoterpenols and aromatic alcohols) and 4-nitrophenol with 3,5-di-O-acetyl-1,2-O-[(1-exo- and 1-endo-cyano)ethylidene]- β -L-arabinofuranose according to the method of Backinowsky et al. 16. However, this reaction gave no detectable diglycosides with the alcohol derivatives, probably owing to the attack by the triphenyl carbocation of the terpenyloxy residue, leading to a stable allylic terpenyl carbocation. Furthermore, the reaction proceeded with partial migration of the acetyl group from O-4 to O-6 of the sugar residue in the case of 4-nitrophenol, yielding a mixture of the (1 \rightarrow 6) and (1 \rightarrow 4)-linked diglycosides 24 and 39. Such migration has been reported during detritylation of 1,2,3,4-tetra-O-acetyl-6-O-trityl- β -D-galactopyranose 20.

N.m.r. study. — The structures of the per-O-acetylated and unprotected diglycosides obtained were established by ¹H- and ¹³C-n.m.r. spectromety (Tables I, II, and III). The ¹H- and ¹³C-n.m.r. spectra were interpreted with the aid of homonuclear ¹H-¹H and selective heteronuclear ¹H-¹³C double-resonance spectrometry and by reference to data for the diglycosides, ^{4,12,16,21} 1-3, 11,12, 17-20 for related compounds ^{18,19,22-29} and for monoterpenes ^{30,31} previously reported. In addition, the signals for the diastereoisomer mixtures [diglycosides of (R,S)-linalool and (R,S)- α -terpineol] were assigned by use of the data obtained for the β -D-glucoside of (S)-linalool and (R)- α -terpineol, which will be reported elsewhere ³²; these assignments were facilitated for 14, 21, 28 and 35 as the relative concentrations of the two diastereoisomers were significantly different (1:2). All chemical shifts and coupling constants reported in Tables I-III are in good agreement with those of the literature.

Chemical shifts of sugar units. — When examined separately, the acetylated diglycosides 11-24 and the unprotected diglycosides 25-38 (Tables I-III), showed all the signals for the D-glucopyranosyl residue protons and carbon atoms at almost the same position with about the same ³J coupling constants between the protons, except for those of H-1, C-1, and C-2. A similar observation was made for all the signals for the protons and carbon atoms of the nonreducing sugar groups L-rhamnopyranosyl and L-arabinofuranosyl, in the related diglycosides. These ¹H- and ¹³C-n.m.r. data suggest that the sugar units, β-D-glucopyranose, α-L-rhampopyranose, and α-L-arabinofuranose, have similar conformational equilibrium with the same orientation of the interglycosidic bonds in related diglycosides, regardless of the structure of the aglycon. This indicated a preponderance of the 4C_1 (D) conformation for the D-glucopyranosyl residue with a 1,2-trans-diequatorial configuration of the glycosyl bond $(J_{1,2} \sim 8 \text{ Hz}, J_{2,3})$ $= \sim J_{34} = \sim J_{4.5} = \sim 9$ Hz), a preponderance of the ${}^{1}C_{4}$ (L) conformation for the L-rhamnopyranosyl group with a 1,2-trans-diaxial configuration of the glycosyl bond $(J_{1',2'} < 1.5 \text{ Hz}, J_{2',3'} \sim 3.5 \text{ Hz}, J_{3',4'} = \sim J_{4',5'} = \sim 9.5 \text{ Hz})$, and a preponderance of a conformation close to E₀ with a 1,2-trans-quasi-anti configuration of the L-arabinofura-

Ter =
$$\begin{pmatrix} Me \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} Me \\ 4Np \end{pmatrix}$ = $\begin{pmatrix} NO_2 \\ 1 \end{pmatrix}$

TABLE I

'H-N.m.r. chemical shifts (δ) for the acetylated (5-8, 12-24) and the unprotected (26-38) disaccharide derivatives^a

						ļ ļ																				
Compd.	2	D-Glucose residue	esidue					Nonre	ducing	glycos	Nonreducing glycosyl group	ا		Glycosidic	•	Aglycon residue	ايو				ł					
1	Н-1	Н-2	Н-3	H-4	Н-5	Н-6а Н-6ь	99-Н	H-I'	Н-7	Н-3″ 1	H-4 H	Н-5'а Н-5'В Н-6	9-H 9.s	acetates	H-1	H-I'	" H-2	.2 H-3	1 H-4	H-5	F 4	Н-7	#¥	6-Н	H-10	Ph
1 5	5.41	4.85	5.54	4.88	4.29		3.74	4.84	5.31	5.25 \$	5.05 3.	3.89	1.20	1.98–2.14	•											
•	4.80					3.61	3.76																			
7	5.40	4.85	5.54	4.93	4.31	36	3.73	5.16	5.06	4.98	4.316 4.22	.22 4.39	•	2.00-2.15	ب											
∞	4.77				4.01	3.65	3.79																			
12	4.53	4.95	5.20	4.98	3.68	3.68	3.68					.87	1.21	1.98-2.13				₄ 9;	2.03				99.	1.68	1.75	
13(R)	4.55	4.94	5.21	4.94	3.63	3.63	3.63"	4.78				3.84	1.21	_	3 5.21 ^b	b 5.21 ⁶		2	- 3				1.61	1.65	1.25	
13(S)	4.58	4.94	5.21	4.94	3.63	3.63	3.63					8.	1.21	_				-	1.60				1.61	1.65	1.3	
14(R)	4.69	4.94	5.22	4.93	3.67	3.59	3.67				5.04 3.	.85	1.21	_			5.33		Jb 1.55b	Sb 1.20b	4 1.90 ⁶			.18	61.1	
14(5)	4.69	4.94	5.22	4.93	3.67	3.59	3.67					3.85	1.21	_			5.33	1.90				1.62		1.13	1.17	
15	4.48	4.96	5.11	4.89	3.62^{b}	3.62	3.62			5.22% 5		3.82	1.15	1.92-2.04											•	7.246
91	4.45	4.93	5.15	-		3.65	3.65					3.84	1.19			3.65		9							•	1.25
œ	4.52	4.95	5.19	5.02		3.6 <u>4</u>	3.78	5.08	2.07		4.29 4.	_	_	2.00-2.14	4 4.23			5.26	2.07^{6}	76 2.076	δ 5.06°	_	1.62	1.70	99.	
19	4.52	4.93	5.19			3. 6	3.79					.22 4.40	6	2.00-2.14				<i>qL</i> i	2.0,			_	1.62	1.70	1.7	
20(R)	4.50	4.95	5.15			3.56	3.70						<u></u>	1.96-2.14				8 2	1.5			_	1.549	1.63	1.21	
20 (S)	4.54	4.92	5.14			3.56	3.70				-	4.18 3.38	æ	1.96-2.14		5.15		69	1.5				1.55	1.63	1.28	
21(R)	4.67	4	5.20			3.59	3.74	5.06			-		0	1.99-2.13			5.34			_				1.14	1.16	
21 (S)	4.67	•	5.20		£.	3.59	3.74	5.06			4.28 4	4.21 4.40	0	1.99-2.13			5.34	24 1.90	0 1.55			1.63		1.12		
22	4.55	٠,	5.17			3.68	3.79	5.11					_	1.99-2.12	2 4.87										•	7.326
23	4.47	4	5.16			3.66	1.77	5.08			4.28 4.		0	1.89-2.10				11							•	1.236
7	5.19		5.32			3.66	3.81	5.01					9	2.05-2.14	•		7	10 8.23								
97	4.11	• •	3.12	3.00	3.21	3.43	3.81	4.59	3.62	3.43° 3	3.17 3.	3.43^{b}	1.13	ı	4.05	4.15		6	2.03	3° 2.03°		_	1.57	<u>z</u>	<u>E.</u>	
27(R)	4.15	• •				3.39	3.77	4.57				3.39^{6}	1.12	1	5.10			ž.	1.5			_	1.55	1.63	1.23	
27 (S)	4.15	2.94	3.12			3.306	3.77					.39	1.12	ı	5.14	5.20							1.55	1.63	1.26	
28(R)	4.27		2.99	2.97	3.16	3.376	3.77		3.58	3.376 3	3.14 3.	3.376	1.09	ı			5.29		-	_	b 1.90			1.05	80.1	
28(5)	4.27	2.89	2.89			3.37	7.7.5					.37	8	1			5.29	63 1.90	09.1	1.11		1.55		1.05		
23	4.19	٠.	3.13			3.47	3.81					41	1.17	1	4.73										•	7.336
8	4.18	•	3.14			<u>3</u>	3.80					<u>‡</u>	1.13	1	3.88	3.67		4								1.236
31	5.09	3.36	3.36	_		3.49	3.89					46	1.15	1			7.25	25 8.26		8.26	7.25					
32	4.13	• •	3.13		3.25	3.41	3.86					3.42 3.54	*	I	4.09			9	2.01	اہ 2.01	80.S	_	 5	1.62	.59	
33	4.13	C				3.40	3.86			3.63 3		.42 3.56	vo.	1	4.05			55	2.03	3° 2.03°	5.09	_	1.57	1.65	<u></u>	
34 (R)	4.15	2.92		٠,	_	3.41	3.78					3.34 3.5	3	•	5.08			33	₹.	م 1.93	5.05	_	1.52	1.61	1.21	
34 (S)	4.15	N				3.41	3.78						3	1	5.13	5.17				9 1.93	5.05		1.52	1.61	4.	
35(R)	4.29	~	3.15	2.99	3.23	3.414	3.81						3	1			5.31			100 ءا	19.1 م			1.07	e:	
35(5)	4.29	2.89	3.15	2.98	3.23	3.40	3.81					3.35' 3.5	3	I			5.31	11.91	1.61	1.09		99.		1.07		
98	4.24	•	3.13	3.03	3.30	3.44	3.90	4.84	3.84		3.75 3.	3.41 3.56	9	1	4.79	4.58	90								•	7.346
31	4.21	• •	3.15	2.99	3.30	3.40	3.87				٠.		2	1	3.91	3.68	8 2.86	92							•	7.236
38	5.15	3.526	3.52^{b}	_	3.74		3.98					3.62 3.64	\$	I			7	11 8.11	_	8.11	7.11					
																				ļ						

"Accetylated compounds in CDCl₃ and unprotected compounds in (CD₃)₂SO (internal standard, Me₄Si). ⁵ Centre of a multiplet. ^{c-1} Assignments may be interchanged in each numbered compound. ⁷Recorded in D₂O.

TABLE II

¹H-N.m.r. first-order coupling constants (Hz) for the acetylated (5-8, 12-24) and unprotected (26-38) disaccharide derivatives^a

4	5			ı				44		.4				10		177			1-1-1	7,77	•		
Compa. D-Giucose residue	5	cose res	lane					L-Arac	L-Arabinose residue	iane				- Vua	L-Knamnose residue	esiane			Agriya	Agrycon residue	ا		
	J _{1,2}	J _{2,3}	J. 1	J _{4,5}	J _{5.6u}	J _{5,6h}	J _{6a,6h}	Jrz	$J_{Z,\bar{J}}$	13.4	Jesa	J. 5.h	J _{Sa,S'h}	J. Z	Jr.z Jz.s	13.4	J4.5	J _{S.6} .	$J_{I,F}$	J _{1,2}	Jr.2 J2.3	J _{2,3}	J _{5,6}
ĸ	3.7	10.0	9.5	10.3	7.3	1.9	11.9							1.9	3.5	10.0	9.7	6.3					
9	7.9					2.0	12.0																
7	3.6	10.2	7.6	9.6	6.9	2.1	12.2	-1	1.8	5.2	5.7	3.4	11.5										
œ	8.0				6.2	2.0	11.3																
12	7.9	7.6	9.2	9.2										7	3.3	7.6	8.6	6.3	11.7	7.8	9.9		
13 _°	8.0													~			7.6	6.3	~1.5	=	17.6		
4 ₽	8.0	7.6	9.4	9.4	7.4		11.8							1.5		7.6	6.7	6.3					
15	8.0	9.6	9.5	9.5										1.5		6.6	8.6	6.3	12.4				
91	6.7	7.6	9.5	9.4										~	3.5	9.6	7.6	6.3	9.6	6.1	6.1		
81	7.9	9.5	9.4	9.5				-	1.5	5.4	5.6	3.2	11.5										
19	8.0	4.6	4.6	4.6				v	1.3	5.3	5.4	3.2	11.6						11.5	7.8	5.4		
20°	8.0	9.5	9.5					ī	1.7	5.4	5.4	3.3	11.6						1.8	11.0	17.7		
21 ⁵	8.0	9.6	9.5	9.5	5.9		10.7	<u>~</u>	1.4	5.2	5.4	3.1	11.5										
22	8.0	9.4	9.4	9.4				-	1.6	5.1	5.7	3.4	11.7						12.3				
g	7.9	9.6	9.6	9.5		-	9.5	7	1.5	5.4	9.6	3.2	11.5						9.6	6.3	6.3		
አ አ	7.3	9.2	8.7	6.7	6.5	2.2	9.11	v	9.1	5.2	5.5	3.1	11.4									9.0	0.6
92	7.8	8.9	8.8 8.8	9.3	6.7	1.5	11.3							1.2	3.0	9.6	9.6	6.2	12.0	7.8	9.9		
2 7 2	7.7					1.0	11.2							1.5		9.2	9.2	6.5	1.2	10.9	17.9		
82	7.7	0.6	0.6	0.6		1.0	11.3							1.3		8.9	8.9	6.2					
53	7.8	8.8	8. 8.	9.3	9.6	-	11.0							7	3.3	9.3	9.3	6.2	17.1				
8	7.8	0.6	9.5	9.3	6.9	4.	11.3							1.3		9.4	9.4	6.2	6.6	7.2	7.4		
31	7.5					1.2	11.0							1.3		9.3	9.3	6.2				9.3	9.3
32	7.8	9.0	0.6	9.3	6.5	1.5	1.1	1.8		9.9	5.8	3.0	11.4						12.0	7.8	9.9		
33	7.8	0.6	0.6	9.5	6.9	1.5	1.1	1.8		8.9	5.5	3.2	11.5						12.0	7.5	6.5		
ਝੈ	7.7	0.6	6.8	9.6	9.6	1.0	11.8	9.1	4.2	6.3	0.9	3.2	11.8						1.4	11.0	17.7		
38	7.7	0.6	0.6	9.2	5.5	1.4	11.6	1.7		8.9	5.4	3.2	8.11										
%	7.7	0.6	0.6	9.6	7.3	1.7	11.2	1.9		8.9	8.8	3.3	12.0						12.2				
37	7.8	8.8	8.8	4.6	5.8	1.5	7.7	7.8		6.7	5.7	3.2	11.7						6.7	7.2	7.2		
9 8	1.7	ļ	9.3	9.3	5.7	1.0	11.3	7	- 1	5.8	5.8	3.4	11.5		Ì							9.5	9.2

 a See footnote a to Table I. b The coupling constants for each diastereoisomer are approximatively equal.

nosyl bond for the L-arabinofuranosyl group when acetylated 16,33 ($J_{1',2'}$ < 1 Hz, $J_{2',3'}$ ~ 1.5 Hz, $J_{3',4'}$ ~ 5.2 Hz), and a slight deformation for the nonacetylated compound ($J_{1',2'}$ are slightly increased). In contrast, the signal for H-1 of the p-glucopyranosyl group was displaced slightly upfield (0–0.3 p.p.m.) (when compared to that for the corresponding free β anomer of the disaccharides 6 and 8) on glycosylation with monoterpenols and arylalkyl alcohols, whereas glycosylation with 4-nitrophenol resulted in a downfield shift, not only of the signal for H-1 but also of those for H-2,3,4,5.

On glycosylation with tertiary alcohols, such as linalool and α -terpineol, the signal for C-1 in 13, 14, 20, 21, 27, 28, 34, and 35 remained almost constant comparatively to that for the corresponding free β anomer of the disaccharides 6, 8, 41, and 43. In contrast, it was deshielded on glycosylation with 4-nitrophenol in 17, 24, 31, and 38, and with the primary alcohols in 11, 12, 15, 16, 18, 19, 22, 23, 25, 26, 29, 30, 32, 33, 36, and 37 (Table IV) in the increasing order, 4-nitrophenol, allylic and benzylic alcohols, and 2-phenylethanol. The C-2 signal was displaced slightly upfield on glycosylation with all the O-nucleophiles used (\sim -2 p.p.m. for the acetylated glycosides 11–24 and \sim -1 p.p.m. for the unprotected glycosides 25–38). All the C-1 and C-2 glycosylation shifts observed (Table IV) were consistent with those previously reported for β -D-glucosides of primary and tertiary alcohols^{34,39}, and of phenols^{40,42}, although the data for the geranyl and neryl β -D-diglycosides 11, 12, 18, 19, 25, 26, 32, and 33 were slightly decreased comparatively to the benzyl and 2-phenylethyl β -D-diglycosides 15, 16, 22, 23, 29, 30, 36, and 37, or to reported values for the β -D-glucosides of other primary alcohols³⁴⁻³⁹.

Chemical shifts of aglycon residue. — The glycosylation shifts of the carbon signals of the aglycon residues are summarized in Table IV. As previously reported $^{34-39}$, the only significant glycosylation shifts are those for the C-1" and C-2" aglycon carbon atoms, but the C-3" aglycon carbon atom displayed a significant glycosylation downfield shift when it is sp2 hybridized (geraniol, nerol, linalool, and benzyl alcohol). The glycosylation shifts observed between the two sets of diglycosides, β -rutinosides (11-17, and 25-31) and 6-O- α -L-arabinofuranosyl- β -D-glucopyranosides (18-24 and 32-38) were very similar for comparable compounds, *i.e.*, same aglycon and same protecting group.

Moreover, the values observed between the two sets of acetylated (11–24) and unprotected (25–38) diglycosides for a given aglycon group showed the same trends but are slightly different, as previously reported for β -D-glucosidation³⁷; it should be noted, as indicated in Table IV, that the ¹³C-n.m.r. spectra of the unprotected glycosides were recorded for compounds in D₂O solution and compared to the ¹³C-n.m.r. spectra of aglycon groups recorded for compounds in CDCl₃ solution. Table IV shows also significant differences for the glycosylation shifts between the diglycosides of the two types of alcohols, primary and tertiary, when considering similar carbon atoms. Interestingly, the values observed for the former (primary alcohols) are quite similar to those observed generally for β -D-glucosides of primary, but also of unhindered secondary and tertiary alcohols^{34–39,43}, whereas those observed for the latter (linalool and α -terpineol) are quite similar to those observed for β -D-glucosides of hindered secondary

ABLE III

¹³C-N.m.r. chemical shifts (b) for the acetylated (5-8, 12-24) and unprotected (25-38) disaccharide derivatives*

Compd.	Compd. D-Glucose residue	ose resi	due			1	Nonred	ucing g	Nonreducing glycosyl group	dronb			Nonard	matic c	Nonaromatic carbon atoms	toms							Aroma	tic carbo	Aromatic carbons atoms	
	1-5	C-2	C-1 C-2 C-3 C-4		C-5 C-6		C-1, (C-2	C-3'	70	C-5" C	C-6'	C-1	C-2	C-3 (C-4	C-5	C-6	C-7 C	C-8 C	C-9	C-10	C-1	C-2/6 C-3/5	C-3/5	3
Şα		69.1%				8.29		70.0		70.9	1 6.99	17.4														
99		72.5				2.19	98.6	0.07	6.69			17.4														
7α		,9.69				57.2				80.3	63.6															
88		72.8				6.99	8.901	81.7		80.5	9.69															
12,		71.5				57.2		9.69			1 9.99	7.4	65.4	120.4	142.1	32.1		123.8	132.0 2	1 25.7		23.5				
13(R)	92.6	9.17	73.0° 69	69.1 7.	73.20 6	67.0	98.1°	69.54	. 22.69		1 9.99	17.4	115.2	142.0	80.7°	8.04	22.2	124.19 131.7			17.5" 2	2.4				
13(S)		71.6				57.0		69.5				7.4		141.5	80.8%			124.29				23.1				
14(R		71.7				8.99	98.1	69.54	_	71.0		17.4		120.7		43.9		31.0		80.5 2	23.5 2	3.8				
14(5)		71.7				6.98		69.5			1 9.99	17.4		120.4	26.6	1.1	23.6		23.3 8		22.1 2	8.4				
15		71.4				57.0		.5.69				17.4	70.7											128.5	127.7 12	127.9
91		71.3				57.1	98.2	69.5	. ,9:69	71.1		7.4	70.5	35.9									138.7	129.0		126.3
18,		71.7				6.99		81.5			13.4			9.611	142.3	39.7		124.0	132.0 2	25.7	17.7	6.4				
19,		71.7					106.2	81.5			53.4											3.5				
20(R)		71.7						81.4	4.77		63.4		114.8	142.6	80.7°		22.34					22.7				
20(5)		71.7					106.0	81.4			3.4			142.0						25.6	17.7 2	3.3				
21(R)		71.9				66.3		81.3		80.7	53.4			120.8	26.8	1.1		31.1	23.3 8			0.4				
21(S)		71.9				56.3	106.0	81.3			53.4		134.3	120.6	26.8	44.2						5.0				
z		71.7				56.3	106.3	81.5		90.6	33.5		70.7											128.7	127.9 128.	8.2
23		71.5				56.3		81.4		80.5	53.4		70.5	36.1									138.7		128.5 126.5	6.5
ž		71.3			74.1 6	0.99	106.2	81.4		80.7	63.2															143.7

¹³C-N.m.r. chemical shifts (3) for the acetylated (5-8, 12-24) and unprotected (25-38) disaccharide derivatives"

Compd.	D-Glw	D-Glucose residue	idue			***************************************	Nonreducing glycosyl group	glycos	rylgro	dn		Nonar	omatic	Nonaromatic carbon atoms	noms							Aromai	Aromatic carbons atoms	s atoms	1
-	3	C-2 C-3		3	53	ç,	C-1' C-2	C-3,	Ž	C-S,	C-6,	7-5	ટ	ৼ	C-4	C·S (C-6	C-7 (C-8	C-9 C	C-10	C-1	C-2/6 C-3/5	i	C-4
52	101.2	_	75.5	70.3	76.7	67.2	101.15 71.16	70.9°	72.9	69.4	17.5	0.99	119.6	14.3	39.7	26.5	124.9	133.6 2	25.9	1 6.71	16.3				
36 ¢	101.2		75.4	70.3	76.7	67.1	101.2 71.0°					66.1	120.4								23.4				
27(R)	97.9		75.2	70.4	76.7	67.14	101.0 71.0°	•			17.5	116.3	142.6								3.1				
27 (S)	98.1		75.2	70.6	7.97	67.24	101.0 71.0	70.9			17.5	117.0	142.4	82.2							23.1				
28(R)	97.3		75.1	70.7	8.9/	67.3	101.1 71.0		, 72.9	69.4	17.5	136.6	121.8	27.3	43.6		31.2	23.3 8	82.6	23.5 2	24.0				
28 (S)	97.4		75.1	70.4	76.8	67.3	101.2 71.0		, 72.9		17.5	136.7	121.7	27.5	43.5	24.3	31.4				24.8				
82	102.2		75.5	70.4	76.5	67.5	101.3 71.06	70.8	72.8		17.5	72.5										137.4	129.5 12	129.5 129.2	7.
8	103.1		75.5	70.5	76.5	67.7	101.4 71.0		, 72.8	69.4	17.4	71.7	36.1										129.8 12	129.5 127.3	5
31	6.66		75.8	70.2	76.2	8.99	100.9 71.0			69.4	17.2														3.3
32	101.1		75.6	70.4	9.92	67.5	108.8 81.8	77.3	84.6			66.3	119.5	144.6	39.6	26.4	124.9	134.0 2	25.7	17.8	16.3				
33	101.4		75.5	70.4	9.92	67.4	108.8 81.8	77.3	84.7			66.2	120.6	4.4	32.1		124.5	134.5 2	25.7	17.8 2:	3.4				
34 (R)	97.8		75.2	9.07	9.9/	.9′.29	108.94 81.8	77.4	84.7	61.9		116.5	142.5	82.2	39.8	23.0	125.2	134.2 2	25.6	17.7 2	23.0				
34 (S)	98.0		75.2	9.02	9.92	.8′.	108.8" 81.8	77.4	84.7			117.0	142.4	82.3	6.04				25.6	17.7 2	3.0				
35(R)	97.3		75.2	70.7	76.7	8.79	108.9 81.8	77.4	84.7			136.6	121.7	27.2	43.6	24.4	31.2	23.3 8	82.6 2	23.5 23	23.9				
35 (S)	97.4		75.1	70.5	76.7	9.79	108.8 81.8	77.4	84.6	61.8		136.7	121.7	27.5	43.5	24.3	31.2		82.7 2	22.6 24	4.7				
36	102.2		75.6	70.5	76.5	67.5	8.18 6.801	77.4	84.7			72.4										137.4	129.5 12	129.5 129.2	2
37	103.1		75.5	70.5	76.5	9.79	108.9 81.8	77.4	84.7	62.0		71.7	36.0									139.4	129.8 12	129.5 127.3	.3
%	100.4	73.7	76.26	70.4	76.4 ⁵	67.5	109.1 82.0	77.6	85.0	62.2												162.7	117.6 12	127.1 143.6	9.6

^a For solutions in CDCl₃ for 5-8 and 12-24, and D₂O for 25-38 (internal standard, tetramethylsilane). Other signals: CH₃CO, 20.6-20.9; CH₃CO, 169.1-170.7. ^{b. h}Assignments may be interchanged in each numbered compound. ^c Compare with data published for the natural compounds.

TABLE IV

¹³ C-N.m.r. glycosidation shifts of the diglycosides 11-38"	hifts of the dig	lycosides 11-38"	ili - Cristiani	Maria	man y the second	anne en	
Aglycon	Compd.	Glycosyl C-1	Aglycon carbon atoms $(\Delta\delta_a)$	oms $(A\delta_a)$			THE ACCOUNT OF THE PARTY OF THE
		$(A\delta_S)$	C-a	С-В	THE REAL PROPERTY OF THE PROPE	THE PERSON NAMED AND PASSED AND P	Csp_{2} - γ
	Management of the second secon	estamble dig it is a proper property and before process emblaced		Most hindered	Others		- The state of the
Geraniol	=	+ 3.4	+ 6.5	- 5.2			+ 5.3
	81	+ 3.0	+ 6.5	- 4.9			+ 5.1
	25	+ 4.4	+ 7.3 (+ 2.6)	-4.9(-5.6)			+ 7.1 (+ 4.6)
	32	+ 4.3	+ 7.6	- 5.0			+ 7.4
Nerol	12	+ 3.9	+ 6.7	- 4.7			+ 3.5
	19	+ 3.7	+ 6.7	4.4			+ 3.5
	97	+ 4.5	+7.4(+2.3)	-4.7(-5.4)			+5.7(+3.5)
	33	+ 4.6	7.5	- 4.7			+ 5.8
(R)-Linalool	13(R)	+ 0.2	+ 8.0	- 0.4	- 4.8	- 3.0	+ 3.9
	20(R)	+ 0.1	+ 8.0	- 0.5	- 4.5	- 2.4	+ 3.5
	27(R)	+ 1.2	+9.4(+10.1)	-1.3(-1.5)	-4.1(-3.4)	-2.4(-2.9)	+5.0(+1.7)
	34(R)	+ 1.0	+ 9.5	- 1,4	- 4.2	- 2.5	+ 5.2
(S)-Linalool	13(S)	+ 0.7	+ 8.1	+ 0.7	- 4.1	- 3.5	+ 5.2
	20 (S)	+ 0.5	+ 8.1	+ 0.7	- 3.9		+ 4.8
	27 (S)	+ 1.4	+ 9.5 (+ 10.1)	-0.1(-1.5)	-4.1(-3.4)	-2.6(-2.9)	+5.7(+1.7)
	34 (S)	+ 1.2	+ 9.6	- 0.3	- 4.2	- 2.6	+ 5.7
(R)-a-Terpineol	14(R)	- 0.3	+ 8.3	1.1	- 3.8	- 2.2	
	21(R)	- 0.3	+ 8.2	- 0.9	- 3.8	- 2.0	
	28(R)	+ 0.6	+ 10.4 (+ 12.5)	-1.4(-2.3)	-4.0(-4.0)	-2.0(-2.7)	
	35(R)	+ 0.5	+ 10.4	- 1.4	- 3.8	- 2.1	
(S)-a-Terpineol	14(S)	- 0.2	+ 8.4	- 0.9	- 3.9	- 2.5	
	21(S)	- 0.3	+ 8.3	- 0.8	- 3.4	- 2.5	
	28 (S)	+ 0.7	+ 10.5 (+ 12.5)	-1.5(-2.3)	-3.7(-4.0)	-2.3(-2.7)	
	33(3)	0.0	+ 10.3	C:1 -	P. 9.4	C.7 -	

+ 1.4 + 1.6 + 2.4 (+ 1.4) + 2.4		
- 3.8 - 3.6 - 3.4 (- 4.6) - 3.4	- 3.1 - 2.9 - 2.9 - 3.0	
+ 6.2 + 6.2 + 8.0 (+ 1.6) + 7.9	+ 7.5 + 7.5 + 8.7 + 8.7	- 4.4 - 3.9 - 3.1 - 2.7
+ + + 3.9 + + 5.5 5.4	+ + + + + + 6.3 6.3	+ + 2.6 + + 3.7 + 3.6
% 35 T2 25	16 23 37	71 74 88 88
Benzyl alcohol	2-Phenylethanol	4-Nitrophenol

" $\Delta \delta_s$ and $\Delta \delta_A$ in p.p.m.. The glycosydation shifts for glycosidic C-1 were calculated as $\Delta \delta_s = \delta$ (R diglycoside) $-\delta$ (H diglycoside) from the chemical shifts reported in Table III for 11-24 (in CDCI,) and 25-38 (D,O), and those for the corresponding β anomer of the 1-0-unsubstituted diglycosides 6 and 8 (895.4 and 95.7 in CDCI, respectively), 41 (ref. 21), and 43 (396.7 and 96.8 in D₂O, respectively). The glycosidation shifts for the carbon signals of the aglycon residues, were calculated as $A\delta_A = \delta$ (R diglycoside) — δ (aglycon, RH) from the chemical shifts reported in Table III for 11-24 (in CDCl₂) or 25-38 (in D₂O) and those for the corresponding aglycon20 compound (in CDCl3). The corresponding acetylation shifts20 are given in parentheses.

alcohols $^{34-39,43}$ and of hindered tertiary alcohols of the dammarane type 36,38,39 . The differences observed for the β -D-glucosides of the hindered secondary alcohols was attributed to the change in orientation of the β -D-glucosyl linkage due to a modification of the $\varphi(1)$ torsion angle with the possibility of a substantial change in the bond angle ζ (C-1-O-1, aglycon C-1") around its assumed value of 113°, although the $\varphi(1)$ torsion angle was expected to be constant ($\sim +65^{\circ}$) owing to the exoanomeric effect S. Such considerations could explain the "anomalous" glycosylation shifts observed for the β -D-diglycosides of (\pm)-linalool (12, 20, 27, and 32) and (\pm)- α -terpineol (14, 21, 28, and 35), the long isoprenoïd chain in the linalyl residue or the carbon ring in the α -terpinyl residue exerting a steric effect like a substituent at C-2" in a secondary hindered alcohol.

The data obtained for these diastereoisomeric diglycosides, however, showed surprisingly only a slight difference in their glycosylation shifts upon combination of the chiralities of the asymetric C-1 (D-glucosyl) and C-1" or C-2" (aglycon), contrary to the β -D-glucosides of asymetric, hindered secondary alcohols^{34-39,43,45}. Therefore, a significant change in the bond angle ζ (C-1-O-1, aglycon C-1") but also in the torsion angle φ (1) could occur in these compounds, in which the important steric hindrance could override the exoanomeric effect. On the contrary, this effect could cause, in the β -D-glycosides of the primary alcohols, an important energy bias in favor of conformations having a φ (1) torsion angle constant ($\sim +65^{\circ}$) (as suggested for β -D-glycosides of secondary alcohols⁴⁵), but having the long isoprenoïd chain in a geometry approximatively anti to the glycosyl residue about the O-1-C-1" bond [as suggested for the β -(1 \rightarrow 6) linkage of two D-glycose units⁴⁶]. It is interesting to note the similarity between these glycosylation shifts and the acetylation shifts observed on acetylation of the monoterpenols^{30,31}, which shows also the difference observed between the derivatives of primary and tertiary monoterpenols (Table IV).

EXPERIMENTAL

General methods. — Melting points were recorded with a Büchi SMP-20 apparatus and optical rotations were measured with a Perkin–Elmer 241 polarimeter at 20 \pm 1°. N.m.r. spectra were recorded with a Bruker 360 MHz spectrometer (360 MHz for ¹H-n.m.r. and 50.323 MHz or 20.115 MHz for ¹³C-n.m.r. spectra). Column chromatography was performed on Silica Gel 60 (63–200 μ m or 40–63 μ m Merck) and t.l.c. on Kieselgel 60 (Merck) with detection by charring with 10% H₂SO₄ in ethanol. The following solvent systems were used: (A) 4:1 petroleum ether–diethyl ether, (B) 1:1 petroleum ether–diethyl ether, (C) 3:7 petroleum ether–diethyl ether, (D) 4:1 dichloromethane–diethyl ether, (E) 3:2 dichloromethane–diethyl ether, (F) 1:1 petroleum ether–ethyl acetate, (G) petroleum ether–ethyl acetate gradient, (H) 4:1 petroleum ether–acetone, (I) 7:3 petroleum ether–acetone, (J) 4:1 chloroform–methanol, and (K) 13:6:2 ethyl acetate–2-propanol–water. Solutions were concentrated in vacuo at 40°. Dichloromethane was dried with CaCl₂ and distilled from CaCl₂, then from CaH₂. Benzene was distilled from CaH₂. Boron trifluoride etherate was distilled before each glycosylation. K₂CO₃ was dried in vacuo during 3 h.

Neryl 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl-6-O-deoxy- α -L-mannopyranosyl)- β -D-glucopyranoside [neryl 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl)- β -D-glucopyranoside (12). — (a) From α -rutinosyl bromide ⁴(4). Compound 12 was obtained from 4 (1 mmol) and nerol (5.8 mmol) according to Baumes et al. ¹² in a 20% yield.

(b) From β -rutinose heptaacetate (1). A solution of 1 (Sarynthèse; 3.75 mmol) in cold (0°) oxolan (80 mL) was treated with a solution of ammonia in methanol (25 mL; prepared by bubbling NH₃ through methanol at 0° for 10 min). The mixture was stirred at 0° until the starting material disappeared. The solution was concentrated and the crude residue was subjected to column chromatography (63–200 μ m, E) to give 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl)- α - (5) and - β -D-glucopyranose (6), syrup (3.56 mmol, 95%; ratio 5 to 6 in CDCl₃, 4:1); R_r 0.46 (E).

To a solution of 5 and 6 (3.08 mmol) in anhydrous dichloromethane (10 mL) were added trichloroacetonitrile (1.7 mL, 16.9 mmol) and anhydrous K₂CO₂ (1.7 g, 17 mmol). The mixture was stirred for 48 h at room temperature, and then diluted with dichloromethane (10 mL) and washed with cold water (2 \times 25 mL). The organic layer was dried (Na₂SO₄) and concentrated. Column chromatography (63–200 μ m, C) of the crude residue gave, after crystallization from diethyl ether, 2,3,4-tri-O-acetyl-6-O-(2,3, 4-tri-O-acetyl-α-L-rhamnopyranosyl)-α-D-glucopyranosyl trichloroacetimidate (9; 2.21 mmol, 72%), m.p. 167–168°, R_F 0.4 (D); ¹H-n.m.r. (CDCl₃): δ 1.18 (d, 3 H, J_{SK} 6.2 Hz, H-6'), 1.94-2.11 (6 s, 18 H, 6 AcO), 3.58 (dd, 1 H, $J_{5,6a}$ 5.7, $J_{6a,6b}$ 11.8 Hz, H-6a), 3.71 (dd, 1 H, $J_{5.6b}$ 2.3 Hz, H-6b), 3.82 (m, 1 H, $J_{4.5}$ 9.7 Hz, H-5'), 4.17 (m, 1 H, $J_{4.5}$ 10.3 Hz, H-5), 4.75 (s, 1 H, $J_{1'.2'}$ < 1Hz, H-1'), 5.01 (dd, 1 H, $J_{3'.4'}$ 10.5 Hz, H-4'), 5.07 (dd, 1 H, $J_{1.2}$ 3.7, $J_{2.3}$ 9.8 Hz, H-2), 5.09 (dd, 1 H, J_{34} 9.7 Hz, H-4), 5.19 (d, 1 H, J_{23} 3.5 Hz, H-2'), 5.20 (dd, 1 H, H-3'), 5.55 (dd, 1 H, H-3), 6.49 (d, 1 H, H-1), and 8.74 (s, 1 H, NH); 13 C-n.m.r. (CDCl₁): δ 17.4 (C-6'), 20.4–20.9 (CH₃CO), 65.9 (C-6), 66.7 (C-5'), 68.6, 68.9 (C-4,3'), 69.6 (C-2'), 69.9, 70.0 (C-2,3), 71.1 (C-4'), 71.5 (C-5), 90.8 (CCl₃), 92.7 (C-1), 98.0 (C-1'), 160.6 (CNH), and 169.5-170.0 (CH₂CO).

A solution of **9** (0.6 g, 0.84 mmol) in anhydrous benzene (5 mL) was lyophilized in a 25-mL flask, and the residue dissolved in anhydrous dichloromethane (3 mL). Nerol (520 mg, 3.3 mmol) was added to the solution and the flask was sealed with a screw-cap septum and a Teflon disk. The mixture was stirred at 0°, and a 0.5M solution of boron trifluoride etherate (0.08 mmol) in dichloromethane (75 μ L) wad added with a syringe through the septum during 20 min. The mixture was stirred for 2 h at room temperature, and then K_2CO_3 (50 mg, 0.36 mmol) and dichloromethane (10 mL) were added. The mixture was successively washed with water (25 mL), aqueous NaHCO₃ (25 mL), and water (25 mL). The organic layer was dried (Na₂SO₄) and concentrated. The crude residue was subjected to column chromatography (63–200 μ m) with solvent A to elute the excess of nerol and solvent D to give 12 (357 mg, 0.50 mmol; 60%), syrup, [α]_D²⁰ – 3.6° (c 0.47, chloroform), $R_{\rm p}$ 0.53 (D).

Anal. Calc. for C₃₄H₅₀O₁₆: C, 57.13; H, 7.05. Found: C, 56.90; H, 6.87.

Neryl 6-O- α -L-rhamnopyranosyl- β -D-glucopyranoside (26). — Sodium methoxide (25 mg, 0.46 mmol) was added at room temperature to a solution of 12 (0.3 mmol) in

methanol (2 mL). The mixture was stirred and monitored by analytical t.l.c. (J) until disappearance of 12. The base was neutralized with Amberlite IR (+H) cation-exchange resin. Filtration and concentration gave 26 (97%), syrup, $[\alpha]_D^{20} - 3.8^\circ$ (c 0.27, methanol), R_c 0.53 (K).

Anal. Calc. for C₂₂H₃₈O₁₀: C, 57.13; H, 8.28. Found: C, 56.82; H, 7.89.

(R,S)-Linalyl 6-O- α -L-rhamnopyranosyl- β -D-glucopyranoside (27). — (R,S)-Linalyl 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl)- β -D-glucopyranoside (13) was prepared from trichloroacetimidate 9 (0.73 mmol) and (\pm)-linalool (7.3 mmol) according to the procedure described for the preparation of 12, except for the amount of boron trifluoride etherate (140 μ L of a 0.1 μ solution in anhydrous dichloromethane) added to the mixture. Column chromatography (43–60 μ m) with solvent A eluted the excess of linalool and solvent A gave 13 (48%) as an oily residue, $[\alpha]_{\rm D}^{20}$ – 4.2° (C 0.41, chloroform), C 0.48 (C 0.50 Sodium methoxide treatment of 13, as just described for the preparation of 26, gave 27 (96%), syrup, $[\alpha]_{\rm D}^{20}$ – 3.5° (C 0.29, methanol), C 0.47 (C 0.50 Sodium methoxide treatment of 15 so 1

Anal. Calc. for C₂₂H₃₈O₁₀: C, 57.13; H, 8.28. Found: C, 56.75; H, 8.85.

(R,S)- α -Terpinyl 6-O-(α -L-rhamnopyranosyl)- β -D-glycopyranoside (28). — The hexacetate 14 was prepared from the trichloroacetimidate 9 and (\pm)- α -terpinol as described for the preparation of 13 in 52% yield, oil, $[\alpha]_{\rm p}^{20} - 5.8^{\circ}$ (c 0.37, chloroform), $R_{\rm p}$ 0.53 (D). Sodium methoxide treatment of 14 gave 28 (96%), syrup, $[\alpha]_{\rm p}^{20} - 3.8^{\circ}$ (c 0.42, methanol), $R_{\rm p}$ 0.45 (K).

Anal. Calc. for C₂₂H₃₈O₁₀: C, 57.13; H, 8.28. Found: C, 56.82; H, 8.64.

Benzyl 6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (29). — Treatment of the trichloroacetimidate 9 with benzyl alcohol, as described for the preparation of 12, gave benzyl 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-β-D-glucopyranoside (15) in 71% yield, white powder, $[\alpha]_D^{20} - 6.8^\circ$ (c 0.76, chloroform), R_F 0.33 (F). Preparation of 15 from 2,3,4,2',3',4'-hexa-O-acetyl-α-rutinosyl bromide (4) and benzyl alcohol according to Baumes et al. 2 gave a 22% yield. Sodium methoxide treatment of 15 afforded 29 (98%), white powder, $[\alpha]_D^{20} - 6.5^\circ$ (c 0.34, methanol), R_F 0.46 (K).

Anal. Calc. for C₁₉H₂₈O₁₀: C, 54.80; H, 6.78. Found: C, 55.12; H, 6.82.

2-Phenylethyl 6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (30). — Treatment of the trichloroacetimidate 9 with 2-phenylethanol, as described for the preparation of 12, gave 2-phenylethyl 2,3,4-tri-O-acetyl-6-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-β-D-glucopyranoside (16) in 68% yield, white powder, $[\alpha]_{\rm p}^{20}$ – 5.2° (c 0.41, chloroform), $R_{\rm F}$ 0.32 (F). Preparation of 16 from 4 and 2-phenylethanol according to Baumes et al. ¹² gave a 19% yield. Sodium methoxide treatment of 16 afforded 30 (98%), white powder, $[\alpha]_{\rm p}^{20}$ – 4.5° (c 0.33, methanol), $R_{\rm F}$ 0.45 (K).

Anal. Calc. for C₂₀H₃₀O₁₀: C,55.81; H, 7.03. Found; C, 55.82; H, 7.26.

Geranyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranoside (18). — 2,3,4-Tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)- α ,β-D-glucopyranose (7,8) was prepared from 1,2,3,4-tetra-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranose (2; 1.98 mmol) as described for the preparation of 5 and 6. The crude residue obtained was subjected to column chromatography (63–200 μm; solvent D) to give 7 and 8 as a syrup (932 mg, 1.65 mmol,

83%; (832 mg, 1.47 mmol) ratio 7 to 8 in CDCl₃, 3:1), R_F 0.3 (*F*). Treatment of the mixture, as described for the preparation of 9, gave crude 2,3,4-tri-*O*-acetyl-6-*O*-(2,3,5-tri-*O*-acetyl-α-L-arabinofuranosyl)-α-D-glucopyranosyl trichloracetimidate (10) Column chromatography (63–200 μm, solvent *D*) gave 10 as a yellow oil (1 g, 1.41 mmol, 96%), R_F 0.4 (*D*); ¹H-n.m.r.: δ 2.00–2.15 (6 s, 18 H, 6 AcO), 3.62 (dd, 1 H, $J_{5,6a}$, 4.5, $J_{6a,6b}$ 11.7 Hz, H-6a), 3.81 (dd, 1 H, $J_{5,6b}$ 2.1 Hz, H-6b), 4.16–4.36 (m, 3 H, H-5,4',5'a), 4.40 (dd, 1 H, $J_{4,5'b}$ 2.9, $J_{5a,5'b}$ 11.3 Hz, H-5'b), 4.83–5.31 (m, 4 H, H-2,4,2',3'), 5.07 (s, 1 H, $J_{1',2'}$ <1 Hz, H-1'), 5.56 (dd, 1 H, $J_{2,3}$ 9.9, $J_{3,4}$ 9.9 Hz, H-3), 6.56 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), and 8.70 (s, 1 H, NH); ¹³C-n.m.r., δ 20.4–20.7 (*C*H₃CO), 63.4 (C-5'), 65.7 (C-6), 68.5 (C-4), 70.0, 70.2 (C-2, C-3), 71.5 (C-5), 77.2 (C-3'), 80.7 (C-4'), 81.3 (C-2'), 91.6 (CCl₃), 93.3 (C-1), 106.2 (C-1'), 161.1 (CNH), and 169.3–170.7 (CH₃CO).

Condensation of the trichloroacetimidate 10 with geraniol, as described for the preparation of 12, gave after column chromatography (solvent *B* and then *F*) 18 (61%) as an oily residue, $[\alpha]_p^{20} - 3.1^\circ$ (c 1.2, chloroform), R_s 0.49 (D).

Anal. Calc. for C₃₃H₄₈O₁₆: C, 56.56; H, 6.90. Found: C, 56.25; H, 7.38.

Geranyl 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside (32). — This compound was prepared from 18 as described for the preparation of 26 (97%), syrup, $[\alpha]_D^{20} - 7.9^\circ$ (c 0.71, methanol), R_s 0.44 (K).

Anal. Calc. for C₂₁H₃₆O₁₀: C, 56.24; H, 8.09. Found: C, 56.42; H, 8.51.

Neryl 6-O- α -L-arabinofuranosyl- β -D-glucopyranoside (33). — Neryl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl- α -L-arabinofuranosyl)- β -D-glucopyranoside (19) was prepared from trichloroacetimidate 10 and nerol as described for the preparation of 18. Column chromatography (solvent B and then F) gave 19 (55%) as an oily residue, $[\alpha]_{D}^{20}$ — 2.9° (c 1.1, chloroform), R_{F} 0.28 (F). Sodium methoxide treatment gave 33 (96%), syrup, $[\alpha]_{D}^{20}$ — 7.1° (c 0.31, methanol), R_{F} 0.45 (K).

Anal. Calc. for C₂₁H₃₆O₁₀: C, 56.24; H, 8.09. Found: C, 56.53; H, 8.46.

(R,S)-Linalyl 6-O- α -L-arabinofuranosyl- β -D-glucopyranoside (34). — (R,S)-Linalyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl- α -L-arabinofuranosyl)- β -D-glucopyranoside (20) was prepared from trichloroacetimidate 10 and (\pm)-linalool as described for the preparation of 13. Column chromatography (40–63 μ m, solvent H) gave 20 (65%) as an oily residue, $[\alpha]_{D}^{20} - 4.3^{\circ}$ (c 1.0, chloroform), R_{F} 0.37 (F). Sodium methoxide treatment of 20 gave 34 (96%), syrup, $[\alpha]_{D}^{20} - 4.9^{\circ}$ (c 0.35, methanol), R_{F} 0.47 (K).

Anal. Calc. for C₂₁H₃₆O₁₀; C, 56.24; H, 8.09. Found: C, 56.60; H, 8.51.

(R,S)-α-Terpinyl 6-O-(α-L-arabinofuranosyl-β-D-glucopyranoside (35). — (R,S)-α-Terpinyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranoside (21) was prepared from trichloroacetimidate 10 and (\pm)-α-terpineol as described for the preparation of 20. Column chromatography (63–200 μm; solvent G) gave 21 (48%) as an oily residue, [α]_D²⁰ – 4.1° (c 1.2, chloroform), R_F 0.29 (F). Sodium methoxide treatment of 21 gave 35 (96%), syrup, [α]_D²⁰ – 5.5° (c 0.29, methanol), R_F 0.44 (K).

Anal. Calc. for C₂₁H₃₆O₁₀: C, 56.24; H, 8.09. Found: C, 55.98; H, 7.91.

Benzyl 6-O-α-L-arabinofuranosyl- β -D-glucopyranoside (36). — Benzyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl- α -L-arabinofuranosyl)- β -D-glucopyranoside (22) was

prepared from trichloroacetimidate 10 and benzyl alcohol as described for the preparation of 18. Column chromatography (63–200 μ m, solvent A and then I) gave, after cristallization from diethyl ether, 22 (83%), m.p. 113–114°, $[\alpha]_{\rm b}^{20}$ –6.6° (c 1.2, chloroform), $R_{\rm F}$ 0.24 (F). Sodium methoxide treatment of 22 gave 36 (98%), white powder, $[\alpha]_{\rm b}^{20}$ –9.8° (c 0.58, methanol), $R_{\rm F}$ 0.48 (K).

Anal. Calc. for C₁₈H₂₆O₁₀: C, 53.73; H, 6.51. Found: C, 54.04; H, 6.86.

2-Phenylethyl 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside (37). — 2-Phenylethyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranoside (23) was prepared from trichloroacetimidate 10 and 2-phenylethanol as described for the preparation of 18. Crystallization from diethyl ether gave 23 (76%), m.p. $102-103^{\circ}$, [α]_D²⁰ -4.5° (c 1.2, chloroform), R_F 0.27 (F). Sodium methoxide treatment of 23 gave 37 (98%), white powder, [α]_D²⁰ -7.6° (c 0.29, methanol), R_F 0.43 (K).

Anal. Calc. for C₁₉H₂₈O₁₀: C, 54.80; H, 6.78. Found: C,54.53; H, 6.66.

4-Nitrophenyl 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside (38). —(a). 4-Nitrophenyl 2,3,4-tri-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranoside (24) was prepared from trichloroacetimidate 10 and 4-nitrophenol as described for the preparation of 18. Crystallisation from methanol—diethyl ether gave 24 (68%), m.p. $176-177^{\circ}$, $[\alpha]_{D}^{120} - 8^{\circ}$ (c 0.58, chloroform), $R_{\rm F}$ 0.24 (F).

(b). Chlorotriphenylmethane (5.4 mmol) was added portionwise with stirring to a solution of 4-nitrophenyl β -D-glucopyranoside (4.7 mmol, Sigma) in pyridine (10 mL). The mixture was kept for 24 h at 40°, and then treated with acetic anhydride (6 mL), kept for 48 h at room temperature, and then treated with water (500 mL) for 2 h. Dichloromethane (100 mL) was added and the mixture filtered. The organic layer was washed with water, aqueous HCl, aqueous NaHCO₃, water, and concentrated. Column chromatography of the crude residue (63–200 μ m, solvent C) gave 4-nitrophenyl 2,3,4-tri-O-acetyl-6-O-trityl- β -D-glucopyranoside (44; 3.9 mmol, 83%), syrup, R_F 0.33 (C); ¹³C-n.m.r. (CDCl₃): δ 20.4, 20.6 (CH₃CO), 62.4 (C-6), 68.8 (C-4), 71.5 (C-2), 73.0 (C-3), 74.5 (C-5), 87.4 (CPh₃), 98.6 (C-1), 117.1, 125.9, 143.7, 161.7 (4-NO₂C₆H₄), 127.4, 128.1, 128.5, 128.9 [C(C_6 H₅)₃], 169.2, 169.4, and 170.3 (CH₃CO).

The crude residue obtained from 3,5-di-O-acetyl-1,2-O-[(1-exo- and 1-endo-cyano)ethylidene]- β -L-arabinofuranoses¹⁶ (0.5 mmol) and 4-nitrophenyl 2,3,4-tri-O-acetyl-6-O-trityl- β -D-glucopyranoside (44; 0.55 mmol) according to the procedure described by Backinowsky et al. for the synthesis of 2, was subjected to column chromatography (63–200 μ m, solvent F) to give 24 (12%) and 4-nitrophenyl 2,3,6-tri-O-acetyl-4-O-(2,3,5-tri-O-acetyl- α -L-arabinofuranosyl)- β -D-glucopyranoside (39; 10%), syrup, [α] $_{D}^{D}$ – 64° (c 1.0, chloroform), R_{F} 0.28 (F); H-n.m.r. (CDCl₃): δ 2.05–2.14 (6 s, 18 H, 6 AcO), 3.85 (m, 1 H, $J_{4,5}$ 9.0, $J_{5,6a}$ 4.4, $J_{5,6b}$ 1.6 Hz, H-5), 3.89 (dd, 1 H, $J_{3,4}$ 9.0 Hz, H-4), 4.16 (dd, $J_{4',5'a}$ 5.7, $J_{5'a,5'b}$ 11.0 Hz, H-5'a), 4.20 (m, $J_{3,4'}$ 4.8, $J_{4',5'b}$ 2.6 Hz, H-4'), 4.31 (dd, $J_{6a,6b}$ 12.3 Hz, H-6a), 4.38 (dd, $J_{4',5'b}$ 2.5 Hz, H-5'b), 4.51 (dd, H-6b), 4.99 (m, 2 H, H-2',3'), 5.04 (s, 1 H, $J_{1',2'}$ < 1 Hz, H-1'), 5.19 (d, $J_{1,2}$ 6 Hz, H-1), 5.30 (m, 2 H, H-2,3), 7.07 (m, 2 H, arom.), and 8.21 (m, 2 H, arom.); 13 C-n.m.r.: δ 20.6, 20.7, 20.9 (CH₃CO), 62.2 (C-6), 63.2 (C-5'),71.7 (C-2), 73.3, 73.6 (C-3,5), 76.4, 76.6 (C-3',4), 81.5 (C-4'), 81.9 (C-2'), 98.3 (C-1), 107.8 (C-1'), 116.9, 125.9, 143.6, 161.5 (arom.), and 169.5, 170.0, 170.3, 170.4, 170.6 (CH₃CO).

Sodium methoxide treatment of 24 gave 38 (97%), yellow powder, $\left[\alpha\right]_{D}^{20}-12^{\circ}$ (c 0.45, methanol), $R_{\rm s}$ 0.7 (J).

Anal. Calc. for C₁₇H₂₃NO₁₂: C, 47.12; H, 5.35; N, 3.23. Found: C, 47.43; H, 5.10; N, 3.07.

O-Deacetylation of 1,2,3,4-tetra-O-acetyl-6-O-(2,3,5-tri-O-acetyl-α-L-arabinofuranosyl)-β-D-glucopyranose (2). — Compound was deacetylated as described for the preparation of 26 to give 6-O-(α-L-arabinofuranosyl)-α,β-D-glucopyranose (42 and 43; 98%), yellow powder, $[\alpha]_{D}^{20}$ – 4.4° (c 0.57, methanol), R_{F} 0.33 (methanol); 1 H-n.m.r. (D₂O): δ 2.88 (dd, 1 H, $J_{1,2}$ 7.7, $J_{2,3}$ 8.6 Hz, H-2 β), 2.97 (m, 2 H, $J_{3,4} \sim J_{4,5} \sim$ 8.8 Hz, H-4 α ,4 β), 3.10 (dd, 1 H, $J_{1,2}$ 3.6, $J_{2,3}$ 9.3 Hz, H-2 α), 3.11 (dd, 1 H, $J_{2,3} \sim J_{3,4} \sim$ 9.0 Hz, H-3 β), 4.26 (d, 1 H, H-1 β), 4.71 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1' α), 4.72 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1' β), 4.87 (d, 1 H, H-1 α), and other signals between 3.22–3.87; 13 C-n.m.r.: δ 62.0 (C-5' α ,5' β), 67.8 (C-6 α ,6 β), 70.6 (C-4 α ,4 β), 71.2 (C-5 α), 72.3 (C-2 α), 73.5 (C-3 α), 74.9 (C-2 β), 75.5 (C-3 β), 76.5 (C-5 β), 77.3 (C-3' α ,3' β), 81.7, 81.8 (C-2' α ,2' β), 84.4, 84.6 (C-4' α ,4' β), 92.9 (C-1 α), 96.8 (C-1 β), and 108.9 (C-1' α ,1' β).

REFERENCES

- 1 R. Cordonnier and C. Bayonove, C.R. Hebd. Seances Acad. Sci. Paris, Ser. D, 278 (1975) 3387-3392.
- 2 C. R. Straus, B. Wilson, P. R. Gooley, and P. J. Williams, ACS Symp. Ser., 317 (1986) 222-242, and references cited herein.
- 3 Y. Z. Gunata, Thèse de Docteur-Ingénieur, Université des Sciences et Techniques du Languedoc, Montpellier. 1984.
- 4 P. J. Williams, C. R. Strauss, B. Wilson, and R. A. Massy-Westropp, *Phytochemistry*, 21 (1982) 2013-2020.
- 5 P. J. Williams, C. R. Strauss, B. Wilson, and R. A. Massy-Westropp, *Phytochemistry*, 22 (1983) 2039–2041.
- 6 C. R. Strauss, Thesis, University of Adelaide, South Australia, 1983.
- 7 B. Wilson, C. R. Strauss, and P. J. Williams, J. Agric. Food Chem., 32 (1984) 919-924.
- 8 B. Wilson, C. R. Strauss, and P. J. Williams, Am. J. Enol. Vitic., 37 (1986) 107-111.
- 9 C. R. Strauss, P. R. Gooley, B. Wilson, and P. J. Williams, J. Agric. Food. Chem., 35 (1987) 519-524.
- 10 C. R. Strauss, B. Wilson, and P. J. Williams, J. Agric. Food Chem., 36 (1988) 569-573.
- 11 Y. Z. Gunata, S. Bitteur, R. Baumes, J. M. Brillouet, C. Tapiero, C. Bayonove, and R. Cordonnier, Fr. Pat. pending (1988).
- 12 R. L. Baumes, C. L. Bayonove, R. E. Cordonnier, Y. Z. Gunata, R. Wylde and A. Heitz, Carbohydr. Res., 189 (1989) 331-340.
- 13 R. Bourbouze, Thèse de Doctorat d'État, Université René Descartes de Paris, 1974.
- 14 F. Pierrisnard, Diplôme d'Études Approfondies en Sciences Alimentaires, Université des Sciences et Techniques du Languedoc, Montpellier, 1986.
- 15 M. K. Shakhova, G. I. Samokhvalov, and N. A. Preobrazhenskii, Zh. Obshch. Khim., 32 (1962) 390-396.
- 16 L. V. Backinowsky, S. A. Nepogod'ev, A. S. Shashkov, and N. K. Kochetkov, Carbohydr. Res., 138 (1985) 41-54.
- 17 R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 25 (1986) 212-235; and references cited herein.
- 18 J. Michel, Dissertation, Universität Konstanz, 1983.
- 19 J. Fiandor, M. T. Carcia-Lopez, F. G. de Las Heras, and P. P. Mendez-Castillon, Synthesis, (1985) 1121-1123.
- 20 P. Kováč and C. P. J. Glaudemans, Carbohydr. Res., 140 (1985) 313-318.
- 21 L. V. Backinowsky, N. F. Balan, A. S. Shashkov, and N. K. Kochetkov, Carbohydr. Res., 84 (1980)
- 22 A. M. Nguyen Phuoc Du, Thèse de Doctorat de Spécialité, Université des Sciences et Techniques du Languedoc, Montpellier, 1986.

23 C. Lafitte, A. M. Nguyen Phuoc Du, F. Winternitz, R. Wylde, and F. Pratviel-Sosa, Carbohydr. Res., 67 (1978) 91-103.

- 24 L. Huiying, L. Shouzhen, T. McCabe, and J. Clardy, Planta Medica, (1984) 501-504.
- 25 D. Y. Gagnaire, F. R. Taravel, and M. R. Vignon, Carbohydr. Res., 51 (1976) 157-168.
- 26 K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293–299.
- 27 B. L. Kam, J. L. Barascut, and J. L. Imbach, Carbohydr. Res., 69 (1979) 135-142.
- 28 P. A. J. Gorin and M. Mazurek, Can. J. Chem., 53 (1975) 1212-1223.
- 29 F. Bohlmann and M. Grenz, Phytochemistry, 16 (1977) 1057-1059.
- 30 F. Bohlmann, R. Zeisberg, and E. Klein, Org. Magn. Reson., 7 (1975) 426-432.
- 31 A. A. Swigar and R. M. Silverstein, Monoterpenes, Aldrich Chem. Co., Inc., Milwaukee, Wisconsin, 1981.
- 32 O. M'Bairaroua, C. Tapiero, Voirin S., R. Baumes, and C. Bayonove, unpublished results.
- 33 C. T. Bishop and F. P. Cooper, Can. J. Chem., 41 (1963) 2743-2758.
- 34 R. Kasai, M. Okihara, J. I. Asakawa, K. Mitzutani, and O. Tanaka, Tetrahedron, 35 (1979) 1427-1432.
- 35 K. Mizutani, R. Kasai, and O. Tanaka, Carbohydr. Res., 87 (1980) 19-26.
- 36 R. Kasai, M. Suzuo, J. I. Asakawa and O. Tanaka, Tetrahedron Lett., (1977) 175-178.
- 37 K. Tori, S. Seo, Y. Yoshimura, H. Arita, and Y. Tomita, Tetrahedron Lett., (1977) 179-182.
- 38 H. Kizu, M. Koshijima, M. Hayashi, and T. Tomimori, Chem. Pharm. Bull., 33 (1985) 1400-1406.
- 39 H. Kizu, M. Koshijima, and T. Tomimori, Chem. Pharm. Bull., 33 (1985) 3176-3181.
- 40 E. Breitmaier, W. Voelter, G. Jung, and C. Tänzer, Chem. Ber., 104 (1971) 1147-1154.
- 41 K. Tori, T. Hirata, O. Koshitani, and T. Suga, Tetrahedron Lett., (1976) 1311-1314.
- 42 S. Nishibe, H. Tsukamoto, and S. Hisada, Chem. Pharm. Bull., 32 (1984) 4653-4657.
- 43 S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Chem. Soc., 100 (1978) 3331-3339.
- 44 IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), Eur. J. Biochem., 131 (1983) 5-7
- 45 R. U. Lemieux and S. Koto, Tetrahedron, 30 (1974) 1933-1944.
- 46 D. A. Rees and W. E. Schott, J. Chem. Soc., B, (1971) 469-479.