### Tetrahedron Letters 53 (2012) 560-563

Contents lists available at SciVerse ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet



# Synthesis of 2-bromo-1*H*-indenes via copper-catalyzed intramolecular cross-coupling of *gem*-dibromoolefins

Peijun Liu<sup>a</sup>, Kemei Tao<sup>a</sup>, Liwen Zhao<sup>a</sup>, Wang Shen<sup>c,\*</sup>, Jincun Zhang<sup>a,b,\*</sup>

<sup>a</sup> Guangzhou Institute of Biomedicine and Health, CAS, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
 <sup>b</sup> State Key Laboratory of Respiratory Diseases, Guangzhou Medical College, Guangzhou 510120, China
 <sup>c</sup> Kanion USA Inc., 3916 Trust Way, Hayward, CA 94545, USA

### ARTICLE INFO

Article history: Received 21 October 2011 Revised 12 November 2011 Accepted 18 November 2011 Available online 25 November 2011

#### Keywords: Copper catalyzed reaction Cross-coupling reaction Gem-dibromoolefins Indenes

Indene scaffolds are valuable synthetic targets as they exist in many molecules with diverse bioactivities<sup>1</sup> and are also present in various metallocene complexes used for the catalysis of olefin polymerizations.<sup>2</sup> In addition, indene derivatives are also of interest in the field of material science.<sup>3</sup> As a result, a number of synthetic methods for the construction of indene ring systems have been developed.<sup>4</sup> However, less attention has been paid to the synthesis of haloindenes which can be easily transformed into functionalized indene derivatives through subsequent coupling reactions. The preparation of haloindenes usually involves the bromination of indanes or indenes<sup>5</sup> and HI-mediated cyclization of o-(alkynyl)styrenes.<sup>6</sup> These traditional approaches to haloindenes often suffer from either long reaction sequences or strong acidic conditions under which many functional groups cannot be tolerated. Recently, several protocols for the synthesis of the haloindenes have been developed. These methods include Lewis-acid catalyzed cyclization of iodinated allylic alcohols,<sup>7</sup> iodonium-promoted carbocyclization of 2-substituted ethynylmalonates,<sup>8</sup> Pdcatalyzed carbocyclization of 2-alkenylphenylacetylenes in the presence of copper halide<sup>9</sup> and halocyclization of *o*-(alkynyl)styrenes.<sup>10</sup> Very recently, an efficient strategy for the synthesis of substituted N-(2-haloinden-1-yl)arenesulfobnamides from propargylic alcohols and sulfonamides has been reported.<sup>11</sup>





\* Corresponding authors.



The chemistry of *gem*-dihaloolefins,<sup>12</sup> once limited mainly to the synthesis of terminal alkynes, has made remarkable progress in organic synthesis especially in transition metal-catalyzed reactions. A number of novel and elegant reactions using *gem*-dihaloolefins as building blocks have been developed and compounds such as dienes,<sup>13</sup> enynes,<sup>14</sup> heterocycles<sup>15</sup>, and carbocycles<sup>16</sup> are prepared efficiently from various *gem*-dihaloolefins. In conjunction

with our study of gem-dibromoolefins for the synthesis of hetero-

cycles,<sup>17</sup> we have developed a straightforward and efficient meth-

od for the synthesis of 2-bromo-1H-indenes via copper-catalyzed

intramolecular C-C cross-coupling reaction of activated methylene

АВЅТКАСТ

A novel copper-catalyzed intramolecular C–C coupling reaction of activated methylene aromatic compounds with *gem*-dibromoolefins is described. The reaction can tolerate various functional groups and lead to efficient formation of 2-bromo-1*H*-indenes.

© 2011 Elsevier Ltd. All rights reserved.

E-mail addresses: wshen@kanionusa.com (W. Shen), zhang\_jiancun@gibh.ac.cn (J. Zhang).

Scheme 1. Preparation of diethyl 2-(2-(2,2-dibromovinyl)phenylmalonate 1a.

Table 1

| Reaction con | dition screen | ng for the | synthesis | of 2a | from | 1a |
|--------------|---------------|------------|-----------|-------|------|----|
|--------------|---------------|------------|-----------|-------|------|----|



| Entry | Cat. | Ligand <sup>b</sup> | Base                            | Time (h) | Yield <sup>c</sup> (%) |
|-------|------|---------------------|---------------------------------|----------|------------------------|
| 1     | CuI  | None                | Cs <sub>2</sub> CO <sub>3</sub> | 17       | 68                     |
| 2     | CuI  | None                | Cs <sub>2</sub> CO <sub>3</sub> | 17       | 37 <sup>d</sup>        |
| 3     | CuI  | None                | $Cs_2CO_3$                      | 17       | 41 <sup>e</sup>        |
| 4     | CuI  | None                | K <sub>2</sub> CO <sub>3</sub>  | 17       | Trace                  |
| 5     | CuI  | None                | K <sub>3</sub> PO <sub>4</sub>  | 17       | Trace                  |
| 6     | CuCl | None                | Cs <sub>2</sub> CO <sub>3</sub> | 17       | 43                     |
| 7     | CuBr | None                | Cs <sub>2</sub> CO <sub>3</sub> | 17       | 42                     |
| 8     | None | None                | Cs <sub>2</sub> CO <sub>3</sub> | 24       | 38                     |
| 9     | None | None                | DBU                             | 12       | 0                      |
| 10    | CuI  | L1                  | $Cs_2CO_3$                      | 24       | 48 <sup>f</sup>        |
| 11    | CuI  | L2                  | $Cs_2CO_3$                      | 24       | 52                     |
| 12    | CuI  | L3                  | Cs <sub>2</sub> CO <sub>3</sub> | 12       | 63                     |
| 13    | CuI  | L4                  | Cs <sub>2</sub> CO <sub>3</sub> | 12       | 79                     |
| 14    | CuI  | L4                  | Cs <sub>2</sub> CO <sub>3</sub> | 12       | 79 <sup>f</sup>        |
| 15    | CuI  | L5                  | $Cs_2CO_3$                      | 12       | 54 <sup>f</sup>        |

 $^a$  Reaction condition: **1a** (0.5 mmol), catalyst (20 mol %), ligand (40 mol %), base (3 equiv), THF (5 mL), 75  $^\circ$ C under an argon atmosphere.

<sup>b</sup> **L1** = L-proline, **L2** = *N*,*N*-dimethylglycine, **L3** = 2-picolinic acid, **L4** = 1,10-phenanthroline, **L5** = 2-acetylcyclohexanone.

<sup>c</sup> Isolated yield.

<sup>d</sup> DMSO as the solvent.

e 10 mol % of CuI was used.

f 10 mol % of CuI and 20 mol % of ligand were used.

# **Table 2**Copper-catalyzed synthesis of 2-bromo-1H-indenes

Diethyl 2-(2-(2,2-dibromovinyl)phenylmalonate 1a, readily prepared from 2-iodobenzaldehyde through  $\alpha$ -arylation of malonate<sup>18</sup> and subsequent gem-dibromoolefination of the aldehyde (Scheme 1),<sup>19</sup> was chosen as the model substrate to optimize the reaction conditions. The results are shown in Table 1. The substrate 1a was first subjected to the following reaction conditions: Cul (20 mol %), Cs<sub>2</sub>CO<sub>3</sub> (3 equiv) in THF at 75 °C under an argon atmosphere without any ligand. The desired cyclized product 2a was obtained in a 68% yield (entry 1), while other reaction conditions gave lower yields (entries 2–7). Treating substrate 1a with Cs<sub>2</sub>CO<sub>3</sub> in the absence of the catalyst led to a lower yield of the desired product 2a (entry 8). In addition, treating substrate 1a with DBU gave the elimination product diethyl 2-(2-(bromoethynyl)phenyl) malonate exclusively, while the desired product 2a was not observed even after a prolonged reaction time (entry 9). To further optimize the reaction conditions, we then investigated the reaction in the presence of various ligands including L-proline (L1). N.Ndimethylglucine (L2), 2-picolinic acid (L3), 1,10-phenanthroline (L4), and 2-acetylcyclohexanone (L5) (entries 10-15). Ligand 1,10-phenanthroline (L4) was found to be the most suitable additive for this coupling reaction (entries 13 and 14). Reduction of L4 and CuI loading gave very similar results (entry 14). Thus, the optimized conditions included the use 10 mol % CuI as the catalyst, 20 mol % of 1,10-phenanthroline (L4) as the ligand, and 3 equiv of Cs<sub>2</sub>CO<sub>3</sub> as the base in THF at 75 °C under an argon atmosphere.

With the optimal reaction conditions in hand, we set to investigate the generality of this coupling reaction. As shown in Table 2,<sup>20</sup> a broad range of substrates underwent this coupling reaction smoothly to afford the corresponding desired products in moderate to good yields. For example, substrates bearing different acti-



Cul. Phen. Cs<sub>2</sub>CO<sub>2</sub>

THF, 75 °C

R

Br

(continued on next page)

## Table 2 (continued)

| Entry | Substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Product                                                                  | Time (h) | Yield (%) |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|-----------|
| 5     | MeO <sub>2</sub> C<br>Br<br>CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MeO <sub>2</sub> C<br>EtO <sub>2</sub> C CO <sub>2</sub> Et<br><b>2f</b> | 11       | 72        |
| 6     | CI<br>Ig CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $CI \xrightarrow{EtO_2C} CO_2Et$                                         | 14       | 75        |
| 7     | Cl<br>Br<br>CO <sub>2</sub> Et<br>1h CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CI Br<br>EtO <sub>2</sub> C CO <sub>2</sub> Et<br><b>2h</b>              | 16       | 64        |
| 8     | F<br>H<br>H<br>H<br>H<br>H<br>H<br>CO <sub>2</sub> Et<br>1i CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $F \xrightarrow{EtO_2C} CO_2Et$ 2i                                       | 16       | 74        |
| 9     | $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $ | $ \begin{array}{c} F \\ EtO_2 C \\ CO_2 Et \\ 2j \end{array} $           | 16       | 60        |
| 10    | MeO<br>1k CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MeO EtO <sub>2</sub> C CO <sub>2</sub> Et                                | 15       | 77        |
| 11    | Me <sub>2</sub> N<br>CO <sub>2</sub> Et<br>11 CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Me <sub>2</sub> N<br>EtO <sub>2</sub> C<br>2I                            | 15       | 67        |
| 12    | MeO<br>MeO<br>MeO<br>1m CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MeO<br>EtO <sub>2</sub> C<br><b>2m</b>                                   | 15       | 56        |
| 13    | $O_2N$<br>Br<br>$CO_2Et$<br>$1n$ $CO_2Et$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $O_2N$<br>$EtO_2C$ $CO_2Et$<br>2n                                        | 24       | 44        |
| 14    | $ \begin{array}{c}  & Br \\  & Br \\  & CO_2Et \\  & 10  CO_2Et \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Br<br>EtO <sub>2</sub> CO <sub>2</sub> Et<br><b>2o</b>                   | 24       | 59        |

<sup>a</sup> Reactions were carried out using 0.5 mmol of substrate 1, 10 mol % of Cul, 20 mol % of 1,10-phenanthroline, and 3 equiv of Cs<sub>2</sub>CO<sub>3</sub> in THF (5 mL) at 75 °C under an argon atmosphere.

<sup>b</sup> Isolated yield.

vated methylenes at 2-position of the aromatic ring smoothly proceeded to furnish the corresponding indenes (entries 1–3). Among these results, the substrate **1b** gave the highest yield (entry 1). The presence of a more sterically hindered isopropyl malonate led to a lower yield for the cyclized product (entry 3). Meanwhile, substrate bearing a nitro substituent on the aromatic ring gave a poor result (entry 13). Interestingly, while chloro and fluoro substituents on the aromatic ring were well tolerated (entries 6–9), a reactive iodo derivative (**2o**) also afforded the desired product with high chemoselectivity (entry 14).<sup>21</sup> No iodo reduction was detected from the reaction mixture.

A possible mechanism of the reaction is depicted in Scheme 2. It is likely that the malonate is deprotonated transiently under the reaction conditions. The anion is then coordinated with copper,



Scheme 2. Possible mechanism for the formation of 2 from compound 1.

directing Cu insertion into the '*cis*'-Br, and leading to the desired product. This mechanism explains the high selectivity over the distal iodo substitution (Table 2, entry 14).

In conclusion, we have developed an efficient method for the synthesis of 2-bromo-1*H*-indenes via copper-catalyzed intramolecular C–C cross-coupling reaction. A variety of 2-bromo-1*H*-indenes were obtained in moderate to good yields. This method may provide a new way for the synthesis of highly functionalized indenes.

# Acknowledgment

We are grateful to the Grant-in-Aid for Scientific Research from the Chinese Academy of Science Innovation Grant (KSCX1-YW-10) for financial support of this work.

### Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.11.102.

### **References and notes**

- (a) Fredenburgh, L.; Foster, B. *Tetrahedron Lett.* **1995**, 36, 3993–3996; (b) Reggio, P. H.; Basu-Dutt, S.; Barnett-Norris, J.; Castro, M. T.; Hurst, D. P.; Seltzman, H. H.; Roche, M. J.; Gilliman, A. F.; Thomas, B. F.; Stevenson, L. A.; Pertwee, R. G.; Abood, M. E. J. *Med. Chem.* **1998**, 41, 5177–5187; (c) Yu, H.; Kim, I. J.; Folk, J. E.; Tian, X.; Rothman, R. B.; Baumann, M. H.; Dersch, C. M.; Flippen-Anderson, J. E.; Parrish, D.; Jacobson, A. E.; Rice, K. C. J. *Med. Chem.* **2004**, 47, 2624–2634; (d) Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. *Med. Chem.* **2005**, 48, 5989–6003; (e) Alcalde, E.; Mesquida, N.; Frigola, J.; López-Pérez, S.; Mercè, R. *Org. Biomol. Chem.* **2008**, 6, 3795–3810.
- (a) Leino, R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 3201–3222; (b) Wang, B. Coord. Chem. Rev. 2006, 250, 242–258.
- (a) Yang, J.; Lakshimkantham, M. V.; Cava, M. P. J. Org. Chem. 2000, 65, 6739– 6742; (b) Barberá, J.; Rakitin, O. A.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296–299.
- For selective examples for the synthesis of indene derivatives, see: (a) Lautens, M.; Marquardt, T. J. Org. Chem. 2004, 69, 4607–4614; (b) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett. 2005, 22, 4963–4966; (c) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Heyer, C. A. J. Org. Chem. 2007, 72, 7046–7049; (d) Zhu, X.; Mitsui, C.; Tsuji, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 13596–13597; (e) Bryan, C. S.; Lautens, M. Org. Lett. 2010, 12, 2754–2757; (f) Kurouchi, H.;

Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807–815; (g) Martínez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguz, F.; Sanz, R. Angew. Chem., Int. Ed. 2010, 49, 4633–4637.

- (a) Billups, W. E.; Buynak, J. D.; Butler, D. J. Org. Chem. **1980**, 45, 4636–4641; (b) Lindley, W. A.; MacDowell, D. W. H. J. Org. Chem. **1982**, 47, 705–709; (c) Tutar, A.; Cakmak, O.; Balci, M. Tetrahedron **2001**, 57, 9759–9763.
- 6. Saito, S.; Homma, M.; Gevorgyan, V.; Yamamoto, Y. Chem. Lett. 2000, 722-723.
- 7. Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958-3960.
- 8. Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229-231.
- 9. Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406-5408.
- Sanz, R.; Martíguez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rashid, M. A.; Rodríguez, F. Chem. Commun. 2010, 46, 7427–7429.
- 11. Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 1024-1027.
- For comprehensive reviews, see: (a) Xu, B.; Ma, S. Chin. J. Org. Chem. 2001, 21, 252–262; (b) Legrand, F.; Jouvin, K.; Evano, G. Isr. J. Chem. 2010, 50, 588–604.
- For selected examples, see: (a) Roush, W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. **1990**, *31*, 6509–6512; (b) Panek, J. S.; Hu, T. J. Org. Chem. **1997**, 62, 4912–4913; (c) Shen, W.; Wang, L. J. Org. Chem. **1999**, 64, 8873; (d) Langille, N. F.; Panek, J. S. Org. Lett. **2004**, 6, 3203–3206; (e) Molander, G. A.; Yokoyama, Y. J. Org. Chem. **2006**, *71*, 2493–2498.
- For selected examples, see: (a) Neidlein, R.; Winter, M. Synthesis 1998, 1362– 1366; (b) Kaafarani, B. R.; Pinkerton, A. A.; Neckers, D. C.; Douglas, C. *Tetrahedron Lett.* 2001, 42, 8137–8139; (c) Hwang, G. T.; Son, H. S.; Ku, J. K.; Kim, B. H. J. Am. Chem. Soc. 2003, 125, 11241–11248; (d) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 763–765.
- For selected examples, see: (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549– 3552; (b) Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361–7364; (c) Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009, 5236–5238; (d) Wang, Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034–3037.
- For selected examples, see: (a) McAlonan, H.; Montgomery, D.; Stevenson, P. J. Tetrahedron Lett. **1996**, 37, 7151–7154; (b) Møller, B.; Undheim, K. Eur. J. Org. Chem. **2003**, 332–336; (c) Ye, S.; Ren, H.; Wu, J. J. Comb. Chem. **2010**, 12, 670– 675.
- (a) Tao, K.; Zheng, J.; Liu, Z.; Shen, W.; Zhang, J. Tetrahedron Lett. 2010, 51, 3246–3249; (b) Jiang, B.; Tao, K.; Shen, W.; Zhang, J. Tetrahedron Lett. 2010, 51, 6342–6344; (c) Wang, L.; Shen, W. Tetrahedron Lett. 1998, 39, 7625.
- Minami, T.; Isonaka, T.; Okada, Y.; Ichikawa, J. J. Org. Chem. 1993, 58, 7009– 7015.
- 19. Typical procedure for the synthesis of diethyl 2-(2-(2,2-dibromovinyl) phenylmalonate (**1a**): To a well-stirred mixture of ethyl 2-(2-formylphenyl) malonate (2.60 g, 9.85 mmol), CBr<sub>4</sub> (6.60 g, 19.90 mmol) in DCM (100 mL) was added dropwise a solution of PPh<sub>3</sub> (10.40 g, 39.65 mmol) in DCM (50 mL) over 0.5 h at 0 °C. At the end of addition, the reaction mixture was further stirred at 0 °C for 0.5 h, and then allowed to warm to room temperature. After 2 h stirring, hexane was added to precipitate as much Ph<sub>3</sub>PO as possible, and the suspension was filtered through silica (washed with EtOAc). The solution was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether–EtOAc = 15:1) to give **1a** as a clear, colorless oil (2.96 g, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (s, 1H), 7.50 (d, *J* = 6.8 Hz, 1H), 7.35-7.40 (m, 3H), 4.76 (s, 1H), 4.17–4.29 (m, 4H), 1.28 (t, *J* = 7.1 Hz, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.7, 136.2, 136.0, 130.9, 129.5, 129.3, 128.7, 128.2, 94.2, 61.9, 55.0, 14.0; HRMS (ESI) exact mass calculated for [M+H]<sup>+</sup> (C<sub>15</sub>H<sub>17</sub>Br<sub>2</sub>O<sub>4</sub>) requires m/z 420.9473, found m/z 420.9469.
- 20. Typical procedure for the synthesis of diethyl 2-bromo-1H-indene-1,1dicarboxylate (**2a**): A mixture of **1a** (210 mg, 0.5 mmol), Cul (9 mg, 0.05 mmol, 10 mol %), 1,10-phenanthroline(18 mg, 0.10 mmol, 20 mol %), and Cs<sub>2</sub>CO<sub>3</sub> (489 mg, 1.50 mmol) in THF (5 mL) was stirred for 12 h under an argon atmosphere at 75 °C. The resultant mixture was cooled to room temperature and filtered through celite. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether–EtOAc = 15:1) to afford **2a** as a clear, yellow oil (134 mg, 79%).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.61 (d, *J* = 7.4 Hz, 1H), 7.30–7.34 (m, 1H), 7.23–7.27 (m, 2H), 7.08 (s, 1H), 4.19–4.32 (m, 4H), 1.27 (t, *J* = 7.2 Hz, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 166.2, 142.6, 140.5, 137.3, 128.9, 126.4, 124.8, 123.8, 120.8, 72.3, 62.4, 13.9; HRMS (ESI) exact mass calculated for [M+H]\* (C<sub>15</sub>H<sub>16</sub>BrO<sub>4</sub>) requires *m/z* 339.0232, found *m/z* 339.0232.
- Similarly, iodo is tolerated in the analogous indole preparation: Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416–11417.