

Article

Subscriber access provided by University of Florida | Smathers Libraries

Ag-Catalyzed Intramolecular Sequential Vicinal Diamination of Alkynes with Isocyanates: Synthesis of Fused Indole-Cyclic Urea Derivatives

Manda Rajesh, Surendra Puri, Ruchir Kant, and Maddi Sridhar Reddy

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 21 Apr 2017

Downloaded from http://pubs.acs.org on April 21, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ag-Catalyzed Intramolecular Sequential Vicinal Diamination of Alkynes with Isocyanates: Synthesis of Fused Indole-Cyclic Urea Derivatives

Manda Rajesh,^a[†] Surendra Puri,^a[†] Ruchir Kant^b and Maddi Sridhar Reddy^{a,c,d}*

^aMedicinal & Process Chemistry Division, ^bMolecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031 (India). ^cMCB Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India. ^dAcademy of Scientific and Innovative Research, New Delhi 110001, India. † Contributed equally.

E-mail: msreddy@cdri.res.in

ABSTRACT: A formal intramolecular vicinal 1,2-diamination of alkynes is achieved for the synthesis of indole-cyclic urea fused derivatives through double cyclization process from readily available aminophenyl propargyl alcohols. This sequential triple C-N bond construction event was possible using isocyanate as urea precursor and Ag(I) catalyst as alkyne activating agent.Control experiments reveal that the cyclization followed by 1,3-allylic amino dehydroxylation is preceded by urea formation.

INTRODUCTION

Difunctionalization of alkynes¹⁻³ is a swift strategy for the rapid construction of a variety of multifunctional frameworks, mainly olefin bearing scaffolds. In this line, intermolecular 1,2diamination of alkynes² was well developed as an outstanding strategy for various important N-heterocycles like imidazoles,^{2d} imidazopyridines,^{2e} quinoxalines,^{2f-h} 3-amidoindoles,²ⁱ triazoles (click reaction), cyclic urea derivatives, etc. whereas, intramolecular vicinal diamination, which would deliver multicyclic N-heterocycles, is less explored perhaps due to geometric constraints. Nonetheless, few groups (Muñiz et al., Zhu et al., Jin et al., and Duet $al_{...}$ ³ successfully achieved this diamination of alkynes through internal double nucleophilic addition via Pd and/or Cu catalysis. These studies mainly provided the indole based acenes. On the other hand, the cyclic urea frameworks are privileged structural motifs and are found in a wide range of biologically active and chemically significant molecules.⁴⁻⁵ Therefore, decorations around cyclic ureas have recently attracted much attention of organic chemists. Chemler et al., Muñiz et al., Fu et al., Youn et al., and others⁶ reported the intramolecular cyclization of ureas on to tethered olefins or arenes respectively for the synthesis of aryl/cycloalkyl fused urea derivatives (Scheme 1, eqs 1-2). As part of our ongoing program aiming at the discovery of the novel reactivities of alkyne,⁷ we herein disclose a complimentary approach featuring intramolecular sequential vicinal diamination for the assembly of imidazo[1,5-a]indol-3-one skeletons (Scheme 1, eq 3). Noteworthy, our process represents the first example of the one-pot urea formation followed by cyclization onto the triple bond for the synthesis of the indole-fused cyclic urea derivatives.

Scheme 1. Synthesis of cyclic ureas.

These indole fused cyclic urea motifs were found to be potent CNS depressant agents, analgesics, 5-HT3 receptor antagonists, antifungals, antihypertensive agents and TNF- α (Tumor Necrosis Factor- α) antagonists.⁵ The synthesis of these derivatives is thus at a high demand. It was earlier achieved through hydroamination and annulation process with Pd, Cu, Au metal catalysis which required harsh reaction conditions and multiple steps.⁸ Herein we are disclosing a mild process for these privileged scaffolds through Ag- catalyzed sequential vicinal diamination of alkynes via bis cyclization form readily available starting materials.

RESULTS AND DISCUSSION

We began our optimization studies using 2-amino phenyl propargylic alcohol **1a** and benzyl isocyanate **2a** as test substrates (Table-1). Initially we used PdCl₂ as catalyst and Na₂CO₃ as base in CH₃CN at room temperature (entry 1) no desired product **3aa** was detected. Upon heating the reaction contents to 70 $^{\circ}$ C, pleasingly, the product was obtained but in 10% yield (entry 2). Changing the catalyst to Pd(OAc)₂, Cu(OAc)₂ or CuI (entries 3-5) did not bring any change in the yield of the desired product (20-40%) but rather led to the formation of corresponding quinoline derivative via 6-*endo dig* cyclization. Next we switched to Ag₂CO₃ as catalyst where the yield was dramatically improved up to 60% (entry 6). We reasoned that this silver catalyst gave enough room for urea formation on amino group of **1a** before it underwent 6-*endo dig* cyclization.

Table 1. Optimization studies.^a

	Me			Me		
\land	OH BnN	ICO (2.5 eq	uiv) (2a) 🗍		Ph	
		Table		√ N	Ϊ.	
\checkmark	NH ₂			Y	-N_Ph	
	1a			Ő	Jaa	
entry	catalyst	base	solvent t	emp (°C)	yield(%) ^D	
1	PdCl ₂	Na ₂ CO ₃	CH₃CN	RT	N.R	
2	PdCl ₂	Na ₂ CO ₃	CH₃CN	70	10	
3	Pd(OAc) ₂	Na ₂ CO ₃	CH₃CN	70	20	
4	Cu(OAc) ₂	Na ₂ CO ₃	CH₃CN	70	25	
5	Cul	Na ₂ CO ₃	CH₃CN	70	40	
6	Ag ₂ CO ₃	Na ₂ CO ₃	CH₃CN	70	60	
7	Ag ₂ CO ₃		CH₃CN	70	82	
8	AgOAc		CH₃CN	70	35	
9	Ag ₂ O		CH₃CN	70	20	
10	AgOTf		CH₃CN	70	15	
11			CH ₃ CN	70	N.R	
12	Ag ₂ CO ₃		DMSO	70	20	
13	Ag ₂ CO ₃		1,4-dioxane	e 70	30	
14	Ag ₂ CO ₃		DCE	70	55	
15	Ag ₂ CO ₃		toluene	70	25	
16	Ag ₂ CO ₃		THF	70	18	
17	Ag ₂ CO ₃		DMF	70	N.R	
^a Reaction conditions: 1a (0.5 mmol), BnNCO (1.25 mmol), base						
(1 mmol) catalyst (0.15 mmol) in solvent (2.5 mL) at 70 $^{\circ}$ C						
under air ^b isolated vield						

The Journal of Organic Chemistry

Delightedly, in the absence of the base, the yield was enhanced up to 82% (entry 7). Other Ag salts were not as productive as Ag₂CO₃ (entries 8-10). No desired product was detected in the absence of the metal catalyst (entry 11). MeCN was found to be best solvent over all the tested solvents (entries 12-17).

With the optimized conditions in hand, we next assessed the generality of this double cyclization. We first studied the reaction scope of 2-amino phenyl propargylic alcohols. As is apparent from Table 2, the reaction accommodated substrates with distinct electron properties. Initially, variation of substitution on alkyne terminus of amino propargylic alcohols was studied. Substrates with alkylated phenyl substitution on the alkyne terminal (**1b-d**) led to the desired urea products (**3ba-3da**) with good to excellent yields (80-82%). Similarly, substrates with phenyl substitution either on the phenyl group on alkyne terminus or on core aryl group (**1e-f**) underwent the reaction smoothly to afford the final products **3ea** and **3fa** in 74% and 72% yields respectively. The electronic effect on the phenyl substituted substrates has a perceptible influence on the outcome. Thus the electron-rich methoxy bearing counterpart (**1g**) gave the corresponding adduct **3ga** with high yield (83%) whereas the halo (F and Br) phenyl substrates (**1h-i**) showed slightly decreased activity and thus led to the products with moderate vields (68-65%).

Likewise, electronically slightly deficient CF_3 analogues (**1j-k**) were transformed to the desired adducts **3ja-ka** in moderate yields (62-58%) whereas strongly electron deficient NO_2 tethered substrate **11** was found to be totally unreactive in this transformation. Here the intramolecular 6-*endo dig* cyclization was found to be faster (to yield quinoline byproduct)

Table 2.Scope of 2-Amino propargylic alcohols.^a

at 70 °C under air. ^blsolated yield

over probable intermolecular urea formation with isocyanate. Proceeding further, the reaction of the cyclohexenyne **1m** under standard conditions smoothly led to the desired cyclohexenyl substituted indole fused cyclic urea product **3ma** in 79% yield. Finally, we aimed to

synthesize the products with varied substitution at C3 of indole substructure. Thus the substrates **1n-q** having the R³ substitution other than methyl group (n-pentyl, n-octyl and phenyl) was efficiently converted to the final products in 77–65% yields. However, the alkyl substitution at the alkyne terminus was found to be ineffective for this conversion. In continuation, we aimed to synthesize 3-unsubstituted derivative **3ra** from secondary propargyl alcohol **1r**. Surprisingly, the reaction under standard conditions led to oxy cyclicoxazine amine derivative **4** in 75% yield probably through urea formation followed by benzylic/propargyl hydroxyl elimination and urea cyclization (Scheme 2).

Scheme 2. Benzo-[d][1,3]oxazin-2-amine transformation from 1r.

We reason that the trajectory required for the desired cyclization, i.e. 5-*exo dig* cyclization, is developed only in tertiary propargyl alcohols perhaps due to Thorpe Ingold effect. In case of **1r**, no intended 5-exo dig cyclization occurred because of the wide angle between the reaction centres which might have led to the slow elimination of the benzylic/propargylic group followed by cyclization of urea oxygen on the resultant benzylic/proaprgylic carbocation.

Moving further, the scope of the double cyclization for indole-urea derivatives was further investigated with respect to isocyanates (Table 3). A wide range of arylisocyanates including alkyl and aryl groups with varied substitution were thus employed in the reaction. Initially,

Table 3. Scope of Isocyantes.^a

The Journal of Organic Chemistry

the electronically neutral and rich substrates (with single to multiple alkoxy groups) **2b-d** were tested under standard reaction conditions which all pleasingly afforded the desired products (**3ab-ad**) in excellent yields (80–82%).

The halo groups (F, Cl, and Br) as in case of **2e-f** survived well in the reaction to deliver the corresponding adducts **3ae-af** in 77-69% yields. The electron deficient CN and NO₂ tethered aryl isocyanates **2h-i** was well tolerated under standard conditions to produce the expected adducts in 69-78% yields. The structure of **3af** was unambiguously confirmed by X-ray crystallography. Further expanding the scope of the reaction, we aimed to synthesize the products with alkyl substitution on nitrogen. Thus the aliphatic isocyanates **2j-m**, irrespective of linear, branched or cyclic substitution, were cleanly transformed to the anticipated adducts **3aj-3am** in 69-65% yields. Pleasingly, sensitive chloroethyl group of **2n** survived successfully through the optimized conditions and afforded **3an** in 60% yield.

To probe the mechanism, we conducted some control experiments as shown in Scheme 3. When we conducted a reaction at room temperature in the absence of the catalyst Ag_2CO_3 , urea derivative **5** was formed as a sole product. Heating the reaction contents to 70 °C, however, did not lead to the desired product. This urea derivative **5** under the standard conditions cleanly converted to the final double cyclized product, suggesting that the catalyst free intermolecular urea formation is the initiating step. Surprisingly, under absence of isocyanate from the optimized conditions, **1a** led to 6*-endo dig* cyclization to form quinoline derivative demonstrating that the urea formation prior to the cyclization turned the atmosphere towards 5*-exo dig* cyclization.

On the basis of these observations and previous reports,⁹ a plausible reaction mechanism was proposed as shown in Scheme 4. Initially 2-amino phenyl propargylic alcohol **1** was reacted with isocyanate **2** to give urea intermediate **5** which on Ag-catalyzed 5-*exo dig* cyclization led to the intermediate **A**. 1,3-aminative dehydroxylation of **A**, driven by aromatization, revealed the end cyclic urea adduct.

Scheme 3. Control experiments.

To expand the use of this protocol, we embarked on to derivatize these adducts. We first attempted to reduce and disengage the cyclic urea to get indoloimidazolidine and indolyl methyl amine (Scheme 5) respectively. Thus we treated **3ab** with 10 equivalents of LiAlH₄ in refluxing THF.¹⁰ Surprisingly, this directly produced the demethylative adduct **7** in 65% yield. This 2-(aminomethyl)-indole scaffolds represents the key structures that exist in several indole alkaloids as well as biologically active synthetic compounds.¹¹ Efforts (by varying temperature of the reaction and equivalents of LiAlH₄) on controlled reduction of **3ab** towards indoloimidazolidine were not successful.

Scheme 5. Reductive cleavage of cyclic urea of 3ab.

CONCLUSIONS

In summary, we have demonstrated a general and straightforward approach for the synthesis of indole fused cyclic urea derivatives from readily available 2-amino phenyl propargylic alcohols. This one-pot triple C-N bond construction event was possible using isocyanate as urea surrogate and Ag(I) catalyst as alkyne activating agent. The proposed reaction mechanism proceeds likely via urea formation followed by unprecedented sequential vicinal diamination of alkyne through double cyclization. This new and simple one-pot protocol features high functional group tolerance along with excellent productivity which makes it an easy access to the synthesis of highly privileged motifs.

EXPERIMENTAL SECTION

General Information

All reagents and solvents were purchased from commercial sources and used without purification. NMR spectra were recorded with a 400 or 500 MHz spectrometer for ¹H NMR, 100 or 125 MHz for ¹³C NMR spectroscopy. Chemical shifts are reported relative to the residual signals of tetramethylsilane in CDCl₃ or deuterated solvent CDCl₃ for ¹H and ¹³C NMR spectroscopy. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of triplets (dt), triplet (t), quartet (q), multiplet (m). HRMS were recorded by using QTof mass spectrometer. Column chromatography was performed with silica gel (100–200 mesh) as the stationary phase. All reactions were monitored by using TLC. The characterization of compounds was further established by using HRMS.

Starting Materials 1 Were Prepared in One Step Following the Literature Procedures.^{12,7d}

General Procedure A for the Synthesis of 1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-ones (3aa-3qa) from (1a-1q) taking Synthesis of 3aa as an example:

To a stirred solution of **1a** (120 mg, 0.5 mmol, 1 eq) in 2.5 mL of CH₃CN was added Nbenzyl isocyanate (**2a**) (166 mg, 1.25 mmol, 2.5 eq) and Ag₂CO₃ (41 mg, 0.15 mmol, 0.3 eq) at room temperature. The reaction mixture was stirred at 70 °C until complete conversion of starting material (12h for **3aa-3da**, 10h for **3ea-3fa**, 14h for **3ga-3ka**, 16h for **3ma-3qa** 18h for **3ab-3nd**, 20h for **3ae-3ai** 22h for **3aj-3an**). The reaction mixture was diluted with EtOAc and filtered through short celit pad. The filtrate was diluted with water and extracted with EtOAc. Combined extracts were washed with brine (10 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude material was purified on silica gel using 10% EtOAc/hexane to get **3aa** (146 mg, 82%) as off white solid.

2-Benzyl-9-methyl-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3aa):mp 111-1113 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.06 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.41-7.36 (m, 3H), 7.36-7.29 (m, 4H), 7.27-7.19 (m, 5H), 5.33 (s, 1H), 5.15 (d, J = 15.1 Hz, 1H), 3.74 (d, J = 15.1 Hz, 1H), 1.89 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 152.0, 136.4, 135.7, 134.6, 133.9, 130.4, 129.1, 129.0, 128.8, 128.4, 128.1, 127.8, 123.3, 122.1, 118.9,112.6, 107.3, 58.4, 44.5, 7.8; DEPT90 (100 MHz, CDCl₃) \delta 129.1, 129.0, 128.8, 128.4, 128.1, 127.8, 123.3, 122.1, 118.9, 112.6, 58.4; DEPT135 (100 MHz, CDCl₃) \delta 129.1, 129.0, 128.8, 128.4, 128.1, 127.8, 123.3, 122.1, 118.9, 112.6, 58.4, 44.5 (-ve), 7.8; IR (KBr) \nu 3400, 2403, 1567, 1385, 1030, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₁N₂O [M + H]⁺ 353.1654, found 353.1664.**

2-Benzyl-9-methyl-1-(*p*-tolyl)-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3ba): 3ba (0.147 g) was obtained from 1b (0.126 g, 0.5 mmol) following general procedure **A**. Yield 80%; white solid, mp 141-143 °C; $R_f = 0.50$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.37-7.28 (m, 4H), 7.27-7.22 (m, 3H), 7.19 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.30 (s, 1H), 5.14 (d, J = 15.2 Hz, 1H), 3.73 (d, J = 15.2 Hz, 1H), 2.38 (s, 3H), 1.89 (d, J = 1.4 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 152.0,138.9, 136.5, 134.7,133.9, 132.5, 130.4, 129.8, 128.8, 128.4, 128.0, 127.8, 123.2, 122.0, 118.9, 112.5, 107.12, 58.2, 44.4, 21.2, 7.9; IR (KBr) v 3686, 3401, 1727, 1478, 1456, 1310, 929, 627 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₅H₂₃N₂O[M + H]⁺ 367.1810, found 367.1815.

2-Benzyl-1-(4-ethylphenyl)-9-methyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3ca): 3ca** (0.154 g) was obtained from **1c** (0.133 g, 0.5 mmol) following general procedure **A**. Yield 81%; off white solid, mp 118-120 °C; $R_f = 0.50$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.37-7.30 (m, 4H), 7.29-7.20 (m, 5H), 7.13 (d, J = 7.9 Hz, 2H), 5.33 (s, 1H), 5.15 (d, J = 15.2 Hz, 1H), 3.77 (d, J= 15.2 Hz, 1H), 2.70 (q, J = 7.5 Hz, 3H), 1.92 (d, J = 1.4 Hz, 3H), 1.28 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 145.2, 136.5, 134.8, 133.9, 132.7, 130.4, 128.8, 128.5, 128.4, 128.0, 127.7, 123.2, 122.0, 118.9, 112.5, 107.1, 58.2, 44.4, 28.5, 15.3, 7.9; IR (KBr) ν 3401, 2400, 1567, 1385, 1029, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₆H₂₅N₂O [M + H]⁺ 381.1967, found 381.1970.

2-Benzyl-1-(4-(tert-butyl)phenyl)-9-methyl-1,2-dihydro-3H-imidazo[1,5-a]indol-3-one

(3da): 3da (0.168 g) was obtained from 1d (0.147 g, 0.5 mmol) following general procedure A. Yield 82%; off white solid, mp 117-119 °C; R_{f} = 0.40 (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.40-7.36 (m, 4H), 7.28-7.18 (m, 3H), 7.12 (d, J = 7.2 Hz, 2H), 5.32 (s, 1H), 5.12 (d, J = 15.2 Hz, 1H), 3.79 (d, J = 15.2 Hz, 1H), 1.90 (d, J = 1.4 Hz, 3H), 1.33 (s,9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 152.0, 136.6, 134.7, 134.0, 132.4, 130.4, 128.7, 128.4, 127.7, 125.9, 123.2, 122.0, 118.9, 112.5, 107.1, 58.2, 44.5, 34.7, 31.7, 7.9; IR (KBr) v 3426, 2401, 1309, 1021, 625 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₈H₂₉N₂O [M + H]⁺ 409.2280, found 409.2285.

1-([1,1'-Biphenyl]-4-yl)-2-benzyl-9-methyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3ea): 3ea (0.158 g) was obtained from 1e (0.157 g, 0.5 mmol) following general procedure A. Yield 74%; pale brown solid, mp 189-191 °C; $R_f = 0.45$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 1H), 7.66-7.58 (m, 4H), 7.53-7.42 (m, 3H), 7.40-7.29 (m, 5H), 7.28-7.26 (m, 5H), 5.38 (s, 1H), 5.17 (d, J = 15.2 Hz, 1H), 3.81 (d, J =15.2 Hz, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 141.9, 140.2, 136.4, 134.6, 134.5, 134.0, 130.4, 128.9, 128.5, 128.5, 127.8, 127.7, 127.1, 123.4, 122.2, 119.0, 112.6, 107.45, 58.2, 44.6, 8.0; IR (KBr) v3401, 3019, 2400, 1601, 1524, 1383, 1023, 929, 627 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₀H₂₅N₂O [M + H]⁺429.1967, found 429.1972.

2-Benzyl-9-methyl-1,7-diphenyl-1,2-dihydro-*3H***-imidazo**[**1,5-***a***]indol-3-one** (**3fa**): **3fa** (0.154 g) was obtained from **1f** (0.157 g, 0.5 mmol) following general procedure **A**. Yield 72%; off white solid, mp 140-142 °C; $R_f = 0.55$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.69-7.62 (m, 3H), 7.59 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.48-7.44 (m, 2H), 7.42-7.37 (m, 2H), 7.37-7.30 (m, 4H), 7.26-7.20 (m, 4H), 5.35 (s, 1H), 5.16 (d, J = 15.2 Hz, 1H), 3.75 (d, J = 15.2 Hz, 1H), 1.92 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 142.1, 136.4, 135.9, 135.7, 135.3, 134.6, 129.9, 129.2, 128.9, 128.8, 128.5, 128.2, 128.0, 127.5, 126.8, 123.1, 117.7, 112.8, 107.7, 58.6, 44.7, 8.0; IR (KBr) v3401, 3019, 2400, 1730, 1603, 1026, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₀H₂₄N₂O [M + H]⁺429.1967, found 429.1976.

2-Benzyl-1-(4-methoxyphenyl)-9-methyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one

(3ga): 3ga (0.159 g) was obtained from 1g(0.134 g, 0.5 mmol) following general procedure A. Yield 83%; white solid, mp 130-132 °C; $R_f = 0.45$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.38-7.28 (m, 4H), 7.26-7.20 (m, 3H), 7.11 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 5.29 (s, 1H), 5.12 (d, J= 15.1 Hz, 1H), 3.82 (s, 3H), 3.72 (d, J = 15.1 Hz, 1H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 151.9, 136.5, 134.8, 134.0, 130.4, 129.4, 128.8, 128.4, 127.8, 127.4, 123.2, 122.1, 118.9, 114.4, 112.6, 107.1, 57.9, 55.3, 44.4, 7.9; IR (KBr) v 3403, 2401, 1387, 1030, 928, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₅H₂₃N₂O₂ [M + H]⁺ 383.1760, found 383.1751.

2-Benzyl-1-(4-fluorophenyl)-9-methyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3ha): 3ha** (0.126 g) was obtained from **1h** (0.128 g, 0.5 mmol) following general procedure **A**. Yield 68%; pale yellow gum; $R_f = 0.50$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.37-7.29 (m, 4H), 7.29-7.20 (m, 3H), 7.20-7.15 (m, 2H), 7.11-7.03 (m, 2H), 5.32 (s, 1H), 5.13 (d, J = 15.2 Hz, 1H), 3.74 (d, J = 15.2 Hz, 1H), 1.89 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1 (d, J = 248.8 Hz), 151.9, 136.2, 134.1 (d, J = 40.5 Hz), 131.5 (d, J = 3.2 Hz), 130.4, 129.8 (d, J = 8.4 Hz), 128.8, 128.3, 127.9, 123.5, 122.2, 119.0, 116.2, 116.0, 112.6, 107.4, 57.7, 44.6, 7.9; IR (neat) ν 3429, 2400, 1606, 1415, 1021, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₀FN₂O [M + H]⁺ 371.1560, found 371.1568.

2-Benzyl-7-bromo-9-methyl-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3ia): 3ia** (0.141 g) was obtained from **1i** (0.158 g, 0.5 mmol) following general procedure **A**. Yield 65%; yellow solid, mp 148-150 °C; $R_f = 0.35$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.6 Hz, 1H), 7.62-7.56 (m, 1H), 7.43-7.38 (m, 4H), 7.37-7.30 (m, 4H), 7.25-7.17 (m, 4H), 5.33 (s, 1H), 5.13 (d, J = 15.2 Hz, 1H), 3.73 (d, J = 15.2 Hz, 1H), 1.84 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 136.2, 135.9, 135.7, 135.3, 129.3, 129.0, 128.9, 128.5, 128.1, 128.0, 126.2, 121.9, 115.5, 113.9, 106.8, 58.6, 44.7 7.8; IR (KBr) v3401, 3019, 2399, 1522, 1384, 1023, 627 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₀BrN₂O [M + H]⁺431.0759, found 431.0750.

2-Benzyl-9-methyl-1-phenyl-7-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3*H***-imidazo**[1,5*a*]**indol-3-one (3ja): 3ja** (0.169 g) was obtained from **1j** (0.190 g, 0.5 mmol) following

general procedure A. Yield 68%; light yellow solid, mp 152-154 °C; $R_f = 0.45$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.77-7.73 (m, 2H), 7.72-7.59 (m, 3H), 7.58 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.42-7.38 (m, 3H), 7.37-7.31 (m, 3H), 7.27-7.19 (m, 4H), 5.36 (d, J = 0.9 Hz, 1H), 5.16 (d, J = 15.1 Hz, 1H), 3.76 (d, J = 15.1 Hz, 1H), 1.92 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 51.9, 140.0, 15.9, 133.7 (d, J = 26.9 Hz), 131.3 (d, J = 32.8 Hz), 130.4, 129.3, 128.9, 128.7, 128.4, 128.3, 128.2, 128.0, 127.8, 126.1, 126.1, 125.1, 123.7, 122.3, 119.7, 119.1, 112.6, 107.7, 57.9, 44.8, 7.9; IR (KBr) ν 3401, 2400, 1385, 929, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₁H₂₄F₃N₂O [M + H]⁺ 497.1841, found 497.1834.

2-Benzyl-9-methyl-1-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3one (3ka): 3ka (0.123 g) was obtained from 1k (0.153 g, 0.5 mmol) following general procedure A**. Yield 58%; light brown solid; mp 138-140 °C; $R_f = 0.55$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.38-7.31 (m, 6H), 7.36-7.26 (m, 1H), 7.23-7.19 (m, 2H), 5.38 (d, J = 1.0 Hz, 1H), 5.16 (d, J = 15.2 Hz, 1H), 3.65 (d, J = 15.2 Hz, 1H), 1.88 (d, J = 1.4Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 145.5, 136.2, 135.5 (d, J = 13.7 Hz), 134.4 (d, J = 37.7 Hz), 130.2, 129.2, 128.8, 128.6, 128.4, 128.1, 127.9, 127.6, 125.6, 125.6, 125.5, 122.9, 117.8, 112.9, 107.6, 58.5, 44.6, 7.9; IR (KBr) ν 3402, 2401, 1730, 1416, 1325, 1020, 928, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₅H₂₀F₃N₂O [M + H]⁺ 421.1528, found 421.1524.

2-Benzyl-1-(cyclohex-1-en-1-yl)-9-methyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one

(3ma):3ma (0.142 g) was obtained from 1m (0.120 g, 0.5 mmol) following general procedure A. Yield 79%; off white solid, mp 132-134 °C; $R_f = 0.55$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.34-7.31 (m, 4H), 7.31-7.26 (m, 2H), 7.26-7.21 (m, 1H), 5.98-5.91 (m, 1H), 4.96

(d, J = 15.0 Hz, 1H), 4.84 (s, 1H), 4.08 (d, J = 15.0 Hz, 1H), 2.18-2.12 (m, 2H), 2.12 (d, J = 1.4 Hz, 3H), 1.66-1.58 (m, 2H), 1.56-1.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 136.9, 133.9, 132.7, 132.4, 130.5, 130.4, 128.6, 128.5, 127.6, 123.0, 121.9, 118.7, 112.4, 107.0, 61.9, 44.7, 25.4, 22.5, 22.3, 22.1, 7.7; IR (KBr) v 3684, 3020, 2926, 2401, 1725, 1455, 1076, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₅N₂O [M + H]⁺ 357.1967 found 357.1973.

2-Benzyl-9-pentyl-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3na): 3na (0.157 g) was obtained from 1n (0.147 g, 0.5 mmol) following general procedure A**. Yield 77%; off white solid, mp 123-125 °C; $R_f = 0.40$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.39-7.29 (m, 7H), 7.26-7.21 (m, 3H), 7.21-7.17 (m, 2H), 5.30 (m, 1H), 5.14 (d, J = 15.2 Hz, 1H), 3.73 (d, J = 15.2 Hz, 1H), 2.40-2.24 (m, 2H), 1.34-1.25 (m, 1H), 1.20-1.04 (m, 3H), 1.02-0.93 (m, 2H), 0.71 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 136.3, 136.2, 134.5, 133.3, 130.4, 129.1, 128.8, 128.4, 128.1, 127.8, 123.2, 122.0, 119.3, 112.6, 112.5, 58.7, 44.5, 31.5, 29.0, 23.6, 22.2, 13.9; IR (KBr) v3401, 3019, 2399, 1522, 1216, 1070, 928, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₈H₂₉N₂O [M + H]⁺ 409.2280, found 409.2268.

2-Benzyl-9-octyl-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3oa): 3oa (0.169 g) was obtained from 1o (0.168 g, 0.5 mmol) following general procedure A**. Yield 75%; pale yellow gum; $R_f = 0.40$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.39-7.36 (m, 3H), 7.35-7.29 (m, 4H), 7.26-7.21 (m, 3H), 7.21-7.17 (m, 2H), 5.30 (m, 1H), 5.15 (d, J = 15.2 Hz, 1H), 3.73 (d, J = 15.2 Hz, 1H), 2.40-2.24 (m, 2H), 1.33-1.19 (m, 3H), 1.19-0.96 (m, 9H), 0.85 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 136.4, 136.2, 134.5, 133.4, 130.4, 129.1, 128.8, 128.4, 128.1, 127.8, 123.2, 122.0, 119.3, 112.6, 112.5, 58.7, 44.6, 31.8, 29.3, 29.3, 29.2, 29.1, 23.6, 22.6, 14.0; IR (neat) ν 3401, 3019, 2400, 1650, 1385, 1069, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₃₁H₃₅N₂O [M + H]⁺ 451.2749, found 451.2732.

2-Benzyl-1,9-diphenyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3pa): 3pa (0.140 g) was obtained from 1p (0.150 g, 0.5 mmol) following general procedure **A**. Yield 67%; light yellow solid, mp 153-155 °C; $R_f = 0.50$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.46-7.34 (m, 4H), 7.34-7.28 (m, 4H), 7.27-7.10 (m, 9H), 5.44 (s, 1H), 5.18 (d, J = 15.2 Hz, 1H), 3.72 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 136.4, 136.3, 135.1, 132.6, 132.0, 130.9, 129.3, 129.2, 129.0, 128.6, 128.5, 128.4, 128.0, 126.8, 124.0, 123.0, 120.3, 113.9, 113.0, 59.3, 44.7; IR (KBr) ν 3401, 3019, 2400, 1380, 1023, 929, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₉H₂₃N₂O [M + H]⁺415.1810, found 415.1813.

2-Benzyl-7-chloro-1,9-diphenyl-1,2-dihydro-3*H***-imidazo**[**1,5-***a*]**indol-3-one** (**3qa**): **3qa** (0.147 g) was obtained from **1q** (0.167 g, 0.5 mmol) following general procedure **A**. Yield 65%; light brown solid, mp 143-145 °C; $R_f = 0.40$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 1.4 Hz, 1H), 7.39-7.29 (m, 7H), 7.25-7.12 (m, 7H), 7.09-7.00 (m, 2H), 5.42 (s, 1H), 5.15 (d, J = 15.2 Hz, 1H), 3.71 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 136.2, 136.0, 136.0, 133.1, 131.8, 129.4, 129.2, 129.0, 128.8, 128.6, 128.5, 128.4, 128.4, 128.1, 127.9, 127.1, 124.2, 120.0, 113.8, 113.5, 59.3, 44.7; IR (KBr) ν 3401, 3019, 2399, 1522, 1384, 1023, 627 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₉H₂₂ClN₂O[M + H]⁺449.1421, found 449.1411.

N-Benzyl-4-(phenylethynyl)-4*H***-benzo[***d***][1,3]oxazin-2-amine (4): 4 (0.128 g) was obtained from 1r (0.112 g, 0.5 mmol) following general procedure A**. Yield 75%; light yellow solid, mp 105-107 °C; $R_f = 0.50$ (SiO₂, 30% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.85 (bs, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.52-7.49 (m, 3H), 7.46-7.41 (m, 1H), 7.40-7.31 (m, 7H), 7.30-7.26 (m, 2H), 6.18 (s, 1H), 4.66-4.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 151.8, 137.6, 134.1, 132.1, 129.5, 129.4, 128.7, 128.4, 127.6, 127.6, 125.8, 125.4, 125.4, 124.4, 122.7, 121.0, 90.5, 81.0, 69.3, 44.8; DEPT-135 (100 MHz, CDCl₃) δ

132.1, 129.5, 129.4, 128.7, 128.4, 127.6, 127.6, 125.8, 124.4, 122.7, 69.3, 44.8 (-ve); IR (KBr) v 3400, 3019, 2401, 1651, 1385, 1069, 929, 669 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{23}H_{19}N_2O [M + H]^+$ 339.1497, found 339.1490.

9-Methyl-1,2-diphenyl-1,2-dihydro-*3H***-imidazo**[**1,5-***a***]indol-3-one** (**3ab**)**: 3ab** (0.138 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 81%; white solid, mp 156-158 °C; $R_f = 0.40$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.52-7.48 (m, 3H), 7.38-7.27 (m, 9H), 7.12-7.07 (m, 1H), 6.14 (d, J = 1.3 Hz, 1H), 2.00 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 137.2, 136.4, 134.2, 133.3, 130.4, 129.1, 128.9, 128.7, 127.3, 124.9, 123.5, 122.5, 122.0, 119.0, 112.8, 107.3, 60.9, 7.9; IR (KBr) v 3401, 2400, 1567, 1384, 1066, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₁₉N₂O [M + H]⁺ 339.1497, found 339.1499.

2-(4-Methoxyphenyl)-9-methyl-1-phenyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one

(3ac): 3ac (0.147 g) was obtained from 1a (0.120 g, 0.5 mmol) following general procedure A. Yield 80%; light brown solid, mp 140-142 °C; $R_f = 0.45$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.38-7.34 (m, 1H), 7.33-7.25 (m, 8H), 6.82 (d, J = 8.8 Hz, 2H), 6.02 (m, 1H), 3.75 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 150.9, 136.6, 134.2, 133.7, 130.6, 130.0, 129.1, 128.9, 127.7, 125.1, 123.6, 122.5, 119.1, 114.4, 112.9, 107.4, 61.9, 55.5, 8.0; IR (KBr) v 3402, 3021, 2927, 2401, 1733, 1022, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₁N₂O₂ [M + H]⁺369.1603, found 369.1600.

9-Methyl-1-phenyl-2-(3,4,5-trimethoxyphenyl)-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-

one (3ad): 3ad (0.176 g) was obtained from 1a (0.120 g, 0.5 mmol) following general procedure A. Yield 82%; white solid, mp 169-171 °C; $R_f = 0.35$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.7

Hz, 1H), 7.35-7.31 (m, 5H), 7.30-7.26 (m, 1H), 6.70 (m, 2H), 6.03 (d, J = 1.3 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 6H), 1.98 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 150.6, 136.7, 135.4, 133.2, 133.1, 130.4, 129.1, 128.9, 127.4, 123.6, 122.6, 119.1, 112.7, 107.4, 100.3, 61.7, 60.8, 56.0, 7.9; IR (KBr) v 3401, 2400, 1514, 1384, 1022, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₆H₂₅N₂O₄ [M + H]⁺ 429.1814, found 429.1807.

2-(4-Fluorophenyl)-9-methyl-1-phenyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3ae): **3ae** (0.123 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A.** Yield 69%; pale yellow solid; mp 130-132 °C; $R_f = 0.55$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.43-7.37 (m, 2H), 7.36-7.26 (m, 7H), 7.03-6.94 (m, 2H), 6.07 (s, 1H), 1.99 (d, J = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0 (d, J = 245.3 Hz), 150.6, 136.4, 134.3, 133.3, 133.2 (d, J = 2.7Hz), 130.5, 129.2, 129.0, 127.5, 124.5 (d, J = 8.1 Hz), 123.7, 122.7, 119.2, 115.9 (d, J = 23.0Hz), 112.9, 107.6, 61.5, 8.0; IR (KBr) v3401, 3019, 2400, 1513, 1024, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₁₈FN₂O [M + H]⁺357.1403, found 357.1404.

2-(4-Chlorophenyl)-9-methyl-1-phenyl-1,2-dihydro-3*H***-imidazo**[**1,5-***a*]**indol-3-one** (**3af**): **3af** (0.144 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 77%; light brown solid, mp 189-191 °C; $R_f = 0.50$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.51-7.41 (m, 3H), 7.38-7.28 (m, 6H), 7.28-7.21 (m, 3H), 6.07 (d, J = 0.9 Hz, 1H), 1.98 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 136.1, 136.0, 134.3, 133.0, 130.5, 130.1, 129.3, 129.1, 129.1, 129.0, 127.3, 123.8, 122.9, 122.8, 119.2, 112.9, 107.7, 60.9, 7.9; IR (KBr) v 3430, 2406, 1506, 1415, 1028, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₁₈ClN₂O [M + H]⁺ 373.1108, found 373.1112.

2-(4-Bromophenyl)-9-methyl-1-phenyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3ag):
3ag (0.154 g) was obtained from 1a (0.120 g, 0.5 mmol) following general procedure A.

Yield 74%; off white solid, mp 219-221 °C; $R_f = 0.55$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.42-7.37 (m, 4H), 7.36-7.26 (m, 1H), 6.08 (d, J = 1.0 Hz, 1H), 1.99 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 136.5, 136.1, 134.3, 133.0, 132.0, 130.5, 129.3, 129.0, 127.3, 123.8, 123.1, 122.8, 119.2, 117.8, 112.9, 107.7, 60.8, 7.9; IR (KBr) v 3401, 2400, 1650, 1509, 1385, 1083, 909, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₁₈BrN₂O [M + H]⁺ 417.0603, found 417.0608.

4-(9-Methyl-3-oxo-1-phenyl-1*H***-imidazo**[**1**,5-*a*]**indol-2**(*3H*)**-yl**)**benzonitrile** (**3ah**): **3ah** (0.142 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 78%; pale yellow solid, mp 213-215 °C; $R_f = 0.40$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 1H),7.93-7.89 (m, 1H), 7.81-7.74 (m, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.40-7.25 (m, 9H), 6.09 (d, J = 1.4 Hz, 1H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 138.4, 135.6, 134.3, 132.4, 130.3, 129.8, 129.4, 129.2, 127.7, 127.0, 124.9, 123.9, 123.0, 119.2, 118.3, 113.1, 112.9, 108.1, 60.5, 7.8; IR (KBr) v 3401, 2400, 1738, 1579, 1215, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₁₈N₃O [M + H]⁺ 364.1450, found 364.1458.

9-Methyl-2-(4-nitrophenyl)-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3ai): 3ai** (0.139 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 72%; yellow solid, mp 205-207 °C; $R_f = 0.45$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 9.0 Hz, 2H), 8.07 (d, J = 7.7 Hz, 1H), 7.80 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.7 Hz, 1H), 7.41-7.28 (m, 7H), 6.22 (s, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 143.5, 143.2, 135.6, 134.4, 132.0, 130.3, 129.5, 129.2, 126.7, 124.7, 124.0, 123.2, 119.5, 119.3, 112.9, 108.2, 60.6, 7.8; IR (KBr) v 3401, 2400, 1335, 1065, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₃H₁₈N₃O₃ [M + H]⁺ 384.1348, found 384.1342. Page 23 of 30

9-Methyl-2-octyl-1-phenyl-1,2-dihydro-3*H***-imidazo[1,5-***a***]indol-3-one (3aj): 3aj (0.127 g) was obtained from 1a (0.120 g, 0.5 mmol) following general procedure A**. Yield 68% colourless oil; $R_f = 0.60$ (SiO₂, 5% EtOAc/hexanes);¹H NMR (400 MHz, CDCl₃) δ 8.05-7.99 (m, 1H), 7.49-7.45 (m, 1H), 7.40-7.35 (m, 3H), 7.34-7.21 (m, 4H), 5.53 (s, 1H), 3.74-3.59 (m, 1H), 2.96-2.81 (m, 1H), 1.94 (d, J = 2.4 Hz, 3H), 1.32-1.19 (m, 12H), 0.89-0.83 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 136.2, 134.8, 133.9, 130.4, 129.1, 129.0, 127.9, 123.2, 122.0, 118.9, 112.5, 106.9, 59.5, 41.1, 31.8, 29.2, 29.1, 27.9, 26.7, 22.6, 14.1, 7.9; IR (neat) v 3401, 3019, 2399, 1522, 1216, 928, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₅H₃₀N₂O [M + H]⁺375.2436, found 375.2435.

9-Methyl-2-phenethyl-1-phenyl-1,2-dihydro-3*H*-imidazo[1,5-*a*]indol-3-one (3ak): 3ak (0.126 g) was obtained from 1a (0.120 g, 0.5 mmol) following general procedure A. Yield 69%; yellow solid, mp 139-141 °C; $R_f = 0.65$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.40-7.36 (m, 3H), 7.35-7.23 (m, 5H), 7.20-7.14 (m, 4H), 5.27 (d, J = 1.1 Hz, 1H), 4.00-3.89 (m, 1H), 3.19-3.08 (m, 1H), 3.02-2.93 (m, 1H), 2.85-2.74 (m, 1H), 1.90 (d, J = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 138.6, 135.9, 134.7, 133.9, 130.5, 129.1, 128.8, 128.6, 128.0, 126.6, 123.2, 122.0, 118.9, 112.5, 107.0, 60.0, 42.6, 34.6, 7.9; IR (KBr) v 3402, 2400, 1646, 1568, 1217, 771, 669 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₅H₂₃N₂O [M + H]⁺ 367.1810, found 367.1806.

2-Isopropyl-9-methyl-1-phenyl-1,2-dihydro-*3H***-imidazo**[**1,5-***a***]indol-3-one** (**3a**]**: 3al** (0.99 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 65%; light yellow solid, mp 129-131 °C; $R_f = 0.60$ (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.37-7.28 (m, 6H), 7.25-7.20 (m, 1H), 5.56 (s, 1H), 4.14-4.05 (m, 1H), 1.88 (d, J = 1.2 Hz, 3H), 1.35 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 138.0, 135.2, 133.9, 130.2, 128.9, 128.8, 127.8, 123.1, 121.9, 118.8, 112.5, 106.5, 58.7, 46.2, 21.2, 20.3, 7.7; IR

(KBr) v 3401, 2400, 1455, 1215, 929, 669 cm⁻¹; HRMS (ESI-TOF) calcd for $C_{20}H_{21}N_2O$ [M + H]⁺ 305.1654, found 305.1657.

9-Methyl-2-((1r,4r)-4-methylcyclohexyl)-1-phenyl-1,2-dihydro-3H-imidazo[1,5-a]indol-

3-one (3am): 3am (0.124 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 69%; yellow solid, mp 149-151 °C; $R_f = 0.60$ (SiO₂, 10% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.36-7.27 (m, 6H), 7.25-7.19 (m, 1H), 5.57 (s, 1H), 3.75-3.62 (m, 1H), 1.87 (d, J = 1.2 Hz, 3H), 1.81-1.70 (m, 2H), 1.67-1.53 (m, 3H), 1.29-1.16 (m, 2H), 1.03-0.89 (m, 2H), 0.83 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 138.2, 135.3, 133.9, 130.21, 128.8, 128.7, 127.8, 123.1, 121.9, 118.8, 112.5, 106.4, 58.7, 54.1, 34.4, 31.7, 31.2, 30.3, 22.0, 7.7; IR (KBr) v 3401, 2400, 1384, 1023, 929, 669, 626 cm⁻¹; HRMS (ESI-TOF) calcd for C₂₄H₂₇N₂O [M + H]⁺ 359.2123, found 359.2125.

2-(2-Chloroethyl)-9-methyl-1-phenyl-1,2-dihydro-*3H***-imidazo**[**1**,5-*a*]**indol-3-one** (3an): **3an** (0.97 g) was obtained from **1a** (0.120 g, 0.5 mmol) following general procedure **A**. Yield 60%; light yellow solid, mp 129-131 °C; $R_f = 0.40$ (SiO₂, 30% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.43-7.37 (m, 3H), 7.36-7.26 (m, 4H), 5.77 (s, 1H), 4.03-3.93 (m, 1H), 3.79-3.69 (m, 1H), 3.59-3.51 (m, 1H), 3.31-3.21 (m, 1H), 1.95 (d, J = 1.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 135.7, 134.4, 134.0, 130.3, 129.3, 129.2, 128.0, 123.4, 122.2, 119.0, 112.5, 107.4, 60.7, 42.9, 42.9, 42.1, 7.9; IR (neat) v 3686, 3019, 2400, 1413, 1023, 929, 627 cm⁻¹; HRMS (ESI-TOF) calcd for C₁₉H₁₈ClN₂O [M + H]⁺ 325.1108, found 325.1113.

Control experiments

Scheme-A: To a stirred solution of 1a (237 mg, 1 mmol, 1 eq) in 2.5 mL of CH₃CN was added Phenyl isocyanate (332 mg, 2.5 mmol, 2.5 eq) at room temperature. The reaction

The Journal of Organic Chemistry

mixture was stirred at RT. until complete conversion of starting material (1h). The reaction mixture was diluted with water and extracted with EtOAc (2x10 ml). Combined extracts were washed with brine (10 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude material was purified on silica gel using 30% EtOAc/hexane to get **5** (305 mg, 85 %) as off white solid.

1-(2-(2-Hydroxy-4-phenylbut-3-yn-2-yl)phenyl)-3-phenylurea (5): mp 233-235 °C R_f = 0.40 (SiO₂, 30% EtOAc/Hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.51 (bs, 1H), 7.93 (d, J = 7.1 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.41 (d, J = 6.8 Hz, 2H), 7.35-7.30 (m, 4H), 7.25-7.20 (m, 3H), 7.12-7.02 (m, 3H), 6.82 (bs, 1H), 3.13 (bs, 1H), 1.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.6, 137.9, 136.7, 132.8, 131.7, 129.1, 128.9, 128.7, 128.3, 126.4, 124.2, 123.5, 123.5, 123.3, 121.6, 120.3, 91.0, 85.9, 71.2, 30.2; IR (KBr) v 3400, 3019, 1650, 1385, 1069, 669 cm⁻¹ HRMS (ESI-TOF) calcd for C₂₃H₁₉N₂O [M⁺-H₂O]⁺ 339.1497, found 339.1487.

Scheme-B: To a stirred solution of 5 (179 mg, 0.5 mmol, 1 eq) in 2.5 mL of CH₃CN was added Ag₂CO₃ (42 mg, 0.15 mmol, 0.3 eq) at room temperature. The reaction mixture was stirred at 70 °C, until complete conversion of starting material (12 h). The reaction mixture was diluted with water and extracted with EtOAc (2x10 ml). Combined extracts were washed with brine (10 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude material was purified on silica gel using 30% EtOAc/hexane to get **3ab** (127 mg, 75 %) as off white solid.

Scheme-C: Starting material 1a was subjected to the general procedure A in absence of Isocyanate.

The product **6** was compared with reported data.¹²

Reductive cleavage of cyclic urea

The 1,2-dihydro-3H-imidazo[1,5-a]indol-3-one **3ab** (170 mg, 0.5 mmol, 1 equiv) in THF (10 mL) was added to a suspension of LiAlH₄ (189 mg, 5 mmol, 10 equiv) in THF (10 mL). The mixture was refluxed for 24 h until TLC showed no more starting material. On completion, the reaction mixture was carefully hydrolysed with aqueous KOH (0.65 mL, 10% solution) and water (0.8 mL). After complete addition stirring was continued for 2 h. After filtration the filtrate was diluted with water and extracted with ethyl acetate (20 mL). Combined extracts were washed with brine (10 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude material was purified on silica gel using 10% EtOAc/hexane to get **7** (103 mg, 65%) as off white solid.

N-((3-Methyl-1*H***-indol-2-yl)(phenyl)methyl)aniline (7)**: mp 164-166 °C R_f = 0.50 (SiO₂, 20% EtOAc/Hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (bs, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.42-7.31 (m, 5H), 7.29-7.26 (m, 1H), 7.19-7.11 (m, 4H), 6.82-6.75 (m, 1H), 6.62 (d, J = 7.7 Hz, 2H), 5.74 (d, J = 1.0 Hz, 1H), 4.18 (bs, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 141.2, 135.0, 134.6, 129.7, 129.3, 129.0, 127.9, 127.3, 121.6, 119.2, 118.6, 118.4, 113.7, 110.9, 107.4, 56.5, 8.4; IR (KBr) v 3400, 3019, 2320, 1385, 1069, 669 cm⁻¹ HRMS (ESI-TOF) calcd for C₂₂H₂₁N₂ [M + H]⁺ 313.1705, found 313.1710.

ASSOCIATED CONTENT

Spectroscopic data of all the products is available in Supporting Information. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

AUTHOR INFORMATION

Corresponding Author* E-mail: msreddy@cdri.res.in

ACKNOWLEDGEMENTS

This work was supported by MoES (09-DS/03/2014 PC-IV), New Delhi. We are thankful to SAIF, CSIR-CDRI, for providing the analytical facilities and Dr.Tejender S. Thakur, Molecular and Structural Biology Division, CSIR-CDRI for supervising the X-ray data collection and structure determination of compounds **3af**. M.R. and S.P. thanks CSIR for the fellowship. CDRI Communication No: 9477.

REFERENCES

- (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005,105, 2873. (b) Gabriele, B.; Salerno, G.; Fazio, A.; Veltri, L. Adv. Synth. Catal. 2006, 348, 2212. (c) Huang, J.; Macdonald, S. J. F.; Harrity, P. A. Chem. Commun. 2010, 46, 8770. (d) Gabriele, B. Veltri, L.; Mancuso, R.; Salerno, G.; Maggi, S.;Aresta, B. M. J. Org. Chem. 2012, 77, 4005. (e) Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270. (f) Li, E.; Cheng, X.; Wang, C.; Shao, Y.; Li, Y. J. Org. Chem. 2012, 77, 7744. (g) Hu, Z.; Liang, D.; Zhao, J.; Huang, J.; Zhu, Q. Chem. Commun. 2012, 48, 7371. (h) Qiu, G.; Chen, C.; Yao, L.; Wu, J. Adv. Synth. Catal. 2013, 355, 1579. (i) Xia, G.; Han, X.; Lu, X.; Org. Lett. 2014, 16, 6184. (j) Tian, P.-P.; Cai, S. -H.; Liang, Q. -J.; Zhou, X. -Y.; Xu, Y. -H.; Loh, T. -P. Org. Lett. 2015, 17, 1636. (k) Li, J.; Zhu, Z.; Yang, S.; Zhang, Z.; Wu, W.; Jiang, H. J. Org. Chem. 2015, 80, 3870.
- (a) Fukudome, Y.; Naito, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2008, 130, 1820. (b)
 Wang, W.; Shen, Meng, X.; Zhao, M.; Chen, Y.; Chen, B.Org. Lett. 2011, 13, 4514. (c)
 Zeng, J.; Tan, Y. J.; Leow, M. L.; Liu, X.-W. Org. Lett. 2012, 14, 4386. (d) Li, J.;
 Neuville, L. Org. Lett. 2013, 15, 1752. (e) Garzon, M.; Davies, P. W. Org. Lett. 2014, 16,
 4850. (f) Sagadevan, A.; Ragupathi, A.; Hwang, K. C. Photochem. Photobiol. Sci. 2013,
 12, 2110. (g) Chen, Z.; Wen, Y.; Luo, G.; Ye, M.; Wang, Q. RSC Adv. 2016, 6, 86464. (h)

Okumara, S.; Takeda, Y.; Kiyokawa, K.; Minakata, S. *Chem. Commun.* 2013, 49, 9266.
(i) Hu, Z.; Tong, X.; Liu, G. *Org. Lett.* 2016, 18, 2058.

- (a) Muñiz, K. J. Am. Chem. Soc. 2007, 129, 14542. (b) Yao, B.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 5170. (c) Ha, T. M.; Yao, B.; Wang, Q.; Zhu, J. Org. Lett. 2015, 17, 5256. (d) Ha, T. M.; Yao, B.; Wang, Q.; Zhu, J. Org. Lett. 2015, 17, 1750.
 (e) Ho, H. E.;Oniwa, K.; Yamamoto, Y.; Jin, T.Org. Lett. 2016, 18, 2487. (f) Yu, J.; Negerie, D. Z.; Du, Y. Org. Lett. 2016, 18, 3322.
- (a) Li, Q.; Li, T.; Woods, K. W.; Gu, W.-Z.; Cohen, J.; Stoll, V. S.; Galicia, T.; Hutchins, C.; Frost, D.; Rosenberg, S. H.; Sham, H. L. *Bioorg. Med. Chem. Lett.* 2005, *15*, 2918. (b) Palin, R.; Clark, J. K.; Evans, L.; Houghton, A. K.; Jones, P. S.; Prosser, A.; Wishart, G.; Yoshiizumi, K. *Bioorg. Med. Chem.* 2008, *18*, 282. (c) Duarte, C. D.; Barreiro, E. J.;Fraga, C. A. M. *Mini-Rev. Med. Chem.* 2007, *7*, 1108. (d) Kamata, J.; Okada, T.; Kotake, Y.; Niijima, J.; Nakamura, K.; Uenaka, T.; Yamaguchi, A.; Tsukahara, K.; Nagasu, T.; Koyanagi, N.; Kitoh, K.; Yoshimatsu, K.; Yoshino, H.; Sugumi, H. *Chem. Pharm. Bull.* 2004, *52*, 1071. (e) Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. *Org. Lett.* 2016, *18*, 192.
- (a) Wright, W. B.; Brabander, H. J. J. Med. Chem. 1968, 11, 1164. (b) Varasi, M.; Heidempergher, F.; Caccia, C.; Salvati, P. Imidazolylalkyl derivatives of imidazo[1, 5a]indol-3-one and their use as therapeutic CNS agents, US 5874457, May 2, 1995. (c) Voss, M. E.; Carter, P. H.; Tebben, A. J.; Scherle, P. A.; Brown, G. D.; Thompson, L. A.; Xu, M.; Lo, Y. C.; Yang, G.; Liu, R. -Q.; Strzemienski, P.; Everlof, J. G.; Trzakos, J. M.; Decicco, C. P. *Bioorg. Med. Chem. Lett.* 2003, 13, 533. (d) Katritzky, A. R.; Singh, S. K.; Bobrov, S. J. Org. Chem. 2004, 69, 9313. (e) Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490.

- (a) Zabawa, T. P.; Kasi, D.; Chemeler, S. R. J. Am. Chem. Soc. 2005, 127, 11250. (b) Muniz, K.; Martinez, C. J. Org. Chem. 2013, 78, 2168. (c) Li, H.; Widenhoefer, A. Org. Lett. 2009, 11, 2671. (d) Fu, S.; Yang, H.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 1018. (e) Yu, J.; Gao, C.; Song, Z.; Yang, H.; Fu, H. Eur. J. Org. Chem. 2015, 5869. (f) Youn, S. W.; Kim, Y. H. Org. Lett. 2016, 18, 6140.
 - (a) Kumar, R.; Thorat, S. H.; Reddy, M. S. Chem. Commun. 2016, 52, 13475. (b) Rajesh, M.; Puri, S.; Kant, R.; Reddy, M. S. Org. Lett. 2016, 18, 4332. (c) Thirupathi, N.; Puri, S.; Reddy, T. J.; Sridhar, B.; Reddy, M. S. Adv. Synth. Catal. 2016, 358, 303. (d) Kumar, Y. K.; Kumar, G. R.; Reddy, T. J.; Sridhar, B.; Reddy, M. S. Org Lett. 2015, 17, 2226-2229. (e) Rajesh, M.; Thirupathi, N.; Reddy, T. J.; Kanojiya, S.; Reddy, M. S. J. Org. Chem. 2015, 80, 12311. (f) Thirupathi, N.; Babu, M. H.; Dwivedi, V.; Reddy, M. S. Org. Lett. 2014, 16, 2908.
 - (a) Liu, J.; Shen, M.; Zhang, Y.; Li, G.; Khodabocus, A.; Rodriguez, S.; Qu, B.; Farina, V.; Senanayake, C. H.; Lu, B. Z. Org. Lett. 2006, 8, 3573. (b) Liu, J.; Zhang, Y.; Li, G.; Roschangar, F.; Farina, V.; Senanayake, C. H.; Lu, B. Z. Adv. Synth. Catal. 2010, 352, 2667. (c) Wang, T.; Shi, S.; P flasterer, D.; Rettenmeier, E.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2014, 20, 292.
 - (a) Kumar, G. R.; Kumar, Y. K.; Kant, R.; Reddy, M. S. Org. Biomol. Chem. 2016, 14, 4077. (b) Dhiman, S.; Mishra, U. K.; Ramasastry, S. S. V. Angew. Chem., Int. Ed. 2016, 55, 7737.
 - 10. Keyserlingk, N. G. V.; Martens, J. Eur. J. Org. Chem. 2002, 301.
- 11. (a) Rivara, S.; Mor, M.; Silva, C.; Zuliani, V.; Vacondio, F.; Spadoni, G.; Bedini, A.; Tarzia, G.; Luvini, V.; Pannacci, M.; Fraschini, F.; Plazzi, P. V. *J. Med. Chem.* 2003, *46*, 1429. (b) Stewart, A. O.; Cowart, M. D.; Moreland, R. B.; Latshaw, S. P.; Matulenko, M.

A.; Bhatia, P. A.; Wang, X.; Daanen, J. F.; Nelson, S. L.; Terranova, M. A.; Namovic, M.
T.; Donnelly-Roberts, D. L.; Miller, L. N.; Nakane, M.; Sullivan, J. P.; Brioni, J. D. J. *Med. Chem.* 2004, 47, 2348. (c) Rivara, S.; Lorenzi, S.; Mor, M.; Plazzi, P. V.; Spadoni,
G.; Bedini, A.; Tarzia, G. J. Med. Chem. 2005, 48, 4049. (d) Cacchi, S.; Fabrizi, G.;
Iazzetti, A.; Molinaro, C.; Verdiglione, R.; Goggiamani, A. Adv. Synth. Catal. 2015, 357, 1053.

 Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Plastina, P. J. Org. Chem. 2007, 72, 6873.