A Quick and Clean Procedure for Synthesis of α -Aminophosphonates in Aqueous Media

Ebrahim Mollashahi, Hamideh Gholami, Mehrnoosh Kangani, Mojtaba Lashkari, and Malek Taher Maghsoodlou

Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran

Received 11 April 2014; revised 11 January 2015; accepted 29 January 2015

ABSTRACT: A green and efficient procedure for the synthesis of α -aminophosphonates has been developed in water as a green and nonhazardous solvent, from condensation between aromatic aldehydes, aniline, and triphenyl phosphite at 80°C. This methodology has a number of advantages including clean reaction conditions, easy work-up, and environmentally friendly. © 2015 Wiley Periodicals, Inc. Heteroatom Chem. 0:1–6, 2015; View this article online at wiley-onlinelibrary.com. DOI 10.1002/hc.21263

INTRODUCTION

 α -Aminophosphonates have received much attention due to their biological activity. Their uses as enzyme inhibitors, antibiotics, peptide mimics, herbicides, pharmacological agents, and many other applications are well documented [1–5]. The traditional Lewis acid–catalyzed addition of diethyl phosphite to aldimines has provided a useful method for the preparation of α -aminophosphonates [6–8]. However, these reactions cannot proceed smoothly by a one-pot method from aldehydes, amines, and diethyl phosphite since the water generated during the reactions can deactivate or decompose the catalysts [9]. Some new type of Lewis acids, such as metal triflates [10], scandium tris(dodecyl sulfate) [11], lithium perchlorate [12], zirconium compounds [13, 14], Bønsted acids [15], lantanide triflate [16], samarium diiodide [17], InCl₃ [18] TaCl₅–SiO₂ [19], bromodimethylsulfonium bromide [20], montmorillonite KSF [21], alumina-supported reagents as catalysts [22], amberlite-IR 120 [23], H₃PW₁₂O₄₀ [24], oxalic acid [25], and TiO₂ [26], were reported to be effective catalysts for this one-pot reaction. However, some of these procedures suffered from drawbacks such as the use of organic solvents, long reaction times, difficulties in work-up procedures, and relatively low yields and generally only dialkyl or trialkyl phosphites were used as phosphorus reagents. According to the wide range of biological properties of α -aminophosphonates, it is still necessarv to develop a new simple, efficient, and general method, for this three-component reaction.

Recently, several procedures have been reported for the synthesis of α -aminophosphonates under solvent and catalyst free conditions with excellent yield, or using easily available catalysts; moreover, these procedures seems to be extremely simple [27–33]. In continuation with our investigation on the synthesis of α -aminophosphonates [34–42], herein we report a green and mild protocol for the synthesis of α -aminophosphonates in aqueous media without a catalyst (Scheme 1).

RESULTS AND DISCUSSION

We have performed a set of preliminary experiments in the three-component reaction of benzaldehyde, aniline, and triphenyl phosphite in different solvents at different temperatures (25, 30, 40, 50, 60, 70, 80, 90°C) in the mixture of solvent. As shown in Table 1,

Correspondence to: Malek Taher Maghsoodlou; e-mail: mt_maghsoodlou@chem.usb.ac.ir, mt_maghsoodlou@yahoo.com.

Contract grant sponsor: Research Council of the University of Sistan and Baluchestan.

^{© 2015} Wiley Periodicals, Inc.

SCHEME 1 Synthesis of α -aminophosphonates in aqueous media at 80°C.

TABLE 1 Optimization Reaction Conditions	for the	Synthesis of	f α-Aminop	hosphonates
--	---------	--------------	------------	-------------

Ph H +	NH ₂	OPh + PhO ^P OPh —	PhO PhO-P-O Ph Ph H	
1	2	3	4a	

Entry	Solvent	Temperature (°C)	Time (h)	Isolated Yield (%)
1	_	25	72	_
2	Acetonitrile	80	7	78
3	Ethanol	80	10	54
4	Ethanol : $H_2O(1:1)$	80	16	40
5	Ethanol : $H_2O(1:2)$	80	16	56
6	H ₂ O	25	72	_
7	H ₂ O	30	72	14
8	H ₂ O	40	40	30
9	H ₂ O	50	22	68
10	H ₂ O	60	16	73
11	H ₂ O	70	8	85
12	H₂O	80	3	90
13	H ₂ O	90	3	91
14	Dichloromethane	40	8	65
15	Ethyl acetate	80	8	62

the best solvent is water and the best temperature is 80°C.

Using this optimized condition, we prepared a wide variety of α -aminophosphonates using arylaldehydes, aniline, and triphenyl phosphite (Table 2).

Interestingly, a variety of aryl aldehydes including electron-withdrawing or -releasing substituents (ortho-, meta-, and para-substituted) participated well in this reaction and gave the product in good to excellent yield.

A plausible mechanism is shown in Scheme 2. It is believed to involve the formation of activated imine **A** by condensation of the aldehyde and amine [43–46]. Then phosphite is added to the C=N bond of imine **A** to give the phosphonium intermediate **B**. This phosphonium intermediate undergoes a reaction with water to give the α -aminophosphonate **4**.

CONCLUSION

 α -Aminophosphonates derivatives have been prepared via the one-pot three component reaction from aromatic aldehydes, aniline, and triphenyl phosphite in water at 80°C. This method has many advantages such as clean reaction conditions, easy work-up, and the absence of hazardous catalyst.

EXPERIMENTAL

Melting points and IR spectra were measured on an Electrothermal 9100 apparatus (UK) and a Shimadzu IR-460 spectrometer (Japan), respectively. ¹H, ¹³C, and ³¹P NMR spectra were measured on a Bruker DRX-400 Avance spectrometer (Germany) with CDCl₃ as a solvent. All reagents were purchased from Merck (Darmstadt, Germany) and Fluka (Buchs, Switzerland) and used without any purification.

General Procedure for the Synthesis of α -Aminophosphonates **4a–1**

A mixture of arylaldehydes 1 (1.0 mmol), aniline 2 (1.0 mmol), and triphenyl phosphite 3 (1.0 mmol) in H_2O (1 mL) was stirred at 80°C for the appropriate time (Table 2). After completion of the reaction (as indicated by TLC), the solution was filtered and

SCHEME 2 Plausible mechanism for the synthesis of α -aminophosphonates derivatives.

the solid phase (product) was washed with water to afford pure α -aminophosphonates. Spectral data for the selected compounds are presented below.

Diphenyl Phenyl(phenylamino)methylphosphonate **4a**. ¹H NMR (400 MHz; CDCl₃): δ 4.82 (1H, br, NH), 5.21 (1H, d, ²J_{HP} = 24.7 Hz, CHP), 6.69–7.62 (20H, m, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 56.0 (d, ¹J_{CP} = 154.7 Hz, CHP), 114.0 (s, 2C_{ortho}, NHPh), 118.8 (s, C_{para}, NHPh), 120.2 (d, ³J_{CP} = 4.5 Hz, 2C_{ortho}, OPh), 120.6 (d, ³J_{CP} = 4.5 Hz, 2C_{ortho}, OPh), 125.1 (s, C_{para}, OPh), 125.3 (s, C_{para}, OPh), 128.1 (d, ³J_{CP} = 5.8 Hz, 2C_{ortho}, C_{Ar}), 128.3 (s, C_{para}, C_{Ar}), 128.7 (d, ⁴J_{CP} = 2.6 Hz, 2C_{meta}, C_{Ar}), 129.2 (s, 2C_{meta}, NHPh), 129.5 (s, 2C_{meta}, OPh), 129.6 (s, 2C_{meta}, OPh), 134.7 (s, C₁, C_{Ar}), 145.8 (d, ³J_{CP} = 15.1 Hz, C_{ipso}, NHPh), 150.1 (d, ²J_{CP} = 9.2 Hz, C_{ipso}, OPh), 150.3 (d, ²J_{CP} = 9.2 Hz, C_{ipso}, OPh).

Diphenyl(2-nitrophenyl)(phenylamino)

methylphosphonate **4b.** ¹H NMR (400 MHz; CDCl₃): δ 4.59 (1H, br, NH), 6.62 (1H, d, ²J_{HP} = 27.0 Hz, CHP), 6.70–8.10 (19H, m, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 55.5 (d, ¹J_{CP} = 154.2 Hz, CHP), 113.8 (s, 2C_{ortho}, NHPh), 119.3 (s, C_{para}, NHPh), 119.9 (d, ³J_{CP} = 4.1 Hz, 2C_{ortho}, OPh), 120.6 (d, ³J_{CP} = 4.1 Hz, 2C_{ortho}, OPh), 120.6 (d, ³J_{CP} = 4.1 Hz, 2C_{ortho}, OPh), 125.4 (s, C_{para}, OPh), 125.7 (s, C_{para}, OPh), 125.5 (d, ⁴J_{CP} = 2.1 Hz, C₃, C_{Ar}), 129.1 (s, C₄, C_{Ar}), 129.3 (d, ³J_{CP} = 4.6 Hz, C₆, C_{Ar}), 129.5 (s, 2C_{meta}, NHPh), 129.7 (s, 2C_{meta}, OPh), 131.02 (s, C₅, C_{Ar}), 133.8 (d, ²J_{CP} = 3.2 Hz, C₁, C_{Ar}), 144.8 (d, ³J_{CP} = 14.7 Hz, C_{ipso}, NHPh), 149.3 (d, ³J_{CP} = 6.0 Hz, C₂, Ar), 149.9 (d, ²J_{CP} = 9.5 Hz, C_{ipso}, OPh).

Diphenyl(3-nitrophenyl)(phenylamino) methylphosphonate **4c**. ¹H NMR (400 MHz; CDCl₃): δ 4.66 (1H, br, NH), 5.27 (1H, d, ²J_{HP} = 25.3 Hz, CHP), 6.63–8.46 (19H, m, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 55.5 (d, ¹J_{CP} = 152.4 Hz, CHP), 114.0 (s, 2C_{ortho}, NHPh), 119.5 (s, C_{para}, NHPh), 120.0 (d, ³J_{CP} = 4.1 Hz, 2C_{ortho}, OPh), 120.4 (d, ³J_{CP} = 4.1 Hz, 2C_{ortho}, OPh), 123.1 (d, ³J_{CP} = 5.6 Hz, C₂, C_{Ar}), 123.4 (s, C₄, C_{Ar}), 125.6 (s, C_{para}, OPh), 125.7 (s, C_{para}, OPh), 129.4 (s, 2C_{meta}, NHPh), 129.6 (s, 2C_{meta}, OPh), 129.7 (s, 2C_{meta}, OPh), 130.4 (s, C₅, C_{Ar}), 134.0 (d, ³J_{CP} = 5.1 Hz, C₆, C_{Ar}), 137.6 (s, C₁, C_{Ar}), 145.1 (d, ³J_{CP} = 14.6 Hz, C_{ipso}, NHPh), 148.5 (s, C₃, C_{Ar}), 150.0 (d, ²J_{CP} = 9.4 Hz, C_{ipso}, OPh), 150.1 (d, ²J_{CP} = 9.4 Hz, C_{ipso}, OPh).

Diphenyl(4-nitrophenyl)(phenylamino)

methylphosphonate **4d**. ¹H NMR (CDCl₃, 400 MHz): δ 5.02 (1H, brs, NH), 5.25 (1H, d, ${}^{2}J_{PH} = 26.0$ Hz, CHP), 6.61 (2H, d, J = 8.0 Hz, H_{Ar}), 6.81 (1H, t, J = 8.0 Hz, H_{Ar}), 6.97–7.33 (11H, m, H_{Ar}), 7.78 (2H, dd, J = 8.8, 2.4 Hz, H_{Ar}), 8.22 (2H, d, J = 8.0 Hz, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ: 55.2 (d, ¹J_{CP}) = 152.4 Hz, CHP), 113.9 (s, 2C_{ortho}, NHPh), 119.4 (s, C_{para}, NHPh), 120.0 (d, ${}^{3}J_{CP} = 3.9$ Hz, 2C_{ortho}, OPh), 120.4 (d, ${}^{3}J_{CP} = 3.9$ Hz, 2C_{ortho}, OPh), 123.8 (s, C_{meta}, C_{Ar}), 125.6 (s, C_{para}, OPh), 125.7 (s, C_{para}, OPh), 128.9 (d, ${}^{3}J_{CP} = 5.4$ Hz, C_{ortho}, C_{Ar}), 129.3 (s, 2C_{meta}, NHPh), 129.8 (s, 4C_{meta}, 2OPh), 142.7 (s, C_{ipso} , C_{Ar}), 145.1 (d, ${}^{3}J_{CP} = 14.6$ Hz, C_{ipso} , NHPh), 147.7 (s, C_{para} , C_{Ar}), 149.8 (d, ${}^{2}J_{CP} = 9.1$ Hz, C_{ipso} , OPh), 150.0 (d, ${}^{2}J_{CP} = 9.1$ Hz, C_{ipso}, OPh); ${}^{31}P$ NMR (CDCl₃, 161.97 MHz) δ: 13.3.

TABLE 2 S	Synthesis of	α -aminophosphonates	derivatives in	n H ₂ O	at 80°C
-----------	--------------	-----------------------------	----------------	--------------------	---------

		Ar H + H +	$PhO^{P}OPh$ H_2O $H_2OPhO^{P}OPh$ H_2O H_2O	$\begin{array}{c} PhO \\ PhO - P = O \\ \hline \\ C \\ Ar \\ H \end{array}$		
		1 2	3	4		
F actor i		Duradurat	T ime - (h)	V:-1-1 (0/)8	Melting Point (°C)	
Entry	Aldenyde	Product	Time (n)	Y IEIQ (%) ^a	Found	Literature [34]
1	СНО	PhO-P-O H H 4a	3	90	148–149	134–136
2	CHO NO ₂	PhO	4	83	149–150	137–139
3	CHO NO ₂	$\begin{array}{c} PhO \\ PhO - P = O \\ NO_2 \end{array}$	8	73	128–129	128–129
4	CHO NO ₂	PhO PhO-P=0 N H dd	5	85	147–149	147–149
5	CHO Cl	PhO PhO-P=0 Cl Cl 4e	8	96	139–140	136–138
6	CHO	PhO - P = 0 PhO - P = 0 H H H H H	7	92	130–131	130–132
7	CHO F	PhO PhO-PO N H F 4g	4	71	121–123	119–121
8	CHO F	PhO-P=O PhO-P=O H H 4h	6	80	100–103	103–105
9	CHO OMe OMe	PhO_P=O PhO-P=O H OMe OMe 4i	9	76	111–113	110–112

(Continued)

TABLE 2 Continued

^aIsolated yield.

Diphenyl(2,4-dichlorophenyl)(phenylamino) *methylphosphonate* **4e**. ¹H NMR (CDCl₃, 400 MHz): δ 5.14 (1H, t, ${}^{3}J_{\rm NH} = 9.2$ Hz, NH), 5.74 (1H, dd, ${}^{2}J_{\rm PH} = 25.6$, ${}^{3}J_{\rm NH} = 8.4$ Hz, CHP), 6.62 (2H, d, J = 8.0 Hz, H_{Ar}), 6.78 (1H, t, J = 8.0 Hz, H_{Ar}), 6.94-7.42 (14H, m, H_{Ar}), 7.61 (1H, dd, J = 8.0, 2.8 Hz, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 51.3 (d, ${}^{1}J_{CP} = 157.7$ Hz, CHP), 113.9 (s, 2C_{ortho}, NHPh), 119.4 (s, C_{para} , NHPh), 119.8 (d, ${}^{3}J_{CP} = 4.1$ Hz, $2C_{\text{ortho}}$, OPh), 120.7 (d, ${}^{3}J_{\text{CP}} = 4.1$ Hz, $2C_{\text{ortho}}$, OPh), 125.3 (s, C_{para}, OPh), 125.6 (s, C_{para}, OPh), 127.9 (d, ${}^{4}J_{CP} = 3.1$ Hz, C₅, C_{Ar}), 129.4 (s, 2C_{meta}, NHPh), 129.6 (s, 2C_{meta}, OPh), 129.8 (s, 2C_{meta}, OPh), 130.1 (d, ${}^{3}J_{CP} = 4.12$ Hz, C₆, C_{Ar}), 131.7 (s, C₃, C_{Ar}), 134.8 $(d, {}^{2}J_{CP} = 4.2 \text{ Hz}, C_{1}, \text{Ar}), 134.9 (d, {}^{3}J_{CP} = 7.8 \text{ Hz}, C_{2}),$ C_4 , C_{Ar}), 144.8 (d, ${}^3J_{CP} = 16.5$, C_{ipso} , NHPh), 150.1 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso}, OPh), 150.2 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso}, OPh).

Diphenyl(4-chlorophenyl)(phenylamino)

methylphosphonate **4f**. ¹H NMR (CDCl₃, 400 MHz): δ 4.97 (1H, brs, NH), 5.15 (1H, d, ${}^{2}J_{PH} = 24.0$ Hz, CHP), 6.63–7.54 (19H, m, H_{Ar}); 13 C NMR (100.6 MHz, CDCl₃) δ: 55.6 (d, ${}^{1}J_{CP} = 153.9$ Hz, CHP), 114.3 (s, 2C_{ortho}, NHPh), 119.3 (s, C_{para}, NHPh), 120.2 (d, ${}^{3}J_{CP} = 4.2$ Hz, 2C_{ortho}, OPh), 120.6 (d, ${}^{3}J_{CP} = 4.2$ Hz, 2C_{ortho}, OPh), 125.5 (s, C_{para}, OPh), 125.5 (s, C_{para}, APA), 125.5 (s, C_{para}), 125.5 (s, C_p

OPh), 129.0 (d, ${}^{4}J_{CP} = 2.0$ Hz, C₃, C₅, C_{Ar}), 129.3 (s, 2C_{meta}, NHPh), 129.5 (d, ${}^{3}J_{CP} = 5.9$ Hz, C₂, C₆, C_{Ar}), 129.7 (s, 2C_{meta}, OPh), 129.8 (s, 2C_{meta}, OPh), 133.3 (s, C₄, C_{Ar}), 134.3 (d, ${}^{2}J_{CP} = 4.0$ Hz, C₁, C_{Ar}), 145.3 (d, ${}^{3}J_{CP} = 17.1$ Hz, C_{ipso}, NHPh), 150.0 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso}, OPh), 150.2 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso}, OPh).

Diphenyl(3-fuorophenyl)(phenylamino)

methylphosphonate **4g**. ¹H NMR (CDCl₃, 400 MHz): δ 4.91 (1H, brs, NH), 5.15 (1H, d, ²*J*_{PH} = 25.2 Hz, CHP), 6.65 (2H, dd, *J* = 8.4, 0.8 Hz, H_{Ar}), 6.79 (1H, t, *J* = 8.0 Hz, H_{Ar}), 6.93–7.38 (16H, m, H_{Ar}).

Diphenyl(4-fuorophenyl)(phenylamino)

methylphosphonate **4h**. ¹H NMR (CDCl₃, 400 MHz): δ 4.96 (1H, t, ³*J*_{NH} = 8.8 Hz, NH), 5.16 (1H, dd, ²*J*_{PH} = 24.4, ³*J*_{NH} = 8.0 Hz, CHP), 6.65 (2H, d, *J* = 8.0 Hz, H_{Ar}), 6.79 (1H, t, *J* = 8.0 Hz, H_{Ar}), 6.92-7.58 (16H, m, H_{Ar}) ³¹P NMR (CDCl₃, 161.97 MHz) δ : 14.9.

Diphenyl(2,3-dimethoxyphenyl)(phenylamino)

methylphosphonate **4i**. ¹H NMR (CDCl₃, 400 MHz): δ 3.87 and 3.97 (6H, 2s, 2× OMe), 4.86 (1H, t, ${}^{3}J_{\rm NH} =$ 8.4 Hz, NH), 5.82 (1H, dd, ${}^{2}J_{\rm PH} =$ 24.8, ${}^{3}J_{\rm NH} =$ 10.0 Hz, CHP), 6.72–7.32 (18H, m, H_{Ar}); 13 C NMR (100.6 MHz, CDCl₃) δ: 48.7 (d, ${}^{1}J_{\rm CP} =$ 157.9 Hz, CHP), 55.7, 61.0 (2s, $2 \times \text{ OCH}_3$), 112.5 (s, C_4 , C_{Ar}), 114.2 (s, $2C_{\text{ortho}}$, NHPh), 119.0 (s, C_{para} , NHPh), 120.1 (d, ${}^3J_{\text{CP}} = 4.6$ Hz, C_6 , C_{Ar}), 120.2 (s, C_5 , C_{Ar}), 120.4 (d, ${}^3J_{\text{CP}} = 4.1$ Hz, $2C_{\text{ortho}}$, OPh), 120.8 (d, ${}^3J_{\text{CP}} = 4.1$ Hz, $2C_{\text{ortho}}$, OPh), 120.8 (d, ${}^3J_{\text{CP}} = 4.1$ Hz, $2C_{\text{ortho}}$, OPh), 124.4 (d, ${}^2J_{\text{CP}} = 2.5$ Hz, C_1 , C_{Ar}), 125.2 (s, C_{para} , OPh), 125.4 (s, C_{para} , OPh), 129.2 (s, $2C_{\text{meta}}$, NHPh), 129.6 (s, $2C_{\text{meta}}$, OPh), 147.3 (d, ${}^3J_{\text{CP}} = 14.5$ Hz, C_{ipso} , NHPh), 150.3 (d, ${}^2J_{\text{CP}} = 9.7$ Hz, C_{ipso} , OPh), 150.5 (d, ${}^2J_{\text{CP}} = 9.7$ Hz, C_{ipso} , OPh), 150.4 (s, C_3 , C_{Ar}).

Diphenyl(2,5-*dimethoxyphenyl*)(*phenylamino*)

methylphosphonate **4j**. ¹H NMR (CDCl₃, 400 MHz): δ 3.70 and 3.85 (6H, 2s, 2× OMe), 4.93 (1H, t, ${}^{3}J_{\rm NH}$ = 8.8 Hz, NH), 5.77 (1H, dd, ${}^{2}J_{\rm PH}$ = 25.2, ${}^{3}J_{\rm NH}$ = 9.6 Hz, CHP), 6.68–7.32 (18H, m, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 48.9 (d, ${}^{1}J_{CP} = 157.8$ Hz, CHP), 55.7, 56.3 (2s, $2 \times$ OCH₃), 11.9 (d, ${}^{4}J_{CP} = 2.1$ Hz, C₅, C_{Ar}), 113.9 (s, C₄, C_{Ar}), 114.2 (d, ${}^{3}J_{CP} = 4.9$ Hz, C₂, C_{Ar}), 114.7 (s, C_{ortho}, NHPh), 118.9 (s, C_{para}, NHPh), 120.1 (d, ${}^{3}J_{CP} = 4.4$ Hz, 2C_{ortho}, OPh), 120.7 (d, ${}^{3}J_{CP} = 4.4$ Hz, 2C_{ortho}, OPh), 120.5 (d, ${}^{2}J_{CP} = 5.0$ Hz, C₁, C_{Ar}), 125.0 (s, C_{para}, OPh), 125.2 (s, C_{para}, OPh), 129.2 (s, 2C_{meta}, NHPh), 129.5 (s, 2C_{meta}, OPh), 129.6 (s, 2C_{meta}, OPh), 146.2 (d, ${}^{3}J_{CP} = 15.0$ Hz, C_{ipso} , NHPh), 151.6 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso} , OPh), 151.6 (d, ${}^{2}J_{CP} = 9.7$ Hz, C_{ipso}, OPh), 154.0 (d, ${}^{3}J_{CP} = 3.0 \text{ Hz}, \text{ C}_{2}, \text{ C}_{Ar}$), 155.3 (s, C₅, C_{Ar}).

Diphenyl(phenylamino)(p-tolyl)

methylphosphonate **4k.** ¹H NMR (400 MHz; CDCl₃): δ 2.35 (3H, s, CH₃), 4.79 (1H, br, NH), 5.17 (1H, d, ²*J*_{HP} = 24.6 Hz, CHP), 6.71-7.41 (19H, m, H_{Ar}); ¹³C NMR (100.6 MHz, CDCl₃) δ : 21.4 (s, CH₃), 55.9 (d, ¹*J*_{CP} = 153.9 Hz, CHP), 114.2 (s, 2C_{ortho}, NHPh), 118.9 (s, C_{para}, NHPh), 120.3 (d, ³*J*_{CP} = 4.3 Hz, 2C_{ortho}, OPh), 120.7 (d, ³*J*_{CP} = 4.3 Hz, 2C_{ortho}, OPh), 125.2 (s, C_{para}, OPh), 125.3 (s, C_{para}, OPh), 125.4 (s, C₄, C_{Ar}), 128.7 (d, ³*J*_{CP} = 2.1 Hz, C₆, C_{Ar}), 128.9 (d, ³*J*_{CP} = 6.2 Hz, C₂, C_{Ar}), 129.2 (s, C₅, C_{Ar}), 129.2 (s, 2C_{meta}, OPh), 134.4 (s, C₃, C_{Ar}), 138.5 (d, ²*J*_{CP} = 2.5 Hz, C₁, C_{Ar}), 145.6 (d, ³*J*_{CP} = 14.7 Hz, C_{ipso}, NHPh), 150.2 (d, ²*J*_{CP} = 10.1 Hz, C_{ipso}, OPh).

Diphenyl(phenylamino)(m-tolyl)

methylphosphonate **4l.** IR (KBr) (v_{max} , cm⁻¹): 3342 (N-H); ¹H NMR (CDCl₃, 400 MHz): δ 2.35 (3H, s, CH₃), 4.79 (1H, bs, NH), 5.17 (1H, d, ²*J*_{HP} = 24.6 Hz, CHP), 6.71–7.41 (19H, m, H_{Ar}); ¹³C NMR (CDCl₃, 100.6 MHz) δ : 21.46 (s, CH₃), 55.96 (d, ¹*J*_{CP} = 153.9 Hz, CHP), 114.20 (s, 2C_{ortho}, NHPh), 118.95 (s, C_{para}, NHPh), 120.36 (d, ³*J*_{CP} = 4.3 Hz, 2 C_{ortho},

OPh), 120.75 (d, ${}^{3}J_{CP} = 4.3$ Hz, 2C_{ortho}, OPh), 125.24 (s, C_{para}, OPh), 125.39 (s, C_{para}, OPh), 125.41 (s, C4), 128.71 (d, ${}^{3}J_{CP} = 2.1$ Hz, C6), 128.95 (d, ${}^{3}J_{CP} = 6.2$ Hz, C2), 129.25 (s, C5), 129.29 (s, 2 C_{meta}, NHPh), 129.61 (s, 2C_{meta}, OPh), 129.76 (s, 2C_{meta}, OPh), 134.40 (s, C3), 138.51 (d, ${}^{2}J_{CP} = 2.5$ Hz, C1),145.63 (d, ${}^{3}J_{CP} = 14.7$ Hz, C_{ipso}, NHPh), 150.29 (d, ${}^{2}J_{CP} = 10.1$ Hz, C_{ipso}, OPh), 150.40 (d, ${}^{2}J_{CP} = 10.1$ Hz, C_{ipso}, OPh), 150.40 (d, ${}^{2}J_{CP} = 10.1$ Hz, C_{ipso}, OPh). 31 P NMR (161.97 MHz) δ : 15.51. MS m/z (%): 429 (17) [M+], 196 (100), 178 (15),140 (20), 104 (34), 77 (42). Anal. Calcd for C₂₆H₂₄NO₃P: C, 72.72; H, 5.63; N, 3.26. Found: C, 72.51; H, 5.70; N, 3.39.

REFERENCES

- [1] (a) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. J Med Chem 1989, 32, 1652–1661 (b) Giannousis, P. P.; Bartlett, P. A. J Med Chem 1987, 32, 1603–1609.
- [2] Allenberger, F.; Klare, I. J. J Antimicrob Chemother 1999, 43, 211–217.
- [3] Kafarski, P.; LeJczak, B. Phosphorus Sulfur Silicon Relat Elem 1991, 53, 193–215.
- [4] Natchev, I. A. Liebigs Ann Chem 1988, 861-867.
- [5] (a) Chung, S. K.; Kang, D. H. Tetrahedron: Asymmetry 1996, 7, 21–24 (b) Atheron, F. R.; Hassal, C. H.; Lambert, R. W. J Med Chem 1986, 29, 29–40.
- [6] Zon, J. Pol J Chem 1981, 55, 643–646.
- [7] Laschat, S.; Kunz, H. Synthesis 1992, 90.
- [8] Yadav, J. S., Reddy, B. V. S.; RaJ, K. S.; Reddy, K. B.; Prasad, A. R. Synthesis 2001, 2277.
- [9] Genêt, J. P.; Uziel, J., Port, M.; Touzin, A. M.;Roland, S.; Thorimbert, S.; Tanier, S. Tetrahedron Lett 1992, 33, 77–80.
- [10] (a) Qian, C. T.; Huang, T. J Org Chem 1998, 63, 4125–4128 (b) Lee, S.-G.; Park, J. H.; Kang, J.; Lee, K. Chem Commun 2001, 1698–1699 (c) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Synthesis 2004, 2692–2696.
- [11] Manabe, K.; Kobayashi, S. Chem Commun 2000, 669–670.
- [12] Heydari, A.; Zarei, M.; AliJanianzadeh, R.; Tavakol, H. Tetrahedron Lett 2001, 42, 3629–3631.
- [13] Srikant, B.; Asit, K. C. J Org Chem 2008, 73, 6029– 6031.
- [14] Yadav, J. S.; Reddy, B. V. S.; Raj, S.; Reddy, K. B.; Prasad, A. R. Synthesis 2001, 2277–2280.
- [15] Akiyama, T.; Sanada, M.; Fuchibe, K. Synlett 2003, 1463–1464.
- [16] Changtao, Q.; Taisheng, H. J Org Chem 1998, 63, 4125-4128.
- [17] Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur J Org Chem 2003, 4728–4730.
- [18] Ranu, B. C.; Hajra, A.; Jana, J. J Org Lett 1999, 1, 1141–1143.
- [19] Chandrasekhar, S.; Jaya Prakash, S.; Jagadeshwar, V.; Narsihmula, C. Tetrahedron Lett 2001, 42, 5561– 5563.
- [20] Kudrimoti, S.; Bommena, V. R. Tetrahedron Lett 2005, 46, 1209–1210.
- [21] Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett 2001, 1131–1133.

- [22] Kaboudin, B.; Nazari, R. Tetrahedron Lett 2001, 42, 8211–8213.
- [23] Bhattacharya, A. K.; Rana, K. C. Tetrahedron Lett 2008, 49, 2598–2610.
- [24] Heydari, A.; Hamedi, H.; Pourayoubi, M. Catal Commun 2007, 8, 1224–1226.
- [25] Vahdat, S. M.; Baharfar, R.; Tajbakhsh, M.; Heydari, A.; Baghbanian, S. M.; Khaksar, S. Tetrahedron Lett 2008, 49, 6501–6504.
- [26] Hosseini-Sarvari, M. Tetrahedron 2008, 64, 5459– 5466.
- [27] Olszewski, T. K. Synthesis 2014, 46, 403–429.
- [28] Ordonez, M.; Luis Viveros-Ceballos, J.; Cativiela, C.; Arizpe, A. Curr Org Synth 2012, 9, 310–341
- [29] Mucha, A. Molecules 2012, 17, 13530–13568
- [30] Ordóñez, M.; Sayago, F. J.; Cativiela, C. Tetrahedron 2012, 68, 6369–6412
- [31] Kudzin, M. H.; Kudzin, Z. H.; Drabowicz, J. Arkivoc 2011 (vi), 227–269
- [32] Zbigniew, H. K.; Marcin H. K.; Jozef D.; Chris, V. S. Curr Org Chem 2011, 15, 2015–2071
- [33] Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009, 65, 17–49
- [34] Rostamizadeh, M.; Maghsoodlou, M. T.; Hazeri, N.; Habibi-Khorassani, S. M.; Keishams, L. Phosphorus Sulfur Silicon Relat Elem 2011, 186, 334–337.
- [35] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M. Arab J Chem 2011, 4, 481–485.
- [36] Rostamizadeh, M.; Maghsoodlou, M. T.; Hazeri, N.; Khorassani, S. M. H.; Sajadikhah, S. S.; Maleki, N.; Shahkarami, Z. Lett Org Chem 2010, 7, 542–544.

- [37] Lashkari, M.; Hazeri, N.; Maghsoodlou, M. T.; Khorassani, S. M. H.; Akbarzadeh Torbati, N.; Hosseinian, Asghar.; García-Granda, S.; Torre-Fernández, L. Heteroatom Chem 2013, 24, 58– 65.
- [38] Hazeri, N.; Maghsoodlou, M. T.; Khorassani, S. M. H.; Aboonajmi, J.; Lashkari, M.; Sajadikhah, S. S. Res Chem Intermed 2014, 40, 1781–1788.
- [39] Maghsoodlou, M. T.; Heydari, R.; Habibi-Khorassani, S. M.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Lashkari, M. Synth Commun 2012, 42, 136–143.
- [40] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M.; Keishams, L. Turk J Chem 2010, 34, 565– 570.
- [41] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Heydari, R.; Hazeri, N.; Sajadikhah, S. S.; Rostamizadeh, M. Chin J Chem 2010, 28, 285–288.
- [42] Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Hazeri, N.; Rostamizadeh, M.; Sajadikhah, S. S.; Shahkarami, Z.; Maleki, N. Heteroatom Chem 2009, 20, 316–318.
- [43] Shinde, P. V.; Kategaonkar, A. H.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett 2011, 52, 2889– 2892.
- [44] Bhagat, S.; Chakraborti, A. K. J Org Chem 2007, 72, 1263–1270.
- [45] Kasthuraiah, M.; Kumar, K. A.; Reddy, C. S.; Reddy, C. D. Heteroatom Chem 2007, 18, 2–8.
- [46] Karimi-Jaberi, Z.; Amiri, M. Heteroatom Chem. 2010, 21, 96–98.