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Abstract The first total synthesis of kukoamine B bimesylate was com-
pleted from 1,4-diaminobutane dihydrochloride in 12 steps with a
11.4% overall yield, and all the steps could be carried out at a kilogram
scale. The cyano groups were used as the precursor of amino groups to
avoid the competitive reaction delicately. The aza-Michael addition re-
action, amidation and hydrogenation of the cyano group sequence was
streamlined as a general approach towards the synthesis of polyamine
structures.

Key words total synthesis, kilogram scale, aza-Michael addition, ami-
dation, hydrogenation

The nature products kukoamines belong to spermine al-
kaloids, which possess a polyamine backbone and phenolic
moieties (Figure 1). The kukoamine A was firstly isolated
from dried root bark of Lycium Chinese by Shinji Funayana
in 1980,1 which showed inhibitory activity against angio-
tensin I-converting enzyme (ACE).2–4 Ten years later, a new
spermine alkaloid kukoamine B was isolated from Lycium
Chinese by Shinji Funayana too,5 which exhibited anti-
inflammatory and neuroprotective activities and was con-

sidered as a valuable candidate for the antisepsis drug.6–9

Indeed, several research work on synthesis of kukoamine A
had already appeared in literatures.10–12 In contrast, there
were few reports on the synthesis of kukoamine B, proba-
bly due to the complex polyamine structures. As part of our
long-term efforts on efficient synthetic strategies for poten-
tial pharmaceutical molecules, we present herein the fur-
ther explore on the total synthesis of kukoamine B bi-
mesylate, which exhibited better solubility in water and
could be served as a valuable drug candidate.

The retrosynthetic analysis is outlined in Scheme 1. We
envisioned that the kukoamine B bimesylate could be ob-
tained from the deprotection of the diamide 1 and subse-
quent mesylation of the resulting amine with methanesul-
fonic acid in one-pot.

The compound 1 could be constructed through amida-
tion of amine 2 with acyl chloride 3. Compound 2 could be
derived from the amine 4 through aza-Michael addition re-
action. Disconnection of 4 at the amide linkage leads to tri-
amine 6 and acyl chloride 3. Compound 6 could be traced
back to the commercially available diamine 7 and vinyl cya-
nide 5 via aza-Michael addition reaction.

Figure 1  Structures of kukoamine A, kukoamine B, and kukoamine B bimesylate
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The synthesis was commenced with preparation of the
acyl chloride 3 (Scheme 2). Demethylation of 8 with aque-
ous hydrogen bromide at 138 °C afforded acid 9 quantitive-
ly, which was subjected to potassium carbonate and ben-
zylic chloride in N,N′-dimethyl formamide (DMF) to gener-
ate the compound 10 in 81% yield.13 Subsequent hydrolysis
of ester 10 with aqueous sodium hydroxide furnished acid
11 in 63% yield. Finally, treatment of 11 with thionyl dichlo-
ride under the catalyst of DMF delivered the corresponding
acyl chloride 3 quantitively which was prepared freshly.
Notably, all the manipulation could be carried out success-
fully at a kilogram scale.

With the acyl chloride 3 in hand, an efficient synthetic
approach to complete the kukoamine B bimesylate was
conducted (Scheme 3). The commercial 1,4-diaminobutane
dihydrochloride underwent dissociation upon exposure to
potassium hydroxide to generate dissociative 1,4-diamino-
butane 12 quantitively. Then the diamine was treated with
t-butyloxy carbonyl ((Boc)2O) to give the monoprotected
amine 13 in 71% yield. Exposure of compound 13 to vinyl
nitrile 5 resulted in an aza-Michael addition reaction to af-
ford amine 14 in 98% yield,14 and then the remained amino
group of 14 was subjected to benzyl chloroformate to fur-
nish compound 15 in 90% yield, which  underwent hydro-

Scheme 1  The retrosynthetic analysis of kukoamine B bimesylate
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Scheme 2  The synthesis of fragment 3
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genation in the presence of Raney Ni and hydrogen (3 MPa)
to deliver the corresponding amine 6 in 88% yield.15 Treat-
ment of compound 6 with freshly prepared acyl chloride 3
followed by deprotection of the Boc group gave amine 16 in
84% yield for two steps.

The further conversion was shown in Scheme 4, Com-
pound 16 underwent the aza-Michael addition reaction
with vinyl nitrile 5 to afford the nitrile 2 in 92% yield, and
the secondary amine of 2 was amidated with acyl chloride
to provide compound 17 in 74% yield. After hydrogenation
of the cyano group of 17 under the catalyst of Raney Ni, the

Scheme 3  The synthesis of amine fragment
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Scheme 4  The total synthesis of kukoamine B bimesylate
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resulted amino group was further exposed to benzyl chloro-
formate to give the key precursor 1 in 72% yield. Finally, ex-
posure of compound 1 to palladium on carbon and hydro-
gen led to cleavage of benzyl and benzoxycarbonyl simulta-
neously, and the resulted amine could be mesylated to
generate kukoamine B bimesylate through acidification
with methanesulfonic acid quantitively in one pot. Notably,
all the manipulation could be carried out successfully at a
kilogram scale.

In summary, we have developed an efficient strategy to
accomplish the total synthesis of kukoamine B bimethylate
from 1,4-diaminobutane dihydrochloride in 12 steps with a
11.4% overall yield, and all the steps could be carried out at
a kilogram scale.16 The chemoselective protection of the
amino groups and the use of the cyano groups as the pre-
cursor of the amino groups were served as the key reac-
tions to avoid the competitive reaction delicately. The aza-
Michael addition reaction, amidation and hydrogenation of
the cyano group sequence could be streamlined as a general
approach towards the synthesis of polyamine structures.
The kukoamine B bimesylate exhibited better solubility in
water and could be served as a valuable drug candidate. The
further exploration of the pharmacological activities of
kukoamine B bimesylate and its analogues is underway in
our lab.
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