Tetrahedron 69 (2013) 1994-2003

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Baylis–Hillman acetates in carbocyclic synthesis: a convenient protocol for synthesis of densely substituted indenes

Tetrahedror

Deevi Basavaiah*, Bhavanam Sekhara Reddy, Harathi Lingam

School of Chemistry, University of Hyderabad, Central University (PO), Gachibowli, Hyderabad 500 046, India

A R T I C L E I N F O

Article history: Received 15 November 2012 Received in revised form 20 December 2012 Accepted 26 December 2012 Available online 3 January 2013

Keywords: Baylis–Hillman reaction Friedel–Crafts reaction Chemo selectivity Indene derivatives Keto-diesters

ABSTRACT

A simple and facile strategy for synthesis of densely substituted indenes have been developed from Baylis–Hillman acetates in a two step protocol, that is, (1) via treatment with DABCO and then reaction with alkyl 3-oxobutanoates in the presence of K_2CO_3 (2) followed by the intramolecular Friedel–Crafts cyclization of the resulting keto-diesters using titanium tetrachloride.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Friedel–Crafts reaction is one of the important and useful reactions for construction of carbon-carbon bonds and has been extensively used in various organic synthetic processes.¹ Intramolecular Friedel–Crafts reaction is one of the methods of choice for synthesis of many carbocyclic and heterocyclic molecules.^{1,2} Indene/indane derivatives occupy an important place in the carbocyclic frameworks because of the presence of these moieties in various natural products $(1-3, Fig. 1)^3$ and bioactive compounds (4–8, Fig. 1).⁴ Therefore, there has been increasing interest in the development of simple and facile procedures for synthesis of indene/indane derivatives via intramolecular Friedel-Crafts cyclization strategies.⁵ In continuation of our interest in the synthesis of carbocyclic compounds,⁶ we herein report a facile two-step methodology for obtaining highly substituted indene derivatives starting from the Baylis-Hillman acetates using the intramolecular Friedel–Crafts reaction as the key step.

2. Results and discussion

The Baylis–Hillman reaction has been and continues to attract the attention of synthetic chemists as it provides densely

functionalized molecules via an interesting atom economy coupling of activated alkenes with electrophiles under the influence of a catalyst.⁷ Synthetic and medicinal chemists have used these densely functionalized molecules, which are generally known as the Baylis–Hillman adducts, in developing a number of useful organic transformation protocols.^{7,8}

OН сно ŐН N (R)-dimethindene 2 dichroanal B dichroanal A HCI 6 нο ndenestrol A OH serotonin (5-HT) receptor agonist of estrogen binding property receptor- α (ER- α) нο (+)-enantiomer CO₂H MeC estrogen receptor ligand R \ ⊕ ŅHci⊖ 8 R = Me. Et. Pr. Bu Ć calcium antagonists anti-proliferative property

Fig. 1. Natural products and bioactive molecules with ind(a)ene framework.

^{*} Corresponding author. Tel.: +91 040 23134812; fax: +91 40 23012460; e-mail address: dbsc@uohyd.ernet.in (D. Basavaiah).

^{0040-4020/\$ —} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.12.069

Several years ago we demonstrated the application of various Baylis-Hillman adducts and their derivatives as substrates in a number of Friedel–Crafts reactions.⁹ On the basis of this experience it occurred to us that it would be interesting to examine the intramolecular Friedel–Crafts (F–C) reaction of aromatic substrates (9) containing one keto and two ester functionalities, as such study will not only provide densely substituted indene or (and) indanone derivatives but will also throw some light on the mechanism and chemoselectivities of these intramolecular Friedel-Crafts (F-C) reactions. Theoretically there is a possibility of formation of three products, that is, (1) keto cyclization product (10) (2) free ester cyclization product (11) (3) α,β -unsaturated ester cyclization product (12) (Scheme 1). We also felt that such aromatic substrates (9) containing one keto and two ester functionalities would easily be obtained from the Baylis–Hillman acetates (13) via the reaction with suitable nucleophiles as shown in retro-synthetic sequence (Scheme 1).

Scheme 1. Retro-synthetic strategy.

Accordingly we have first selected methyl 3-acetoxy-2methylene-3-phenylpropanoate (**13a**) and methyl acetoacetate (**14a**) as reaction partners. Thus the treatment of **13a** (10 mmol) with DABCO (10 mmol) followed by the reaction with **14a** (11 mmol) in the presence of K₂CO₃ (11 mmol) in THF–H₂O (1:1) provided the desired keto-diester **9a** in 75% isolated yield as a mixture of diastereomers (1:1) (R=H, Scheme 2).¹⁰

We have then examined the intramolecular Friedel–Crafts reaction of **9a** under different conditions and our attempts were not successful for obtaining any cyclized product (**10a**, **11a** or **12a** R=H, R'=R''=Me). We also noticed the formation of methyl (2*Z*)-2-(chloromethyl)-3-phenylprop-2-enoate (**15**) in 18% yield along with un-reacted starting material **9a** (76% recovered yield) when TiCl₄ was used to perform the intramolecular Friedel–Crafts reaction (Scheme 3).¹¹

We have attributed the failure of intramolecular Friedel—Crafts reaction of **9a** to the less nucleophilicity of aromatic carbon(s) for cyclization. At this stage, it occurred to us that electron donating group on aromatic ring at appropriate position may enhance the nucleophilicity of (*para* and/or *ortho*) carbon on the aromatic ring to facilitate the intramolecular Friedel—Crafts cyclization. Accordingly we selected methyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2-

Scheme 3. Reaction of 9a with titanium tetrachloride.

methylene-5-oxohexanoate (**9b**) as a substrate to examine the intramolecular Friedel–Crafts reaction. The required keto-diester **9b** was prepared from methyl 3-acetoxy-3-(3-methoxyphenyl)-2-methylenepropanoate (**13b**) according to the reaction followed for synthesis of keto-diester **9a**. Thus the treatment of allyl acetate **13b** (5 mmol) with DABCO (5 mmol) for 15 min at room temperature in THF–H₂O (1:1) followed by reaction with methyl acetoacetate (**14a**) (5.5 mmol), in the presence of K₂CO₃ (5.5 mmol) at room temperature for 6 h provided **9b** in 88% isolated yield (dr \approx 1:1) (*R*=3-OMe, Scheme 2).

For initial studies we have treated **9b** (1 mmol), with methanesulfonic acid (2 mmol) in anhydrous dichloromethane (2 mL), at room temperature for 1 h (addition at 0 °C), which provided *para* cyclization product **10b** and *ortho*-cyclization product *ortho*-**10b** in 19% and 2% isolated yields, respectively (entry 1, Table 1) along with 65% un-reacted starting material **9b**. With a view to confirm the structures of molecules **10b** and *ortho*-**10b**, we also obtained single crystal for these compounds and established their structures by X-ray data analysis (Figs. 2 and 3).¹²

Table 1

Optimization: intramolecular Friedel-Crafts cyclization of 9ba

Bold value indicates highest yield (optimized condition).

^a All reactions were carried out on a 1 mmol scale of keto-diester **9b** with acid in CH₂Cl₂ (2 mL).

^b Yields were based on keto-diester **9b**.

Fig. 2. ORTEP diagram of compound 10b.

Fig. 3. ORTEP diagram of compound ortho-10b.

This reaction is indeed encouraging and clearly indicates that ketone functionality takes part in Friedel-Crafts cyclization in preference over ester function even in the presence of two ester functionalities.¹³ With a view to increase the yield of the indene derivatives in this reaction strategy, we have examined applicability of various Bronsted and Lewis acids. In this direction we realized that TiCl₄ afforded better yields (entry 5, Table 1). Thus, treatment of **9b** (1 mmol) with TiCl₄ (2 mmol, 2 M solution in DCM) as a Lewis acid in dichloromethane (DCM) at room temperature for 1 h (addition at 0 °C), provided **10b** (*para* cyclization product) in 76% and ortho-10b (ortho-cyclization product) in 20% isolated yields after usual work-up followed by column chromatography. When H₂SO₄ was used as a reagent for cyclization, ester group at C-3 position underwent hydrolysis and provided 6-methoxy-1-(1methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylic acid (16) in 35% isolated yield along with expected indene esters 10b & ortho-10b in 46 & 10% yields, respectively.

With a view to understand the generality of this reaction we have prepared representative keto-diesters 9c-j in 88-93% isolated yields (dr $\approx 1:1$) via the reaction of selected Baylis–Hillman acetates 13c-f with DABCO followed by treatment with alkyl acetoacetates (14a/14b) under similar conditions as in the case of 13a (or 13b) (Table 2). Subsequent treatment of these keto-diesters 9c-j with TiCl₄ at room temperature (addition at 0 °C) provided the resulting indene derivatives (10c-j) in 91-95% isolated yields (Table 3). Structures of the molecules 10c, 10e, and 10h were further confirmed by single crystal X-ray data analysis (See SD) [for ORTEP diagram of 10h (see Fig. 4)].¹²

Table 2

Synthesis of keto-diesters 9c-ja

Entry	Acetate	R ²	R^4	Keto-ester	Product ^b	Yield ^c [%]
1	13c	H	Me	14a	9c	93
2	13d	OMe	Me	14a	9d	88
3	13e	Н	Et	14a	9e	94
4	13f	OMe	Et	14a	9f	89
5	13c	Н	Me	14b	9g	91
6	13d	OMe	Me	14b	9h	93
7	13e	Н	Et	14b	9i	92
8	13f	OMe	Et	14b	9j	90

^a All reactions were carried out on a 5 mmol scale of Baylis–Hillman acetates (**13c**–**f**) with 5 mmol of DABCO in THF–H₂O (5+5 mL) at rt for 15 min followed by addition of 5.5 mmol of keto ester (**14a** or **14b**) under influence of K₂CO₃ (5.5 mmol) and stirred at room temperature for 6 h.

^b The diastereomeric ratio was determined by the integration ratio of diastereomeric acetyl methyl protons.

^c Yields are based on B–H acetates.

Table 3

Synthesis of highly substituted indene derivatives (10c-j)^a

Entry	Keto-diester	R ²	\mathbb{R}^4	R ⁵	Product	Yield ^b [%]
1	9c	H	Me	Me	10c ^c	94
2	9d	OMe	Me	Me	10d	92
3	9e	Н	Et	Me	10e ^c	90
4	9f	OMe	Et	Me	10f	93
5	9g	Н	Me	Et	10g	95
6	9h	OMe	Me	Et	10h ^c	91
7	9i	Н	Et	Et	10i	94
8	9j	OMe	Et	Et	10j	93

^a All reactions were carried out on 1.0 mmol scale of keto-diesters (**9c–j**) with 2 mmol of TiCl₄ (1 mL, 2 M solution in CH_2Cl_2) in CH_2Cl_2 (2 mL) at room temperature for 0.5 h.

^b Yields are based on keto-diesters.

 $^{\rm c}$ Compound 10c, 10e, and 10h were further characterized by single crystal X-ray data analysis (see SD). $^{\rm 12}$

Fig. 4. ORTEP diagram of compound 10h.

After successful transformations of keto-diesters into highly substituted indene derivatives we also investigated the *ortho-para* selectivity in intramolecular Friedel–Crafts reactions. In this direction we have prepared selected Baylis–Hillman acetates **13g–k** and transformed them into keto-diesters (**9k–o**) in 85–96% isolated yields (in 1:1 diastereomeric ratio) (Table 4). Subsequent

Table 4

Synthesis of keto-diesters (9b, 9k-o)^a

Entry	Acetate	R ¹	R ⁴	Product ^b	Yield ^c [%]
1	13b	OMe	Me	9b	88
2	13g	OEt	Me	9k	92
3	13h	OPr	Me	91	96
4	13i	OMe	Et	9m	85
5	13j	OEt	Et	9n	86
6	13k	OPr	Et	90	91

^a All reactions were carried out on 5 mmol scale of Baylis–Hillman acetates (**13b**, **13g–k**) with 5 mmol of DABCO in THF–H₂O (5+5 mL) at rt for 15 min followed by addition of 5.5 mmol of methyl acetoacetate (**14a**) under influence of K₂CO₃ (5.5 mmol) and stirred at room temperature for 6 h.

^b The diastereomeric ratio was determined by the integration ratio of diastereomeric acetyl methyl protons.

^c Yields are based on B-H acetates.

treatment with TiCl₄ under similar conditions as in the case of **10b–j** gave the *para* cyclized products in major amounts along with *ortho* cyclized products in minor amounts (Table 5). The structures of the molecules **10k**, *ortho*-**10k**, and **10m** were also established by single crystal X-ray data analysis (see SD).¹²

Table 5

Synthesis of indene derivatives (10b, 10k–o, ortho-10b & ortho-10k–o)^a

^a All reactions were carried out on a 1.0 mmol scale of keto-diesters (**9b**, **9k**-**o**) with 2 mmol of TiCl₄ (1 mL, 2 M solution in CH_2Cl_2) in CH_2Cl_2 (2 mL) at room temperature for 1 h.

^b Yields are based on keto-diesters.

 $^{\rm c}$ Compounds 10k, ortho-10k, and 10m were further characterized by single crystal X-ray data (see SD).^{12}

Mechanism for the formation of highly substituted indene derivatives from the keto-diesters is presented in Scheme 4, by taking reaction between methyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxohexanoate (**9b**) and TiCl₄ as a model case.¹³ Treatment of keto-diester with TiCl₄ would generate titanium enolate intermediate (**17**) that might undergo further intramolecular Michael/Friedel–Crafts reactions leading to the formation of the indene derivatives, **10b** & *ortho*-**10b**. It is believed that chelation controlled titanium enolate species directs the mode of cyclization.

Scheme 4. Plausible mechanism.

3. Conclusion

In conclusion we have developed a convenient, operationally simple synthesis of highly substituted indene derivatives from the acetates of the Baylis—Hillman adducts in a two step protocol. This study also throws some light on the competition between keto cyclization and ester cyclization for intramolecular Friedel—Crafts reaction in the substrates alkyl 4-alkoxycarbonyl-3-(alkoxyphenyl)-2-methylene-5-oxohexanoates (**9**) containing two ester groups and one keto group in a similar environment. In all these reactions keto cyclization is preferred over ester cyclization even in the presence of two ester groups. Thus this investigation has demonstrated the importance of the Baylis—Hillman acetates for designing probes to understanding the chemoselectivity¹³ profile in intramolecular Friedel—Crafts reactions.

4. Experimental section

4.1. General remarks

Melting points were recorded on a Superfit (India) capillary melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer, solid samples were recorded as KBr wafers and liquid samples as thin film between NaCl plates. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker-AVANCE-400 spectrometer in deuterochloroform (CDCl₃) with tetramethylsilane (TMS, δ =0) as an internal standard for ¹H NMR and chloroform-*d* middle peak of the triplet (δ =77.10 ppm) as an internal standard for ¹³C NMR. HRMS spectra were recorded on Bruker maXis ESI-TOF spectrometer. The X-ray diffraction measurements were carried out at 298 K on a Bruker SMART APEX CCD area detector system or Oxford Diffraction Xcalibur Eos Gemini diffractometer equipped with a graphite-mono-chromated Mo-K α radiation with the wavelength of 0.71073 Å.

4.2. Representative procedure

4.2.1. Synthesis of methyl 4-methoxycarbonyl-2-methylene-5-oxo-3phenylhexanoate (9a). To a stirred solution of methyl 3-acetoxy-2methylene-3-phenylpropanoate (13a) (10 mmol, 2.342 g) in THF-H₂O (20 mL, 1:1) was added DABCO (10 mmol, 1.121 g) at room temperature and reaction mixture was stirred at the same temperature for 15 min (until complete formation of salt monitored by TLC). Methyl acetoacetate (14a) (11 mmol, 1.277 g) and K₂CO₃ (11 mmol, 1.520 g) were added and stirring was continued for further 6 h at room temperature. Reaction mixture was quenched by adding 2 N HCl (10 mL), and extracted with diethyl ether $(3 \times 40 \text{ mL})$. Combined organic layer was dried over anhydrous Na₂SO₄. Solvent was evaporated and crude product obtained was purified by column chromatography (5% ethyl acetate in hexanes, silica gel) to provide the title compound as a colorless viscous liquid in 75% (2.180 g) isolated yield. This compound is known in the literature. Spectral data of our compound are in agreement with the known data.¹⁰

Reaction time: 15 min+6 h; yield: 75%; R_f (20% EtOAc in hexanes) 0.41; colorless viscous liquid; IR (neat): ν 1743, 1716, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 1.96 & 2.27 (2s, 3H), 3.47, 3.67, 3.68 & 3.70 (4s, 6H), 4.38 & 4.41 (2d, 1H, *J*=12.4 Hz), 4.71 & 4.73 (2d, 1H, *J*=12.4 Hz), 5.70 & 5.76 (2s, 1H), 6.27 & 6.29 (2s, 1H), 7.17–7.32 (m, 5H); ¹³C NMR (100 MHz): δ 28.96, 30.55, 46.01, 46.13, 51.96, 52.01, 52.42, 52.65, 63.28, 64.38, 124.23, 125.16, 127.21, 127.30, 128.18, 128.39, 128.42, 128.60, 138.42, 138.77, 140.59, 141.23, 166.23, 166.38, 167.92, 167.99, 201.21, 201.33; HRMS (ESI) exact mass calcd for C₁₆H₁₈O₅Na⁺ (M+Na)⁺: 313.1052, found: 313.1049.

¹H & ¹³C NMR spectra clearly indicate that it is a mixture of two diastereomers almost in 1:1 ratio. The diastereomeric ratio was determined by the integration ratio of diastereomeric acetyl methyl protons.

Methyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxohexanoate (**9b**) (dr \approx 1:1) was prepared in 88% isolated yield via the treatment of allyl acetate **13b** (5 mmol) with DABCO (5 mmol) for 15 min at room temperature in THF–H₂O (1:1) followed by reaction with methyl acetoacetate (**14a**) (5.5 mmol), in the presence of K₂CO₃ (5.5 mmol) at room temperature for 6 h. Similarly all the remaining keto-diesters **9c–o** were prepared in the similar manner from the corresponding BH acetates (**13c–k**) (5 mmol) and alkyl acetoacetates (**14a**, **b**) (5.5 mmol). The compounds **9c–o** were also obtained as a mixture of two diastereomers almost in 1:1 ratio. The diastereomeric ratio was determined by the integration ratio of diastereomeric acetyl methyl protons.

4.2.2. *Methyl* 4-*methoxycarbonyl*-3-(3-*methoxyphenyl*)-2-*methylene*-5-oxohexanoate (**9b**). Reaction time: 15 min+6 h; yield: 88%; R_f (20% EtOAc in hexanes) 0.25; colorless viscous liquid; IR (neat): ν 1745, 1724, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 1.99 & 2.27 (2s, 3H), 3.50, 3.68, 3.69 & 3.70 (4s, 6H), 3.76 & 3.77 (2s, 3H), 4.38 & 4.39 (2d, 1H, *J*=12.4 Hz), 4.68 & 4.71 (2d, 1H, *J*=12.4 Hz), 5.69 & 5.74 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.71–6.88 (m, 3H), 7.15–7.22 (m, 1H); ¹³C NMR (100 MHz): δ 28.92, 30.51, 45.94, 46.06, 51.90, 51.96, 52.39, 52.55, 55.04, 63.21, 64.31, 112.42, 114.08, 114.43, 120.41, 120.57, 124.33, 125.27, 129.35, 129.53, 140.08, 140.44, 140.55, 141.18, 159.50, 159.59, 166.20, 166.36, 167.86, 167.92, 201.07, 201.18; HRMS (ESI) exact mass calcd for C₁₇H₂₀O₆Na⁺ (M+Na)⁺: 343.1158, found: 343.1153.

4.2.3. *Methyl* 3-(3,5-*dimethoxyphenyl*)-4-*methoxycarbonyl*-2*methylene*-5-*oxohexanoate* (**9***c*). Reaction time: 15 min+6 h; yield: 93%; R_f (40% EtOAc in hexanes) 0.38; colorless solid; mp: 76–79 °C; IR (KBr): ν 1747, 1714, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 2.02 & 2.26 (2s, 3H), 3.54, 3.69, 3.700 & 3.706 (4s, 6H), 3.750 & 3.753 (2s, 6H), 4.36 & 4.37 (2d, 1H, *J*=12.4 Hz), 4.64 & 4.67 (2d, 1H, *J*=12.4 Hz), 5.67 & 5.72 (2s, 1H), 6.25–6.33 (m, 2H), 6.39 (d, 1H, *J*=2.4 Hz), 6.41 (d, 1H, *J*=2.0 Hz), ¹³C NMR (100 MHz): δ 29.05, 30.81, 46.08, 46.21, 52.07, 52.13, 52.60, 52.71, 55.26, 63.23, 64.38, 98.95, 99.00, 106.34, 106.65, 124.55, 125.58, 140.43, 140.92, 141.08, 141.29, 160.65, 160.77, 166.31, 166.47, 167.94, 201.28, 201.41; HRMS (ESI) exact mass calcd for C₁₈H₂₂O₇Na⁺ (M+Na)⁺: 373.1263, found: 373.1266.

4.2.4. Methyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3,4,5-trimethoxyphenyl)hexanoate (**9d**). Reaction time: (15 min+6 h); yield: 88%; R_f (50% EtOAc in hexanes) 0.48; colorless solid; mp: 64–65 °C; IR (KBr): ν 1747, 1718, 1625 cm⁻¹; ¹H NMR (400 MHz): δ 2.01 & 2.27 (2s, 3H), 3.53, 3.70, 3.71 & 3.72 (4s, 6H), 3.79 & 3.80 (2s, 3H), 3.824 & 3.827 (2s, 6H), 4.39 & 4.40 (2d, 1H, *J*=12.4 Hz), 4.64 & 4.66 (2d, 1H, *J*=12.4 Hz), 5.69 & 5.74 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.46 & 6.48 (2s, 2H); ¹³C NMR (100 MHz): δ 28.97, 30.75, 46.32, 46.46, 52.05, 52.10, 52.56, 52.68, 56.00, 56.05, 60.70, 63.23, 64.35, 105.16, 105.43, 124.36, 125.39, 133.96, 134.36, 136.93, 137.03, 140.45, 141.07, 152.94, 153.09, 166.30, 166.47, 167.87, 167.94, 201.17, 201.45; HRMS (ESI) exact mass calcd for C₁₉H₂₄O₈Na⁺ (M+Na)⁺: 403.1369, found: 403.1366.

4.2.5. Ethyl 3-(3,5-dimethoxyphenyl)-4-methoxycarbonyl-2methylene-5-oxohexanoate (**9e**). Reaction time: (15 min+6 h); yield: 94%; R_f (40% EtOAc in hexanes) 0.46; colorless viscous liquid; IR (neat): ν 1745, 1718, 1625 cm⁻¹; ¹H NMR (400 MHz): δ 1.23 & 1.24 (2t, 3H, *J*=7.2 Hz), 2.01 & 2.26 (2s, 3H), 3.54 & 3.69 (2s, 3H), 3.74 & 3.75 (2s, 6H), 4.07–4.22 (m, 2H), 4.36 (d, 1H, *J*=12.4 Hz), 4.60–4.70 (m, 1H), 5.65 & 5.70 (2s, 1H), 6.25–6.32 (m, 2H), 6.39 (d, 1H, *J*=2.0 Hz), 6.41 (d, 1H, J=2.0 Hz); ¹³C NMR (100 MHz): δ 14.02, 29.01, 30.81, 46.09, 46.23, 52.54, 52.65, 55.22, 60.97, 61.04, 63.21, 64.35, 98.93, 98.98, 106.35, 106.67, 124.24, 125.30, 140.66, 141.00, 141.30, 141.38, 160.61, 160.72, 165.82, 165.99, 167.96, 201.28, 201.46; HRMS (ESI) exact mass calcd for C₁₉H₂₄O₇Na⁺ (M+Na)⁺: 387.1420, found: 387.1417.

4.2.6. Ethyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3,4,5-trimethoxyphenyl)hexanoate (**9f**). Reaction time: (15 min+6 h); yield: 89%; R_f (50% EtOAc in hexanes) 0.55; colorless viscous liquid; IR (neat): ν 1745, 1716, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 1.24 & 1.25 (2t, 3H, *J*=6.8 Hz), 2.00 & 2.27 (2s, 3H), 3.53 & 3.70 (2s, 3H), 3.79, 3.80 & 3.82 (3s, 9H), 4.07–4.26 (m, 2H), 4.38 (d, 1H, *J*=12.4 Hz), 4.64 & 4.65 (2d, 1H, *J*=12.0 Hz), 5.66 & 5.71 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.46 & 6.48 (2s, 2H); ¹³C NMR (100 MHz): δ 14.02, 28.97, 30.81, 46.38, 46.52, 52.55, 52.67, 56.01, 56.06, 60.73, 61.00, 61.06, 63.27, 64.39, 105.22, 105.50, 124.09, 125.15, 134.10, 134.50, 136.95, 137.05, 140.72, 141.34, 152.94, 153.09, 165.87, 166.04, 167.90, 168.00, 201.21, 201.54; HRMS (ESI) exact mass calcd for C₂₀H₂₆O₈Na⁺ (M+Na)⁺: 417.1525, found: 417.1528.

4.2.7. *Methyl* 3-(3,5-*dimethoxyphenyl*)-4-*ethoxycarbonyl*-2*methylene*-5-*oxohexanoate* (**9g**). Reaction time: (15 min+6 h); yield: 91%; R_f (40% EtOAc in hexanes) 0.46; colorless solid, mp: 59–61 °C; IR (KBr): ν 1741, 1712, 1625 cm⁻¹; ¹H NMR (400 MHz): δ 1.04 & 1.22 (2t, 3H, *J*=7.2 Hz), 2.03 & 2.26 (2s, 3H), 3.701 & 3.707 (2s, 3H), 3.75 (s, 6H), 3.98 & 4.15 (2q, 2H, *J*=7.2 Hz), 4.34 & 4.35 (2d, 1H, *J*=12.0 Hz), 4.65 (d, 1H, *J*=12.4 Hz), 5.67 & 5.74 (2s, 1H), 6.23–6.35 (m, 2H), 6.37–6.46 (m, 2H); ¹³C NMR (100 MHz): δ 13.80, 14.00, 28.98, 30.70, 46.04, 46.09, 52.04, 52.10, 55.26, 61.55, 61.67, 63.48, 64.53, 98.95, 99.03, 106.51, 106.63, 124.59, 125.40, 140.60, 141.09, 141.14, 141.31, 160.63, 160.76, 166.34, 166.51, 167.47, 201.36, 201.42; HRMS (ESI) exact mass calcd for C₁₉H₂₄O₇Na⁺ (M+Na)⁺: 387.1420, found: 387.1418.

4.2.8. Methyl 4-ethoxycarbonyl-2-methylene-5-oxo-3-(3,4,5-trimethoxyphenyl)hexanoate (**9h**). Reaction time: (15 min+6 h); yield: 93%; R_f (50% EtOAc in hexanes) 0.56; colorless low melting solid; mp: 48–50 °C; IR (neat): ν 1747, 1718, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 1.02 & 1.23 (2t, 3H, *J*=7.2 Hz), 2.02 & 2.27 (2s, 3H), 3.71 & 3.72 (2s, 3H), 3.79 & 3.82 (2s, 9H), 3.97 & 4.16 (2q, 2H, *J*=7.2 Hz), 4.37 & 4.38 (2d, 1H, *J*=12.4 Hz), 4.65 (d, 1H, *J*=12.4 Hz), 5.69 & 5.75 (2s, 1H), 6.26 & 6.29 (2s, 1H), 6.47 & 6.49 (2s, 2H); ¹³C NMR (100 MHz): δ 13.82, 14.00, 28.94, 30.70, 46.36, 46.39, 52.08, 52.13, 56.07, 56.10, 60.76, 61.54, 61.70, 63.55, 64.55, 105.40, 105.48, 124.43, 125.24, 134.16, 134.44, 137.04, 140.64, 141.19, 152.96, 153.13, 166.37, 166.54, 167.40, 167.55, 201.30, 201.51; HRMS (ESI) exact mass calcd for C₂₀H₂₆O₈Na⁺ (M+Na)⁺: 417.1525, found: 417.1527.

4.2.9. Ethyl 3-(3,5-dimethoxyphenyl)-4-ethoxycarbonyl-2methylene-5-oxohexanoate (**9i**). Reaction time: (15 min+6 h); yield: 92%; R_f (40% EtOAc in hexanes) 0.37; colorless viscous liquid; IR (neat): ν 1741, 1716, 1625 cm⁻¹; ¹H NMR (400 MHz): δ [1.03 (t, J=7.2 Hz) & 1.19–1.29 (m) (6H)], 2.02 & 2.27 (2s, 3H), 3.74 (s, 6H), 3.98 (q, 1H, J=7.2 Hz), 4.07–4.22 (m, 3H), 4.33 & 4.35 (2d, 1H, J=12.0 Hz), 4.64 & 4.65 (2d, 1H, J=12.0 Hz), 5.65 & 5.71 (2s, 1H), 6.24–6.33 (m, 2H), 6.40 & 6.42 (2d, 2H, J=2.0 Hz); ¹³C NMR (100 MHz): δ 13.76, 13.96, 14.02, 28.93, 30.70, 46.03, 46.10, 55.21, 60.93, 61.01, 61.49, 61.60, 63.44, 64.48, 98.91, 98.98, 106.50, 106.64, 124.26, 125.10, 140.80, 141.14, 141.36, 160.57, 160.70, 165.82, 166.00, 167.44, 167.48, 201.35, 201.46; HRMS (ESI) exact mass calcd for C₂₀H₂₆O₇Na⁺ (M+Na)⁺: 401.1576, found: 401.1578.

4.2.10. Ethyl 4-ethoxycarbonyl-2-methylene-5-oxo-3-(3,4,5trimethoxyphenyl)hexanoate (**9***j*). Reaction time: (15 min+6 h); yield: 90%; R_f (50% EtOAc in hexanes) 0.51; colorless low melting solid; mp: 45–47 °C; IR (neat): ν 1743, 1716, 1630 cm⁻¹; ¹H NMR (400 MHz): δ [1.01 (t, *J*=6.8 Hz) & 1.19–1.31 (m) (6H)], 2.01 & 2.27 (2s, 3H), 3.79, 3.821 & 3.825 (3s, 9H), 3.97 (q, 1H, *J*=6.8 Hz), 4.08–4.25 (m, 3H), 4.36 & 4.37 (2d, 1H, *J*=12.4 Hz), 4.62 (d, 1H, *J*=12.4 Hz), 5.66 & 5.73 (2s, 1H), 6.26 & 6.29 (2s, 1H), 6.46 & 6.49 (2s, 2H); ¹³C NMR (100 MHz): δ 13.75, 13.92, 14.00, 28.87, 30.68, 46.30, 46.35, 55.99, 60.67, 60.93, 61.00, 61.44, 61.60, 63.48, 64.47, 105.37, 105.46, 124.08, 124.89, 134.22, 134.51, 136.95, 140.83, 141.36, 152.87, 153.03, 165.84, 166.01, 167.34, 167.52, 201.23, 201.52; HRMS (ESI) exact mass calcd for C₂₁H₂₈O₈Na⁺ (M+Na)⁺: 431.1682, found: 431.1684.

4.2.11. Methyl 3-(3-ethoxyphenyl)-4-methoxycarbonyl-2-methylene-5-oxohexanoate (**9**k). Reaction time: (15 min+6 h); yield: 92%; R_f (20% EtOAc in hexanes) 0.35; colorless solid; mp: 64–66 °C; IR (KBr): ν 1753, 1716, 1631 cm⁻¹; ¹H NMR (400 MHz): δ 1.39 (t, 3H, *J*=7.2 Hz), 1.98 & 2.27 (2s, 3H), 3.50, 3.68, 3.694 & 3.699 (4s, 6H), 3.98 & 3.99 (2q, 2H, *J*=6.8 Hz), 4.37 & 4.38 (2d, 1H, *J*=12.4 Hz), 4.67 & 4.70 (2d, 1H, *J*=12.4 Hz), 5.68 & 5.73 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.69–6.87 (m, 3H), 7.12–7.21 (m, 1H); ¹³C NMR (100 MHz): δ 14.80, 29.02, 30.71, 46.05, 46.16, 52.06, 52.11, 52.55, 52.71, 63.36, 64.50, 113.15, 114.60, 114.94, 120.44, 120.61, 124.38, 125.40, 129.44, 129.63, 140.04, 140.41, 140.60, 141.24, 158.94, 159.05, 166.33, 166.49, 167.99, 168.06, 201.33, 201.44; HRMS (ESI) exact mass calcd for C₁₈H₂₂O₆Na⁺ (M+Na)⁺: 357.1314, found: 357.1318.

4.2.12. Methyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3-propoxyphenyl)hexanoate (**9**). Reaction time: (15 min+6 h); yield: 96%; R_f (20% EtOAc in hexanes) 0.36; colorless viscous liquid; IR (neat): ν 1741, 1722, 1635 cm⁻¹; ¹H NMR (400 MHz): δ 1.02 (t, 3H, J=7.2 Hz), 1.73–1.84 (m, 2H), 1.98 & 2.27 (2s, 3H), 3.50, 3.68, 3.694 & 3.698 (4s, 6H), 3.86 & 3.87 (2t, 2H, J=6.4 Hz), 4.37 & 4.39 (2d, 1H, J=12.4 Hz), 4.67 & 4.70 (2d, 1H, J=12.4 Hz), 5.68 & 5.74 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.70–6.87 (m, 3H), 7.12–7.20 (m, 1H); ¹³C NMR (100 MHz): δ 10.54, 22.57, 29.03, 30.74, 46.01, 46.14, 52.07, 52.12, 52.56, 52.73, 63.35, 64.50, 69.37, 113.17, 114.57, 114.88, 120.34, 120.52, 124.39, 125.41, 129.42, 129.60, 139.98, 140.35, 140.56, 141.21, 159.12, 159.22, 166.33, 166.48, 167.98, 168.05, 201.37, 201.49; HRMS (ESI) exact mass calcd for C₁₉H₂₄O₆Na⁺ (M+Na)⁺: 371.1471, found: 371.1472.

4.2.13. Ethyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2methylene-5-oxohexanoate (**9m**). Reaction time: (15 min+6 h); yield: 85%; R_f (20% EtOAc in hexanes) 0.37; colorless viscous liquid; IR (neat): ν 1747, 1718, 1625 cm⁻¹; ¹H NMR (400 MHz): δ 1.22 & 1.23 (2t, 3H, *J*=7.2 Hz), 1.98 & 2.27 (2s, 3H), 3.50 & 3.70 (2s, 3H), 3.76 & 3.77 (2s, 3H), 4.05–4.21 (m, 2H), 4.37 & 4.39 (2d, 1H, *J*=12.4 Hz), 4.67 & 4.70 (2d, 1H, *J*=12.0 Hz), 5.66 & 5.72 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.69–6.88 (m, 3H), 7.13–7.22 (m, 1H); ¹³C NMR (100 MHz): δ 14.00, 29.02, 30.74, 46.01, 46.13, 52.52, 52.69, 55.12, 60.98, 61.05, 63.27, 64.41, 112.45, 114.09, 114.46, 120.52, 120.70, 124.12, 125.15, 129.39, 129.56, 140.15, 140.51, 140.73, 141.37, 159.48, 159.58, 165.80, 165.96, 167.97, 168.01, 201.33, 201.48; HRMS (ESI) exact mass calcd for C₁₈H₂₂O₆Na⁺ (M+Na)⁺: 357.1314, found: 357.1316.

4.2.14. Ethyl 3-(3-ethoxyphenyl)-4-methoxycarbonyl-2-methylene-5-oxohexanoate (**9n**). Reaction time: (15 min+6 h); yield: 86%; R_f (20% EtOAc in hexanes) 0.38; colorless viscous liquid; IR (neat): ν 1743, 1718, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 1.221 & 1.229 (2t, 3H, J=7.2 Hz), 1.39 (t, 3H, J=6.8 Hz), 1.97 & 2.27 (2s, 3H), 3.50 & 3.70 (2s, 3H), 3.94–4.04 (m, 2H), 4.07–4.21 (m, 2H), 4.36 & 4.37 (2d, 1H, J=12.4 Hz), 4.66 & 4.69 (2d, 1H, J=12.0 Hz), 5.66 & 5.71 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.69–6.87 (m, 3H), 7.12–7.21 (m, 1H); ¹³C NMR (100 MHz): δ 13.99, 14.74, 28.99, 30.74, 45.98, 46.11, 52.49, 52.66, 60.95, 61.01, 63.26, 64.42, 113.04, 114.52, 114.87, 120.43, 120.62, 124.03, 125.08, 129.34, 129.52, 140.04, 140.41, 140.74, 141.38, 158.84, 158.94, 165.79, 165.95, 167.96, 168.01, 201.33, 201.51; HRMS (ESI) exact mass calcd for $C_{19}H_{24}O_6Na^+\ (M+Na)^+{:}\ 371.1471,$ found: 371.1481.

4.2.15. Ethyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3-propoxyphenyl)hexanoate (**90**). Reaction time: (15 min+6 h); yield: 91%; R_f (20% EtOAc in hexanes) 0.50; colorless viscous liquid; IR (neat): v 1747, 1718, 1625 cm⁻¹; ¹H NMR (400 MHz): δ 1.02 (t, 3H, J=7.6 Hz), 1.22 & 1.23 (2t, 3H, J=7.2 Hz), 1.72–1.84 (m, 2H), 1.97 & 2.27 (2s, 3H), 3.50 & 3.70 (2s, 3H), 3.86 & 3.87 (2t, 2H, J=6.4 Hz), 4.05–4.20 (m, 2H), 4.37 & 4.38 (2d, 1H, J=12.0 Hz), 4.62–4.73 (m, 1H), 5.66 & 5.71 (2s, 1H), 6.27 & 6.29 (2s, 1H), 6.68–6.86 (m, 3H), 7.12–7.20 (m, 1H); ¹³C NMR (100 MHz): δ 10.49, 14.00, 22.53, 28.99, 30.75, 46.00, 46.13, 52.50, 52.66, 60.97, 61.03, 63.29, 64.44, 69.31, 113.10, 114.55, 114.88, 120.35, 120.55, 124.06, 125.11, 129.32, 129.51, 140.02, 140.39, 140.75, 141.40, 159.05, 159.15, 165.82, 165.98, 167.98, 168.03, 201.37, 201.54; HRMS (ESI) exact mass calcd for C₂₀H₂₆O₆Na⁺ (M+Na)⁺: 385.1627, found: 385.1630.

4.2.16. Methyl (2Z)-2-(chloromethyl)-3-phenylprop-2-enoate (15). To a stirred solution of methyl 4-methoxycarbonyl-2methylene-5-oxo-3-phenylhexanoate (9a) (1 mmol, 0.290 g), in anhydrous dichloromethane (2 mL), TiCl₄ (2 mmol, 1 mL, 2 M solution in dichloromethane) was added at 0 °C. Reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was cooled to 0 °C and quenched with water (2 mL) and extracted with ethyl acetate (3×20 mL). Combined organic layer was dried over anhydrous Na₂SO₄. Solvent was evaporated and the residue thus obtained on purification by column chromatography (5% ethyl acetate in hexanes, silica gel) provided methyl (2Z)-2-(chloromethyl)-3-phenylprop-2-enoate (15) in (0.038 g) 18% isolated yield as a colorless liquid along with un-reacted starting material **9a** in (0.220 g) 76% recovered yield. This compound (**15**) is known in the literature. Spectral data of our compound are in agreement with the known data.^{9d}

Reaction time: 12 h; yield: 18%; R_f (10% EtOAc in hexanes) 0.44; colorless liquid; IR (neat): ν 1718, 1630 cm⁻¹; ¹H NMR (400 MHz): δ 3.80 (s, 3H), 4.39 (s, 2H), 7.29–7.43 (m, 3H), 7.47 (d, 2H, *J*=7.2 Hz), 7.80 (s, 1H); ¹³C NMR (100 MHz): δ 39.22, 52.56, 128.42, 128.95, 129.70, 129.80, 134.19, 143.89, 166.82.

4.2.17. Intramolecular Friedel-Crafts reaction of methyl 4methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxo-hexanoate (9b) with TiCl₄. To a stirred solution of methyl 4methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxo-hexanoate (9b) (1 mmol, 0.320 g), in anhydrous dichloromethane (2 mL), TiCl₄ (2 mmol, 1 mL, 2 M solution in dichloromethane) was added at 0 °C. After stirring at room temperature for 1 h, reaction mixture was cooled to 0 °C and guenched with water (2 mL) and extracted with ethyl acetate (3×20 mL). Combined organic layer was dried over anhydrous Na₂SO₄. Solvent was evaporated. Residue thus obtained was purified by column chromatography (5% EtOAc in hexanes, silica gel) to provide methyl 4-methoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylate(ortho-10b)(minor product) and methyl 6-methoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1Hindene-2-carboxylate (10b) (major product) in 20% (0.060 g) and 76% (0.230 g) isolated yields, respectively. ortho-Cyclization product (ortho-10b) eluted first (less polar) and para cyclized product (10b) eluted later (more polar).

4.2.17.1. Methyl 6-methoxy-1-(1-methoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (**10b**). Reaction time: 1 h; yield: 76%; R_f (20% EtOAc in hexanes) 0.39; colorless solid; mp: 88–90 °C; IR (KBr): ν 1708, 1693, 1630, 1602 cm⁻¹; ¹H NMR (400 MHz): δ 2.54 (d, 3H, J=2.0 Hz), 3.74 (s, 3H), 3.80 (s, 3H), 3.81 (s, 3H), 4.85 (s, 1H), 5.39 (s, 1H), 6.11 (s, 1H), 6.89 (dd, 1H, J=2.0 & 8.4 Hz), 6.93 (d, 1H, J=2.0 Hz), 7.37 (d, 1H, J=8.4 Hz); ¹³C NMR (100 MHz): δ 12.68, 50.88, 51.09, 52.16, 55.54, 109.39, 113.19, 122.28, 124.72, 130.62, 136.71, 139.09, 149.68, 152.91, 160.73, 165.66, 167.38; HRMS (ESI) exact mass calcd for $C_{17}H_{18}O_5Na^+$ (M+Na)⁺: 325.1052, found: 325.1054.

Crystal data for **10b**: empirical formula, $C_{17}H_{18}O_5$; formula weight, 302.31; crystal color, colorless; habit, block; crystal dimensions, $0.52 \times 0.40 \times 0.28 \text{ mm}^3$; crystal system, triclinic; lattice type, primitive; lattice parameters, a=9.6539(10) Å, b=9.7867(10) Å, c=10.5569(11) Å, $\alpha=68.543(2)$, $\beta=64.2280(10)$, $\gamma=61.3790(10)$; V=772.63(14) Å³; space group, p-1; Z=2; $D_{calcd}=1.299$ g/cm³; $F_{000}=320$; λ (Mo-K α)=0.71073 Å; $R(I \ge 2\sigma_1)=0.0473$, $wR^2=0.1276$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10b** CCDC # 903059).

4.2.17.2. Methyl 4-methoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylate (ortho-**10b**). Yield: 20%; *R*_f (20% EtOAc in hexanes) 0.45; pale yellow solid; mp: 76–77 °C; IR (KBr): *ν* 1720, 1703, 1620, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 2.77 (d, 3H, *J*=2.4 Hz), 3.73 (s, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 4.86 (d, 1H, *J*=2.0 Hz unresolved quartet), 5.38 (s, 1H), 6.09 (s, 1H), 6.80 (d, 1H, *J*=8.0 Hz), 6.94 (d, 1H, *J*=7.2 Hz), 7.22–7.30 (m, 1H); ¹³C NMR (100 MHz): δ 15.81, 51.08, 51.14, 52.15, 55.31, 109.52, 116.12, 124.59, 129.87, 130.88, 131.11, 139.15, 149.88, 154.33, 156.45, 165.79, 167.38; HRMS (ESI) exact mass calcd for C₁₇H₁₈O₅Na⁺ (M+Na)⁺: 325.1052, found: 325.1047.

*Crystal data for ortho***-10b**: empirical formula, C₁₇H₁₈O₅; formula weight, 302.31; crystal color, pale yellow; habit, block; crystal dimensions, $0.60 \times 0.38 \times 0.20 \text{ mm}^3$; crystal system, triclinic; lattice type, primitive; lattice parameters, a=8.9453(10) Å, b=9.4121(11) Å, c=10.5433(12) Å, α =106.120(2), β =108.691(2), γ =103.365(2); V=756.17(15) Å³; space group, p-1; Z=2; D_{calcd} =1.328 g/cm³; F_{000} =320; λ (Mo-K α)=0.71073 Å; $R(I \ge 2\sigma_1)$ =0.0456, wR^2 =0.1249. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound *ortho*-**10b** CCDC #903062).

4.2.18. Treatment of methyl 4-methoxycarbonyl-3-(3methoxyphenyl)-2-methylene-5-oxo-hexanoate (**9b**) with H_2SO_4 . To a stirred solution of methyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxohexanoate (9b) (1 mmol, 0.320 g), in anhydrous dichloromethane (2 mL), H₂SO₄ (2 mmol, 0.196 g) was added at 0 °C. After stirring at room temperature for 1 h, reaction mixture was cooled to 0 °C, quenched with water (2 mL) and extracted with ethyl acetate (3×20 mL). Combined organic layer was dried over anhydrous Na2SO4. Solvent was evaporated, residue thus obtained was subjected to column chromatography (5% EtOAc in hexanes, silica gel) to furnish methyl 4-methoxy-1-(1methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylate (ortho-10b) in 10%, (0.032 g), methyl 6-methoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1*H*-indene-2-carboxylate (**10b**) in 46% (0.139 g) and 6-methoxy-1-(1-methoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylic acid (16) in 35% (0.100 g) isolated yields.

Spectral data (IR, ¹H, ¹³C NMR) and mp of the compound **10b** & *ortho*-**10b** are in complete agreement with that prepared via the treatment of **9b** with methanesulfonic acid.

4.2.18.1. 6-Methoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylic acid (**16**). Yield: 35%; R_f (50% EtOAc in hexanes) 0.30; pale yellow solid; mp: 176–178 °C; IR (KBr): ν 2800–3200 (b), 1718, 1657, 1601 cm⁻¹; ¹H NMR (400 MHz): δ 2.58 (d, 3H, *J*=2.0 Hz), 3.80 (s, 3H), 3.82 (s, 3H), 4.85 (s, 1H), 5.47 (s, 1H), 6.15 (s, 1H), 6.90 (dd, 1H, *J*=2.4 & 8.4 Hz), 6.94 (s, 1H, unresolved doublet), 7.40 (d, 1H, *J*=8.4 Hz), 12.08 (br s, 1H); ¹³C NMR (100 MHz): δ 12.96, 50.91, 52.18, 55.56, 109.36, 113.42, 122.66, 125.05, 129.95, 136.53, 138.73, 150.19, 155.72, 161.09, 167.28, 170.82; HRMS (ESI) exact mass calcd for $C_{16}H_{16}O_5Na^+$ (M+Na)⁺: 311.0895, found: 311.0898.

4.2.19. *Methyl* 4,6-*dimethoxy*-1-(1-*methoxycarbonylethenyl*)-3*methyl*-1*H*-*indene*-2-*carboxylate* (**10c**). Reaction time: 0.5 h; yield: 94%; *R*_f (20% EtOAc in hexanes) 0.34; colorless solid; mp: 130–132 °C; IR (KBr): ν 1715, 1697, 1625, 1597 cm⁻¹; ¹H NMR (400 MHz): δ 2.73 (d, 3H, *J*=2.4 Hz), 3.71 (s, 3H), 3.80 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 4.81 (s, 1H), 5.37 (s, 1H), 6.09 (s, 1H), 6.36 (d, 1H, *J*=1.6 Hz), 6.51 (s, 1H); ¹³C NMR (100 MHz): δ 15.64, 50.91, 51.15, 52.16, 55.30, 55.59, 97.63, 100.57, 124.52, 124.69, 128.80, 139.43, 151.69, 154.72, 157.16, 162.09, 165.75, 167.54; HRMS (ESI) exact mass calcd for C₁₈H₂₀O₆Na⁺ (M+Na)⁺: 355.1158, found: 355.1155.

Crystal data for **10c**: empirical formula, $C_{18}H_{20}O_6$; formula weight, 332.34; crystal color, colorless; habit, block; crystal dimensions, $0.36 \times 0.32 \times 0.28$ mm³; crystal system, monoclinic; lattice type, C centered; lattice parameters, a=19.345(3) Å, b=9.5690(11) Å, c=21.222(4) Å, $\alpha=90.00$, $\beta=122.10(2)$, $\gamma=90.00$; V=3327.8(9) Å³; space group, C 1 2/c 1; Z=8; $D_{calcd}=1.327$ g/cm³; $F_{000}=1408$; λ (Mo-K α)=0.71073 Å; $R(I \ge 2\sigma_1)=0.0472$, $wR^2=0.1304$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10c** CCDC # 903060).

4.2.20. Methyl 1-(1-methoxycarbonylethenyl)-3-methyl-4,5,6trimethoxy-1H-indene-2-carboxylate (**10d**). Reaction time: 0.5 h; yield: 92%; R_f (20% EtOAc in hexanes) 0.36; pale yellow solid; mp: 80–83 °C; IR (KBr): ν 1710, 1699, 1625, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 2.73 (d, 3H, *J*=2.4 Hz), 3.72 (s, 3H), 3.81 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 3.95 (s, 3H), 4.79 (d, 1H, *J*=2.4 Hz, unresolved quartet), 5.38 (s, 1H), 6.10 (s, 1H), 6.70 (s, 1H); ¹³C NMR (100 MHz): δ 14.71, 50.97, 51.07, 52.11, 56.14, 60.87, 61.42, 103.12, 124.62, 128.59, 130.51, 139.25, 141.61, 144.47, 150.10, 153.73, 154.78, 165.49, 167.50; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₇Na⁺ (M+Na)⁺: 385.1263, found: 385.1261.

4.2.21. Methyl 4,6-dimethoxy-1-(1-ethoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (**10e**). Reaction time: 0.5 h; yield: 90%; R_f (20% EtOAc in hexanes) 0.38; colorless solid; mp: 70–72 °C; IR (KBr): ν 1714, 1697, 1625, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.28 (t, 3H, *J*=7.2 Hz), 2.72 (d, 3H, *J*=2.4 Hz), 3.71 (s, 3H), 3.79 (s, 3H), 3.84 (s, 3H), 4.19–4.29 (m, 2H), 4.80 (m, 1H, unresolved quartet), 5.38 (s, 1H), 6.11 (s, 1H), 6.36 (d, 1H, *J*=2.0 Hz), 6.52 (s, 1H); ¹³C NMR (100 MHz): δ 14.11, 15.50, 50.75, 51.22, 55.18, 55.43, 60.79, 97.51, 100.42, 124.48, 128.70, 139.61, 151.59, 154.50, 157.05, 161.98, 165.63, 166.89; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₆Na⁺ (M+Na)⁺: 369.1314, found: 369.1316.

Crystal data for **10e**: empirical formula, C₁₉H₂₂O₆; formula weight, 346.37; crystal color, colorless; habit, block; crystal dimensions, 0.44×0.36×0.20 mm³; crystal system, monoclinic; lattice type, primitive; lattice parameters, *a*=12.2022(12) Å, *b*=8.4746(9) Å, *c*=17.6407(18) Å, *α*=90.00, *β*=102.136(2), *γ*=90.00; *V*=1783.4(3) Å³; space group, *P*2(1)/*c*; *Z*=4; *D*_{calcd}=1.290 g/cm³; *F*₀₀₀=736; λ (Mo-K α)=0.71073 Å; *R*(*I*≥2 σ ₁)=0.0616, *wR*²=0.1635. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10e** CCDC # 903061).

4.2.22. Methyl 1-(1-ethoxycarbonylethenyl)-3-methyl-4,5,6trimethoxy-1H-indene-2-carboxylate (**10f**). Reaction time: 0.5 h; yield: 93%; R_f (20% EtOAc in hexanes) 0.31; colorless solid; mp: 100–103 °C; IR (KBr): ν 1706, 1615, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.28 (t, 3H, *J*=7.2 Hz), 2.73 (d, 3H, *J*=2.4 Hz), 3.73 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 3.95 (s, 3H), 4.23 (q, 2H, *J*=7.2 Hz), 4.78 (s, 1H), 5.41 (s, 1H), 6.13 (s, 1H), 6.71 (s, 1H); ¹³C NMR (100 MHz): δ 14.17, 14.71, 50.97, 51.30, 56.15, 60.90, 61.44, 103.11, 124.72, 128.66, 130.52, 139.47, 141.62, 144.47, 150.11, 153.66, 154.76, 165.54, 166.98; HRMS (ESI) exact mass calcd for $C_{20}H_{24}O_7Na^+\,(M+Na)^+$: 399.1420, found: 399.1422.

4.2.23. Ethyl 4,6-dimethoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylate (**10**g). Reaction time: 0.5 h; yield: 95%; R_f (20% EtOAc in hexanes) 0.37; brick red color solid; mp: 74–76 °C; IR (KBr): ν 1728, 1678, 1620, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.25 (t, 3H, *J*=6.8 Hz), 2.73 (s, 3H), 3.801 (s, 3H), 3.807 (s, 3H), 3.84 (s, 3H), 4.07–4.28 (m, 2H), 4.81 (s, 1H), 5.36 (s, 1H), 6.10 (s, 1H), 6.36 (s, 1H), 6.49 (s, 1H); ¹³C NMR (100 MHz): δ 14.25, 15.52, 51.04, 52.07, 55.25, 55.54, 59.55, 97.57, 100.50, 124.61, 124.72, 129.18, 139.56, 151.76, 154.38, 157.08, 162.00, 165.24, 167.49; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₆Na⁺ (M+Na)⁺: 369.1314, found: 369.1317.

4.2.24. Ethyl 1-(1-methoxycarbonylethenyl)-3-methyl-4,5,6trimethoxy-1H-indene-2-carboxylate (**10h**). Reaction time: 0.5 h; yield: 91%; R_f (20% EtOAc in hexanes) 0.39; colorless solid; mp: 72–74 °C; IR (KBr): ν 1720, 1691, 1615, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.25 (t, 3H, *J*=7.2 Hz), 2.73 (d, 3H, *J*=2.4 Hz), 3.81 (s, 3H), 3.85 (s, 3H), 3.86 (s, 3H), 3.95 (s, 3H), 4.10–4.29 (m, 2H), 4.80 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.37 (s, 1H), 6.11 (s, 1H), 6.69 (s, 1H); ¹³C NMR (100 MHz): δ 14.19, 14.63, 50.97, 52.05, 56.11, 59.68, 60.84, 61.39, 103.07, 124.70, 128.70, 130.90, 139.36, 141.57, 144.56, 150.02, 153.40, 154.70, 165.00, 167.46; HRMS (ESI) exact mass calcd for C₂₀H₂₄O₇Na⁺ (M+Na)⁺: 399.1420, found: 399.1422.

Crystal data for **10h**: empirical formula, C₂₀H₂₄O₇; formula weight, 376.39; crystal color, colorless; habit, block; crystal dimensions, 0.52×0.40×0.28 mm³; crystal system, monoclinic; lattice type, primitive; lattice parameters, *a*=10.0264(11) Å, *b*=16.1212(17) Å, *c*=12.7802(13) Å, α=90.00, β=107.732(2), γ=90.00; V=1967.6(4) Å³; space group, P2(1)/*c*; *Z*=4; *D*_{calcd}=1.271 g/cm³; *F*₀₀₀=800; λ (Mo-Kα)=0.71073 Å; *R*(*I*≥2*σ*₁)=0.0852, *wR*²=0.1666 Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10h** CCDC # 903070).

4.2.25. Ethyl 4,6-dimethoxy-1-(1-ethoxycarbonylethenyl)-3-methyl-1H-indene-2-carboxylate (**10i**). Reaction time: 0.5 h; yield: 94%; R_f (20% EtOAc in hexanes) 0.41; brick red color solid; mp: 56–58 °C; IR (KBr): ν 1716, 1689, 1620, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.25 (t, 3H, *J*=7.2 Hz), 1.28 (t, 3H, *J*=7.2 Hz), 2.73 (d, 3H, *J*=2.0 Hz), 3.79 (s, 3H), 3.84 (s, 3H), 4.08–4.30 (m, 4H), 4.80 (s, 1H), 5.38 (s, 1H), 6.12 (s, 1H), 6.36 (s, 1H), 6.50 (s, 1H); ¹³C NMR (100 MHz): δ 14.19, 14.28, 15.53, 51.27, 55.30, 55.56, 59.56, 60.86, 97.61, 100.48, 124.69, 129.17, 139.77, 151.78, 154.35, 157.10, 161.99, 165.30, 167.01; HRMS (ESI) exact mass calcd for C₂₀H₂₄O₆Na⁺ (M+Na)⁺: 383.1471, found: 383.1473.

4.2.26. Ethyl 1-(1-ethoxycarbonylethenyl)-3-methyl-4,5,6trimethoxy-1H-indene-2-carboxylate (**10***j*). Reaction time: 0.5 h; yield: 93%; R_f (20% EtOAc in hexanes) 0.39; pale yellow solid; mp: 39–40 °C; IR (KBr): ν 1709, 1697, 1616, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.26 (t, 3H, *J*=7.2 Hz), 1.27 (t, 3H, *J*=7.2 Hz), 2.73 (d, 3H, *J*=2.4 Hz), 3.85 (s, 3H), 3.86 (s, 3H), 3.95 (s, 3H), 4.10–4.31 (m, 4H), 4.77 (d, 1H, *J*=2.4 Hz, unresolved quartet), 5.40 (s, 1H), 6.14 (d, 1H, *J*=0.8 Hz), 6.70 (d, 1H, *J*=0.4 Hz); ¹³C NMR (100 MHz): δ 14.10, 14.18, 14.59, 51.24, 56.08, 59.63, 60.79, 60.82, 61.37, 103.03, 124.73, 128.71, 130.82, 139.53, 141.55, 144.49, 150.00, 153.30, 154.65, 165.01, 166.91; HRMS (ESI) exact mass calcd for C₂₁H₂₆O₇Na⁺ (M+Na)⁺: 413.1576, found: 413.1574.

4.2.27. Reaction of methyl 3-(3-ethoxyphenyl)-4-methoxycarbonyl-2methylene-5-oxohexanoate (**9k**) with TiCl₄. Treatment of methyl 3-(3-ethoxyphenyl)-4-methoxycarbonyl-2-methylene-5-oxohexanoate (**9k**) with TiCl₄ in dichloromethane following the similar procedure described for obtaining **10b** and *ortho*-**10b** (from **9b**), provided methyl 6-ethoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1*H*-indene-2-carboxylate (**10k**) (major product) and methyl 4-ethoxy-1-(1-methoxycarbonylethenyl)-3-methyl-1*H*-indene-2-carboxylate (*ortho*-**10k**) (minor product) in 73% and 21% isolated yields, respectively, after purification through column chromatography (5% EtOAc in hexanes, silica gel). *ortho*-Cyclization product (*ortho*-**10k**) eluted later (more polar).

4.2.27.1. Methyl 6-ethoxy-1-(1-methoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (**10k**). Reaction time: 1 h; yield: 73%; R_f (20% EtOAc in hexanes) 0.49; colorless solid; mp: 77–79 °C; IR (KBr): ν 1724, 1685, 1620, 1602 cm⁻¹; ¹H NMR (400 MHz): δ 1.41 (t, 3H, *J*=7.2 Hz), 2.54 (d, 3H, *J*=2.0 Hz), 3.74 (s, 3H), 3.80 (s, 3H), 4.03 (q, 2H, *J*=7.2 Hz), 4.84 (s, 1H), 5.38 (s, 1H), 6.10 (s, 1H), 6.87 (dd, 1H, *J*=2.4 & 8.4 Hz), 6.92 (d, 1H, *J*=1.2 Hz), 7.36 (d, 1H, *J*=8.4 Hz); ¹³C NMR (100 MHz): δ 12.71, 14.85, 50.88, 51.11, 52.19, 63.77, 110.00, 113.63, 122.30, 124.72, 130.53, 136.58, 139.13, 149.70, 153.03, 160.14, 165.73, 167.41; HRMS (ESI) exact mass calcd for C₁₈H₂₀O₅Na⁺ (M+Na)⁺: 339.1208, found: 339.1217.

Crystal data for **10k**: empirical formula, $C_{18}H_{20}O_5$; formula weight, 316.34; crystal color, pale yellow; habit, plate; crystal dimensions, $0.60 \times 0.28 \times 0.08 \text{ mm}^3$; crystal system, triclinic; lattice type, primitive; lattice parameters, a=5.7636(8) Å, b=9.3432(13) Å, c=15.310(2) Å, $\alpha=91.482(2)$, $\beta=92.853(3)$, $\gamma=91.267(2)$; V=822.9(2)Å³; space group, P-1; Z=2; $D_{calcd}=1.277 \text{ g/cm}^3$; $F_{000}=336$; λ (Mo-K α)=0.71073 Å; $R(I \ge 2\sigma_1)=0.0622$, $wR^2=0.1638$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10k** CCDC # 903071).

4.2.27.2. Methyl 4-ethoxy-1-(1-methoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (ortho-**10k**). Yield: 21%; R_f (20% EtOAc in hexanes) 0.56; pale yellow solid; mp: 75–76 °C; IR (KBr): ν 1722, 1697, 1620, 1597 cm⁻¹; ¹H NMR (400 MHz): δ 1.47 (t, 3H, J=6.8 Hz), 2.78 (d, 3H, J=2.0 Hz), 3.73 (s, 3H), 3.80 (s, 3H), 4.09 (q, 2H, J=6.8 Hz), 4.86 (s, 1H), 5.37 (s, 1H), 6.08 (s, 1H), 6.77 (d, 1H, J=8.4 Hz), 6.92 (d, 1H, J=7.6 Hz), 7.19–7.26 (m, 1H); ¹³C NMR (100 MHz): δ 14.84, 15.80, 51.06, 52.15, 63.72, 110.26, 115.95, 124.53, 129.84, 130.79, 131.04, 139.20, 149.88, 154.54, 155.84, 165.82, 167.40; HRMS (ESI) exact mass calcd for C₁₈H₂₀O₅Na⁺ (M+Na)⁺: 339.1208, found: 339.1204.

Crystal data for ortho-**10k**: empirical formula, $C_{18}H_{20}O_5$; formula weight, 316.34; crystal color, pale yellow; habit, block; crystal dimensions, $0.36 \times 0.32 \times 0.32 \text{ mm}^3$; crystal system, triclinic; lattice type, primitive; lattice parameters, a=6.965(4) Å, b=7.746(4) Å, c=15.540(8) Å, $\alpha=78.010(9)$, $\beta=89.915(10)$, $\gamma=80.114(9)$; V=807.4(7) Å³; space group, P-1; Z=2; $D_{calcd}=1.301 \text{ g/cm}^3$; $F_{000}=336$; λ (Mo-K α)=0.71073 Å; $R(I \ge 2\sigma_1)=0.0499$, $wR^2=0.1372$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound *ortho*-**10k** CCDC # 903073).

4.2.28. Treatment of methyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3-propoxyphenyl)hexanoate (**9I**) with TiCl₄. Reaction of methyl 4methoxycarbonyl-2-methylene-5-oxo-3-(3-propoxyphenyl)hexanoate (**9I**) with TiCl₄ in dichloromethane following the similar procedure described for obtaining **10b** and *ortho*-**10b** (from **9b**), gave methyl 1-(1-methoxycarbonylethenyl)-3-methyl-6-propoxy-1H-indene-2-carboxylate (**10I**) (major product) and methyl 1-(1methoxycarbonylethenyl)-3-methyl-4-propoxy-1H-indene-2carboxylate (*ortho*-**10I**) (minor product) in 75% and 19% isolated yields, respectively, after purification through column chromatography (5% EtOAc in hexanes, silica gel). *ortho*-Cyclization product (*ortho*-**10I**) eluted first (less polar) and *para* cyclized product (**10I**) eluted later (more polar).

4.2.28.1. Methyl 1-(1-methoxycarbonylethenyl)-3-methyl-6propoxy-1H-indene-2-carboxylate (**10**). Reaction time: 1 h; yield: 75%; R_f (20% EtOAc in hexanes) 0.44; pale yellow solid; mp: 74–76 °C; IR (KBr): ν 1722, 1685, 1620, 1602 cm⁻¹; ¹H NMR (400 MHz): δ 1.03 (t, 3H, *J*=7.2 Hz), 1.75–1.86 (m, 2H), 2.54 (d, 3H, *J*=2.4 Hz), 3.74 (s, 3H), 3.80 (s, 3H), 3.92 (t, 2H, *J*=6.4 Hz), 4.84 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.38 (s, 1H), 6.10 (s, 1H), 6.88 (dd, 1H, *J*=2.4 & 8.4 Hz), 6.92 (d, 1H, *J*=2.4 Hz), 7.36 (d, 1H, *J*=8.4 Hz); ¹³C NMR (100 MHz): δ 10.54, 12.65, 22.59, 50.82, 51.04, 52.13, 69.73, 109.97, 113.59, 122.23, 124.65, 130.46, 136.47, 139.11, 149.64, 152.97, 160.31, 165.66, 167.37; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₅Na⁺ (M+Na)⁺: 353.1365, found: 353.1373.

4.2.28.2. Methyl 1-(1-methoxycarbonylethenyl)-3-methyl-4-propoxy-1H-indene-2-carboxylate (ortho-**10l**). Yield: 19%; R_f (20% EtOAc in hexanes) 0.53; pale yellow solid; mp: 79–80 °C; IR (KBr): ν 1718, 1697, 1610, 1597 cm⁻¹; ¹H NMR (400 MHz): δ 1.09 (t, 3H, J=7.2 Hz), 1.82–1.93 (m, 2H), 2.79 (d, 3H, J=2.4 Hz), 3.73 (s, 3H), 3.80 (s, 3H), 3.99 (t, 2H, J=6.0 Hz), 4.86 (d, 1H, J=2.0 Hz, unresolved quartet), 5.38 (s, 1H), 6.08 (s, 1H), 6.78 (d, 1H, J=8.4 Hz), 6.92 (d, 1H, J=7.6 Hz), 7.19–7.26 (m, 1H); ¹³C NMR (100 MHz): δ 10.88, 15.83, 22.67, 51.00, 51.14, 52.09, 69.65, 110.16, 115.90, 124.46, 129.83, 130.83, 131.08, 139.27, 149.89, 154.40, 156.00, 165.78, 167.38; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₅Na⁺ (M+Na)⁺: 353.1365, found: 353.1367.

4.2.29. Treatment of ethyl 4-methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxohexanoate (**9m**) with TiCl₄. Reaction of ethyl 4methoxycarbonyl-3-(3-methoxyphenyl)-2-methylene-5-oxohexanoate (**9m**) with TiCl₄ in dichloromethane following the similar procedure described for obtaining **10b** and *ortho*-**10b** (from **9b**), furnished methyl 1-(1-ethoxycarbonylethenyl)-6-methoxy-3methyl-1*H*-indene-2-carboxylate (**10m**) (major product) and methyl 1-(1-ethoxycarbonylethenyl)-4-methoxy-3-methyl-1*H*indene-2-carboxylate (*ortho*-**10m**) (minor product) in 74% and 20% isolated yields, respectively, after purification through column chromatography (5% EtOAc in hexanes, silica gel). *ortho*-Cyclization product (*ortho*-**10m**) eluted first (less polar) and *para* cyclized product (**10m**) eluted later (more polar).

4.2.29.1. Methyl 1-(1-ethoxycarbonylethenyl)-6-methoxy-3methyl-1H-indene-2-carboxylate (**10m**). Reaction time: 1 h; yield: 74%; R_f (20% EtOAc in hexanes) 0.50; pale yellow solid; mp: 60–62 °C; IR (KBr): ν 1709, 1695, 1620, 1602 cm⁻¹; ¹H NMR (400 MHz): δ 1.27 (t, 3H, *J*=7.2 Hz), 2.54 (d, 3H, *J*=2.0 Hz), 3.74 (s, 3H), 3.81 (s, 3H), 4.18–4.28 (m, 2H), 4.83 (s, 1H), 5.41 (s, 1H), 6.13 (s, 1H), 6.88 (dd, 1H, *J*=2.0 & 8.4 Hz), 6.93 (d, 1H, *J*=1.6 Hz, not properly resolved), 7.37 (d, 1H, *J*=8.4 Hz); ¹³C NMR (100 MHz): δ 12.60, 14.13, 51.00, 55.47, 60.87, 109.26, 113.19, 122.17, 124.65, 130.61, 136.71, 139.30, 149.64, 152.76, 160.69, 165.62, 166.81; HRMS (ESI) exact mass calcd for C₁₈H₂₀O₅Na⁺ (M+Na)⁺: 339.1208, found: 339.1213.

Crystal data for **10m**: empirical formula, C₁₈H₂₀O₅; formula weight, 316.34; crystal color, pale yellow; habit, block; crystal dimensions, 0.40×0.36×0.32 mm³; crystal system, triclinic; lattice type, primitive; lattice parameters, *a*=8.4689(13) Å, *b*=9.7195(15) Å, *c*=10.6243(16) Å, *α*=81.293(3), *β*=88.068(3), γ =72.963(3); *V*=826.5(2) Å³; space group, *P*-1; *Z*=2; *D*_{calcd}=1.271 g/cm³; *F*₀₀₀=336; λ (Mo-K α)=0.71073 Å; *R*(*I*≥2 σ 1)= 0.0500, *wR*²=0.1288. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound **10m** CCDC # 903072).

4.2.29.2. Methyl 1-(1-ethoxycarbonylethenyl)-4-methoxy-3methyl-1H-indene-2-carboxylate (ortho-**10m**). Yield: 20%; R_f (20% EtOAc in hexanes) 0.58; pale yellow solid; mp: 44–46 °C; IR (KBr): ν 1716, 1697, 1625, 1601 cm⁻¹; ¹H NMR (400 MHz): δ 1.27 (t, 3H, *J*=7.2 Hz), 2.76 (d, 3H, *J*=2.4 Hz), 3.73 (s, 3H), 3.87 (s, 3H), 4.22 (q, 2H, *J*=7.2 Hz), 4.85 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.39 (s, 1H), 6.11 (s, 1H), 6.80 (d, 1H, *J*=8.4 Hz), 6.95 (d, 1H, *J*=7.6 Hz), 7.22–7.28 (m, 1H); ¹³C NMR (100 MHz): δ 14.15, 15.77, 51.03, 51.28, 55.30, 60.89, 109.47, 116.09, 124.59, 129.80, 130.93, 131.16, 139.37, 149.89, 154.19, 156.42, 165.79, 166.85; HRMS (ESI) exact mass calcd for C₁₈H₂₀O₅Na⁺ (M+Na)⁺: 339.1208, found: 339.1205.

4.2.30. Treatment of ethyl 3-(3-ethoxyphenyl)-4-methoxycarbonyl-2-methylene-5-oxohexanoate (**9n**) with TiCl₄. Reaction of ethyl 3-(3ethoxyphenyl)-4-methoxycarbonyl-2-methylene-5-oxohexanoate (**9n**) with TiCl₄ in dichloromethane following the similar procedure described for obtaining **10b** and *ortho*-**10b** (from **9b**), provided methyl 6-ethoxy-1-(1-ethoxycarbonylethenyl)-3-methyl-1*H*-indene-2-carboxylate (**10n**) (major product) and methyl 4-ethoxy-1-(1-ethoxycarbonylethenyl)-3-methyl-1*H*-indene-2-carboxylate (*ortho*-**10n**) (minor product) in 76% and 18% isolated yields, respectively, after purification through column chromatography (5% EtOAc in hexanes, silica gel). *ortho*-Cyclization product (*ortho*-**10n**) eluted first (less polar) and *para* cyclized product (**10n**) eluted later (more polar).

4.2.30.1. Methyl 6-ethoxy-1-(1-ethoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (**10n**). Reaction time: 1 h; yield: 76%; R_f (20% EtOAc in hexanes) 0.40; pale yellow solid; mp: 58–60 °C; IR (KBr): ν 1718, 1685, 1615, 1604 cm⁻¹; ¹H NMR (400 MHz): δ 1.26 (t, 3H, *J*=7.2 Hz), 1.40 (t, 3H, *J*=7.2 Hz), 2.53 (d, 3H, *J*=2.0 Hz), 3.74 (s, 3H), 4.03 (q, 2H, *J*=7.2 Hz), 4.18–4.27 (m, 2H), 4.82 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.40 (s, 1H), 6.12 (s, 1H), 6.87 (dd, 1H, *J*=2.0 & 8.4 Hz), 6.92 (d, 1H, *J*=2.0 Hz), 7.36 (d, 1H, *J*=8.4 Hz); ¹³C NMR (100 MHz): δ 12.62, 14.14, 14.79, 51.01, 60.87, 63.69, 109.86, 113.64, 122.18, 124.65, 130.54, 136.58, 139.35, 149.66, 152.84, 160.08, 165.66, 166.83; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₅Na⁺ (M+Na)⁺: 353.1365, found: 353.1369.

4.2.30.2. Methyl 4-ethoxy-1-(1-ethoxycarbonylethenyl)-3methyl-1H-indene-2-carboxylate (ortho-**10n**). Yield: 18%; R_f (20% EtOAc in hexanes) 0.48; pale yellow solid; mp: 43–45 °C; IR (KBr): ν 1712, 1630, 1597 cm⁻¹; ¹H NMR (400 MHz): δ 1.27 (t, 3H, *J*=7.2 Hz), 1.46 (t, 3H, *J*=6.8 Hz), 2.78 (d, 3H, *J*=2.4 Hz), 3.73 (s, 3H), 4.09 (q, 2H, *J*=7.2 Hz), 4.22 (q, 2H, *J*=6.8 Hz, unresolved two quartets), 4.84 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.39 (s, 1H), 6.10 (s, 1H), 6.77 (d, 1H, *J*=8.4 Hz), 6.93 (d, 1H, *J*=7.6 Hz), 7.19–7.26 (m, 1H); ¹³C NMR (100 MHz): δ 14.19, 14.85, 15.78, 51.04, 51.22, 60.91, 63.75, 110.25, 115.97, 124.53, 129.79, 130.89, 131.15, 139.46, 149.93, 154.41, 155.84, 165.85, 166.91; HRMS (ESI) exact mass calcd for C₁₉H₂₂O₅Na⁺ (M+Na)⁺: 353.1365, found: 353.1363.

4.2.31. Reaction of ethyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3propoxyphenyl)hexanoate (**90**) with TiCl₄. Ethyl 4-methoxycarbonyl-2-methylene-5-oxo-3-(3-propoxyphenyl)hexanoate (**90**) on treatment with TiCl₄ in dichloromethane following the similar procedure described for obtaining **10b** and *ortho*-**10b** (from **9b**), provided methyl 1-(1-ethoxycarbonylethenyl)-3-methyl-6-propoxy-1*H*indene-2-carboxylate (**100**) (major product) and methyl 1-(1ethoxycarbonylethenyl)-3-methyl-4-propoxy-1*H*-indene-2carboxylate (*ortho*-**100**) (minor product) in 72% and 17% isolated yields, respectively, after purification through column chromatography (5% EtOAc in hexanes, silica gel). *ortho*-Cyclization product (*ortho*-**10***o*) eluted first (less polar) and *para* cyclized product (**10***o*) eluted later (more polar).

4.2.31.1. Methyl 1-(1-ethoxycarbonylethenyl)-3-methyl-6propoxy-1H-indene-2-carboxylate (**10o**). Reaction time: 1 h; yield: 72%; R_f (20% EtOAc in hexanes) 0.43; pale yellow solid; mp: 41–43 °C; IR (KBr): ν 1716, 1685, 1620, 1601 cm⁻¹; ¹H NMR (400 MHz): δ 1.03 (t, 3H, *J*=7.6 Hz), 1.26 (t, 3H, *J*=7.2 Hz), 1.75–1.86 (m, 2H), 2.53 (d, 3H, *J*=2.4 Hz), 3.74 (s, 3H), 3.92 (t, 2H, *J*=6.8 Hz), 4.225 & 4.230 (2q, 2H, *J*=7.2 Hz), 4.82 (d, 1H, *J*=2.0 Hz, unresolved quartet), 5.40 (s, 1H), 6.12 (s, 1H), 6.88 (dd, 1H, *J*=2.4 & 8.4 Hz), 6.93 (d, 1H, *J*=2.0 Hz, not properly resolved), 7.35 (d, 1H, *J*=8.4 Hz); ¹³C NMR (100 MHz): δ 10.53, 12.63, 14.15, 22.59, 51.02, 60.89, 69.75, 109.90, 113.68, 122.18, 124.68, 130.53, 136.56, 139.37, 149.67, 152.87, 160.31, 165.70, 166.88; HRMS (ESI) exact mass calcd for C₂₀H₂₄O₅Na⁺ (M+Na)⁺: 367.1521, found: 367.1523.

4.2.31.2. Methyl 1-(1-ethoxycarbonylethenyl)-3-methyl-4propoxy-1H-indene-2-carboxylate (ortho-**100**). Yield: 17%; R_f (20% EtOAc in hexanes) 0.52; pale yellow solid; mp: 50–51 °C; IR (KBr): ν 1714, 1695, 1615, 1599 cm⁻¹; ¹H NMR (400 MHz): δ 1.09 (t, 3H, J=7.6 Hz), 1.27 (t, 3H, J=7.2 Hz), 1.83–1.93 (m, 2H), 2.79 (d, 3H, J=2.4 Hz), 3.74 (s, 3H), 3.99 (t, 2H, J=6.4 Hz), 4.230 & 4.233 (2q, 2H, J=7.2 Hz), 4.85 (d, 1H, J=2.4 Hz, unresolved quartet), 5.40 (s, 1H), 6.11 (s, 1H), 6.78 (d, 1H, J=8.0 Hz), 6.93 (d, 1H, J=7.6 Hz), 7.20–7.26 (m, 1H); ¹³C NMR (100 MHz): δ 10.85, 14.11, 15.79, 22.62, 50.96, 51.22, 60.84, 69.57, 110.03, 115.82, 124.47, 129.75, 130.80, 131.06, 139.42, 149.85, 154.29, 155.93, 165.77, 166.84; HRMS (ESI) exact mass calcd for C₂₀H₂₄O₅Na⁺ (M+Na)⁺: 367.1521, found: 367.1525.

Acknowledgements

We thank DST (New Delhi) for funding this project. B.S.R. thanks CSIR and DST (New Delhi) for research fellowships. H.L. thanks CSIR for her research fellowship. We thank UGC (New Delhi) for support and for providing some instrumental facilities. We thank the National Single-Crystal X-ray facility funded by DST. We also thank Professor S. Pal, School of Chemistry, University of Hyderabad, for helpful discussions regarding X-ray data analysis.

Supplementary data

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.tet.2012.12.069.

References and notes

- (a) Olah, G. A. Friedel-Crafts Chemistry; Wiley-Interscience: New York, NY, 1973;
 (b) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry; Marcel Dekker: New York, NY, 1984;
 (c) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. Friedel-Crafts alkylations InTrost, B. M., Fleming, I., Eds.. Comprehensive Organic Synthesis; Pergamon: Oxford, 1991; Vol. 3, pp 293–339;
 (d) Sartori, G.; Maggi, R. Chem. Rev. 2011, 111, PR181-PR214;
 (e) Sartori, G.; Maggi, R. Friedel-Crafts Acylation Reactions; CRC: New York, NY, 2010;
 (f) Terrasson, V.; de Figueiredo, R. M.; Campagne, J. M. Eur. J. Org. Chem. 2010, 2635–2655;
 (g) Rueping, M.; Nachtsheim, B. J. Beilstein, J. Org. Chem. 2010, 6, 1–24;
 (h) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190–2201;
 (i) Poulsen, T. B.; Jorgensen, K. A. Chem. Rev. 2008, 108, 2903–2915;
 (j) Sartori, G.; Maggi, R. Chem. Rev. 2006, 106, 1077–1104.
- (a) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579–2581; (b) Suzuki, Y.; Nemoto, T.; Kakugawa, K.; Hamajima, A.; Hamada, Y. Org. Lett. 2012, 14, 2350–2353; (c) Liebert, C.; Brinks, M. K.; Capacci, A. G.; Fleming, M. J.; Lautens, M. Org. Lett. 2011, 13, 3000–3003; (d) Ying, W.; Barnes, C. L.; Harmata, M. Tetrahedron Lett. 2011, 52, 177–180; (e) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Indradas, B.; Snowden, R. L.; Sonnay, P. J. Org. Chem. 2009, 74, 5738–5741; (f) Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem., Int. Ed. 2009, 48, 7428–7431; (g) Hayashi, R.; Cook, G. R. Org. Lett. 2007, 9, 1311–1314; (h) Angeli, M.; Bandini, M.; Garelli, A.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A. Org. Biomol. Chem. 2006,

4, 3291-3296; (i) Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144-13145.

- (a) Kawazoe, K.; Yamamoto, M.; Takaishi, Y.; Honda, G.; Fujita, T.; Sezik, E.; Yesilada, E. *Phytochemistry* **1999**, *50*, 493–497; (b) Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D. Br. J. *Pharmacol.* **1991**, *104*, 270–276; (c) Saxena, D. B. *Phytochemistry* **1986**, *25*, 553–555.
- (a) Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B. L.; Dukat, M.; Glennon, R. A. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1987–1991; (b) Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. *J. Med. Chem.* **2005**, *48*, 5989–6003; (c) Oda, T.; So, Y.; Sato, Y.; Shimizu, N.; Handa, H.; Yasukochi, Y.; Kasahara, T. *Mutat. Res.* **2003**, *534*, 187–195; (d) Watanabe, N.; Ikeno, A.; Minato, H.; Nakagawa, H.; Kohayakawa, C.; Tsuji, J.-i *J. Med. Chem.* **2003**, *46*, 3961–3964; (e) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Moroy, T.; Muller, O. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 709–713; (f) Schneider, M. R.; Ball, H. *J. Med. Chem.* **1986**, *29*, 75–79; (g) Witiak, D. T.; Kakodkar, S. V.; Brunst, G. E.; Baldwin, J. R.; Rahwan, R. G. *J. Med. Chem.* **1978**, *21*, 1313–1315.
- (a) Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807–815; (b) Wang, J.; Zhang, L.; Jing, Y.; Huang, W.; Zhou, X. Tetrahedron Lett. 2009, 50, 4978–4982; (c) Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958–3960; (d) Nakamura, S.; Sugimoto, H.; Ohwada, T. J. Org. Chem. 2008, 73, 4219–4224; (e) Hu, B.; Xing, S.; Wang, Z. Org. Lett. 2008, 10, 5481–5484; (f) Basavaiah, D.; Reddy, K. R. Org. Lett. 2007, 9, 57–60; (g) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Heyer, C. A. J. Org. Chem. 2007, 72, 7046–7049; (h) Saito, S.; Sato, Y.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1994, 116, 2312–2317.
- (a) Basavaiah, D.; Lenin, D. V. Eur. J. Org. Chem. 2010, 5650-5658; (b) Basavaiah, D.; Aravindu, K.; Kumar, K. S.; Reddy, K. R. Eur. J. Org. Chem. 2010, 1843-1848; (c) Basavaiah, D.; Bakthadoss, M.; Reddy, G. J. Synthesis 2001, 919-923; (d) Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron Lett. 1994, 35, 4227-4230.
- For reviews see: (a) Liu, T. Y.; Xie, M.; Chen, Y. C. Chem. Soc. Rev. 2012, 41, 4101–4112; (b) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev. 2012, 41, 68–78; (c) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 10, 5447–5674; (d) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005–1018; (e) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1–48; (f) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–4574; (g) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614–4628; (h) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581–1588; (i) Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45–58; (j) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (k) Langer, P. Angew. Chem., Int. Ed. 2000, 39, 3049–3052; (l) Ciganek, E. In Oranic Reactions; Paquette, L. A., Ed.; Wiley: New York, NY, 1997; Vol. 51, pp 201–350; (m) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001–8062; (n) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653–4670.
- 8. (a) Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4580-4583; (b) Ressault, B.; Jaunet, A.; Geoffroy, P.; Goudedranche, S.; Miesch, M. Org. Lett. 2012, 14, 366-369; (c) Reddy, Y. S.; Kadigachalam, P.; Basak, R. K.; Pal, A. P. J.; Vankar, Y. D. Tetrahedron Lett. 2012, 53, 132-136; (d) Batchu, H.; Batra, S. Eur. J. Org. Chem. 2012, 2935-2944; (e) Lee, H. S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 497-501; (f) Huang, L.; Shi, M. Chem. Commun. 2012, 4501-4503; (g) Peng, J.; Huang, X.; Jiang, L.; Cui, H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584-4587; (h) de Luna Freire, K. R.; Tormena, C. F.; Coelho, F. Synlett 2011, 2059–2063; (i) Basavaiah, D.; Devendar, B.; Aravindu, K.; Veerendhar, A. Chem.-Eur. J. 2010, 16, 2031-2035; (j) Rodrigues, M. T., Jr.; Gomes, J. C.; Smith, J.; Coelho, F. Tetrahedron Lett. 2010, 51, 4988-4990; (k) Kitulagoda, J. E.; Palmelund, A.; Aggarwal, V. K. Tetrahedron 2010, 66, 6293-6299; (1) Kim, S. H.; Lee, S.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2010, 51, 6305-6309; (m) Jonnalagadda, S. C.; Verga, S. R.; Patel, P. D.; Reddy, A. V.; Srinivas, T.; Scott, P. M.; Mereddy, V. R. Appl. Organomet. Chem. 2010, 24, 294-300; (n) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem.-Eur. J. 2010, 16, 1365-1371; (o) Bakthadoss, M.; Sivakumar, G.; Kannan, D. Org. Lett. 2009, 11, 4466-4469; (p) Basavaiah, D.; Reddy, R. J. Org. Biomol. Chem. 2008, 6, 1034-1039; (q) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron Lett. 2001, 42, 85-87.
- (a) Basavaiah, D.; Reddy, R. M. Tetrahedron Lett. 2001, 42, 3025–3027; (b) Basavaiah, D.; Bakthadoss, M.; Pandiaraju, S. Chem. Commun. 1998, 1639–1640; (c) Basavaiah, D.; Krishnamacharyulu, M.; Hyma, R. S.; Pandiaraju, S. Tetrahedron Lett. 1997, 38, 2141–2144; (d) Basavaiah, D.; Pandiaraju, S.; Padmaja, K. Synlett 1996, 393–395.
- 10. The compound **9a** is known in the literature and prepared via the reaction of **13a** with **14a** in the presence of DABCO (1.5 equiv) (see Ref: Singh, V.; Madapa, S.; Batra, S. Synth. Commun. **2008**, 38, 2113–2124). We have prepared this compound **9a** using a similar procedure with some modification.
- 11. It has been well documented in the literature that treatment of Baylis–Hillman acetates with Lewis acid like AlCl₃ provides the corresponding allyl chlorides (see Ref. 9d).
- Detailed X-ray crystallographic data is available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK for compounds **10b** (CCDC # 903059), *ortho*-**10b** (CCDC # 903062), **10c** (CCDC # 903060), **10e** (CCDC # 903061), **10h** (CCDC # 903070), **10k** (CCDC # 903071), *ortho*-**10k** (CCDC # 903073), and **10m** (CCDC # 903072).
- 13. For recent references on chemoselective intramolecular Friedel–Crafts reactions see **5a** and **5d**.