# Enantioselective Total Synthesis of Cerorubenic Acid-III via Type II [5+2] Cycloaddition Reaction

Xin Liu,<sup>#</sup> Junyang Liu,<sup>#</sup> Jianlei Wu, and Chuang-Chuang Li\*



**ABSTRACT:** The first enantioselective total synthesis of cerorubenic acid-III is described in detail. Different strategies and attempts, based on a type II [5+2] cycloaddition reaction, leading to the bicyclo[4.4.1] ring system with a strained bridgehead double bond, are depicted. Furthermore, sodium naphthalenide was found to be efficient in the chemoselective reduction of 8-oxabicyclo[3.2.1]octene, with three transformations completed in one operation. An unusual  $S_N1$  transannular cyclization reaction was applied to construct the synthetically challenging vinylcyclopropane moiety. This strategy enabled the total synthesis of cerorubenic acid-III in 19 steps.

#### INTRODUCTION

Natural products from the sesterterpenoid family<sup>1</sup> usually present highly attractive targets for total synthesis owing to their unusual structural features and interesting bioactivity.<sup>2</sup> Cerorubenic acid-III (1, Figure 1), along with its four analogues (3–6), were isolated from the secretion of *Ceropiastes rubens* (Coccidae, a scale insect) by Naya and co-workers in 1983.<sup>3</sup> These unusual sesterterpenoids were found to act as kairomones,<sup>4</sup> responsible for controlling the ovipositional behavior of parasitic wasp *Anicetus beneficus*. Owing to the



Figure 1. Structures of cerorubenic acid-III and its analogues.

scarcity of these isolated natural samples, no further biological activity of these compounds has been determined other than their reported role in insect communication. Structurally, cerorubenic acid-III (1), the most complex compound in this family, possesses a unique 6/3/7/6 tetracyclic skeleton, featuring a bridged bicyclo[4.4.1]undecene ring system (highlighted in red), and a highly strained vinylcyclopropane moiety with the double bond at the bridgehead position.<sup>5</sup> Furthermore, seven contiguous stereocenters with an all-carbon quaternary stereocenter (C3) make this molecule a formidable synthetic challenge that has attracted much attention from the chemical community.<sup>6</sup> After a ten-year journey, Paquette and co-workers finished their elegant total synthesis of cerorubenic acid-III methyl ester (2) in 1998, comprising 30 steps with an overall yield of 0.3%.<sup>6g</sup> However, the synthesis of 1 from 2 was still unknown at the time. For the total synthesis of 1, the development of an efficient method to construct the complex ring system with high stereoselectivity, regioselectivity, and enantioselectivity is a critical challenge. As part of our ongoing endeavor toward the total synthesis of bioactive natural products with a seven-membered ring,<sup>7</sup> we reported herein an efficient

Special Issue: Natural Products: An Era of Discovery in Organic Chemistry

Received: January 23, 2021

## The Journal of Organic Chemistry

pubs.acs.org/joc



Figure 2. Retrosynthetic analysis of cerorubenic acid-III (1).





Table 1. Optimization of Conditions for Oxidation and Olefination Reactions

|              | OTBS<br>O                | O<br>H<br>O<br>Me<br>19 | conditions   |                | OH<br>e      | conditions 2            | RO <sub>2</sub> C | S<br>OH<br>Me<br>21: R = Et<br>22: R = Me | Me         |               |
|--------------|--------------------------|-------------------------|--------------|----------------|--------------|-------------------------|-------------------|-------------------------------------------|------------|---------------|
| conditions 1 |                          |                         |              |                | conditions 2 |                         |                   |                                           |            |               |
| entry        | reagent                  | solvent                 | temp.        | yield          | entry        | y reagent               | solvent           | temp.                                     | yield      | dr            |
| 1            | DMP                      | DCM                     | r.t.         | about 20%      |              | 0 0                     |                   |                                           |            |               |
| 2            | TPAP/NMO                 | DCM/CH <sub>3</sub> C   | N r.t.       | 67%, 15% of 19 | 1            | (EtO) <sub>2</sub> POEt | THF               | -78 °C                                    | 59%        | 1.5:1         |
| 3            | (COCI) <sub>2</sub> /TEA | DMSO                    | -78 °C       | 75%            | 2            | 0                       | PhCH <sub>3</sub> | 80 °C                                     | 85%        | 10:1          |
| 4            | IBX                      | DMSO                    | r.t          | 88%            | 3            | Ph₃P <u>↓</u> OMe       | PhCH <sub>3</sub> | 100 °C                                    | 85%        | 5:1           |
| 5            | PCC                      | DCM                     | 0 °C to r.t. | about 40%      | 4            |                         | DCE               | 80 °C                                     | <b>90%</b> | ≥ <b>20:1</b> |

#### The Journal of Organic Chemistry

strategy for the enantioselective total synthesis of cerorubenic acid-III,<sup>8</sup> which was enabled by a type II [5+2] cycloaddition reaction.

#### RESULT AND DISCUSSION

**Retrosynthetic Analysis of Cerorubenic Acid-III (1).** Figure 2 shows our retrosynthetic analysis of cerorubenic acid-III (1). We planned to install the tiglic acid side chain via the homologation of aldehyde 7, followed by a Horner–Wadsworth–Emmons (HWE) reaction.<sup>9</sup> The challenging vinylcyclopropane fragment was designed to be formed by a radical-initiated cyclization<sup>10</sup> from advanced intermediate 8. Tricyclic core 8 could be achieved through a series of functional group interconversions (FGIs) of 9. Bridged skeleton 9 was proposed to be prepared by the type II [5+2] cycloaddition reaction<sup>11</sup> of 10. Acetoxypyranone 10 could be synthesized from furan 11 using an Achmatowicz reaction<sup>12</sup> after installing the unsaturated ester. Finally, furan 11 could be readily prepared by coupling lithium reagent 12 with enone 13, which would be accessed from (–)-carvone.

Our synthetic work started with the synthesis of compound **19** (Scheme 1). The reported Tollens condensation reaction of (-)-carvone was used to yield **14** with high stereoselectivity.<sup>13</sup> Subsequent protection of the primary alcohol with trimethylsilyl chloride (TMSCl) gave **15** in a moderate yield over two steps and could be conducted on a 10 g scale. 2,4-Disubstituted furan iodide **18** was prepared efficiently from known furan bromide compound **16**<sup>11b</sup> in two steps. Subsequent coupling of the two fragments was realized using a 1,2-addition reaction, followed by a mild deprotection of the TMS group to furnish diol compound **19** in 85% yield over two steps with 2:1 dr.

With diol **19** in hand, we focused on the installation of the olefin moiety for the type II [5+2] cycloaddition while avoiding the racemization at the C1 position and the elimination of tertiary alcohol. The first challenge was to oxidize the primary alcohol to aldehyde **20**. Selective conditions (conditions 1) are shown in Table 1. IBX and DMSO were finally found to be the best conditions, resulting in an 88% yield and no racemization. For the olefination reaction, different HWE and Wittig reaction conditions were screened (conditions 2, Table 1), with the condition shown in entry 4 giving ester **22** in high yield (90%) with limited racemization.

Having secured a method for the synthesis of compound 22, we proceeded to prepare acetoxypyranone 24, a precursor for the type II [5+2] cycloaddition reaction (Scheme 2). The tertiary alcohol was expected to be a good nucleophile in the presence of the acetoxypyranone. Therefore, PCC-mediated Babler oxidation of 22 provided the corresponding cyclohexenone (23) in a good yield. Subsequent deprotection of the TBS group using Olah's reagent released furan alcohol (not shown) smoothly. Achmatowicz rearrangement of the furan alcohol initiated by *m*-CPBA, followed by acetylation, gave the desired precursor 24 for the type II [5+2] cycloaddition in a high yield. Fortunately, the key reaction furnished desired tricyclic compound 25 successfully, with the structure confirmed by Xray crystallography. However, the yield was as low as about 10%, with several attempts (different base and solvent) at improved yields failing. After careful analysis of the byproducts, we found that a possible four-membered ring structure related to the unsaturated ester might contribute to the low cyclization yield. Therefore, a modification of precursor 24 was proposed, replacing the unsaturated ester with an allylic alcohol.

Scheme 2. First Attempt at Type II [5+2] Cycloaddition Reaction<sup>a</sup>

pubs.acs.org/joc

Article



<sup>*a*</sup>ORTEP drawing of **25** showing thermal ellipsoids at the 50% probability level.

Starting from ester 22, reduction with DIBAL-H, protection of the corresponding allylic alcohol with acetic anhydride followed by Babler oxidation gave enone 26 in 63% overall yield for three steps (Scheme 3). Another three-step transformation from 26 gave modified precursor 28 efficiently. Subjecting 28 to the standard conditions, the type II [5+2] cycloaddition of 28 afforded desired product 29 as a single diastereomer in an improved yield of 71%, its structure was later confirmed by X-ray crystallography.

With compound 29 in hand, the main skeleton of our target natural product had been prepared, allowing us to proceed to the next phase of our synthesis (Scheme 4). As the radical-initiated reductive cleavage of C-O bonds (Li, MeNH<sub>2</sub>) in 8oxabicyclo[3.2.1] octene has been well studied by our group,<sup>11c</sup> we initially planned to prepare triolefin 30 by directly reducing the two enones in 29. After screening many different conditions, treating **29** with NaBH<sub>3</sub>CN in the presence of  $BF_3 \cdot Et_2O_1^{14}$  was found to reduce the enones smoothly, giving alcohol 30 as a single diastereomer in moderate yield. Next, a two-step Barton-McCombie deoxygenation of 30 yielded a mixture of target compound 32 and side-product 31 with the migration of the bridgehead olefin. Selective cleavage of the C-O bond was completed by treating this mixture with Li/MeNH<sub>2</sub> to give diol 33, which was then protected to afford 34 in good yield. As the subsequent installation of the cyclopropane moiety and a side chain to create a chiral center at C15 from 34 proved to be

Scheme 3. Second Attempt at Type II [5+2] Cycloaddition Reaction<sup>a</sup>



<sup>*a*</sup>ORTEP drawing of **29** showing thermal ellipsoids at the 50% probability level.

difficult, we turned to another approach to accomplish the synthesis of cerorubenic acid-III.

Retrosynthetic Analysis of Cerorubenic Acid-III (1): Second Generation. A modified retrosynthetic analysis of cerorubenic acid-III (1) is shown in Figure 3. We envisaged that

Scheme 4. Synthesis of Core Skeleton of Cerorubenic Acid

cerorubenic acid-III could be generated from advanced intermediate **35** through a selective cross-metathesis (CM) reaction with methacrylic acid.<sup>15</sup> The challenging cyclopropane moiety<sup>16</sup> in **35** could be prepared from tricyclic intermediate **36** through a key transannular cyclization reaction followed by a series of FGIs. Aldehyde **36** was proposed to be obtained from **37** via a selective C–O bond cleavage.<sup>17</sup> The well-studied type II [5+2] cycloaddition of **38** would then yield tricyclic skeleton **37** stereoselectively according to our results above. Key reaction precursor **38** would be accessed from **39** through an Achmatowicz reaction. Finally, ketone **39** would be combined in a one-step process via a cascade 1,4-addition–aldol reaction<sup>18</sup> from enone **42**, which could be prepared from commercially available (*S*)-citronellal and methyl vinyl ketone (MVK).

This new approach started from the asymmetric synthesis of enone **42** (Scheme 5). In contrast to reported work,<sup>19</sup> we employed more readily available proline-derived catalyst **44**,<sup>20</sup> prepared from (S)-(+)- $\alpha$ , $\alpha$ -diphenyl-2-pyrrolidinemethanol (**43**) in one step, in the asymmetric Michael addition reaction to afford **45** in 79% yield with 95% de from commercially available (-)-citronellal. The subsequent aldol condensation and dehydration provided enone **42** on a 20 g scale with 93% de. Meanwhile, furan aldehyde **41** was synthesized on a gram scale from alcohol **17** by oxidation using IBX, and the tin reagent **47** was prepared in two steps from propargyl alcohol (**46**) according to the reported procedure.<sup>21</sup>

With the building blocks 41, 42, and 47 in hand, we attempted the three-component coupling reaction (Scheme 6). Coppercatalyzed conjugate addition of the organolithium reagent, prepared from 47 via tin-lithium exchange, to enone 42 yielded silvl enol ether 48 smoothly after quenching the enolate with TMSCl. Treatment of **48** with *n*-BuLi, followed by trapping of the lithium enolate with aldehyde **41** in the presence of ZnBr<sub>2</sub>, furnished  $\beta$ -hydroxyketone **49**. Compound **49** was found to be acid-sensitive and partially cyclized to give 50 during the workup and purification. The  $\beta$ -hydroxyketone moiety in 49 was also sensitive to base owing to a possible retro-aldol reaction. Careful acetyl-protection of the hydroxy group and TBS group deprotection then gave 51 in moderate yield. However, the subsequent Achmatowicz reaction to prepare 52 gave undesired products (such as 53 and 54) under different conditions. As the ketone group in 49 was the main issue during synthesis, in situ



https://doi.org/10.1021/acs.joc.1c00185 J. Org. Chem. XXXX, XXX, XXX-XXX



Figure 3. Retrosynthetic analysis of cerorubenic acid-III.

Scheme 5. Gram-Scale Synthesis of Building Blocks 42, 41, and 47



reduction of the  $\beta$ -hydroxyketone using DIBAL-H after the aldol reaction gave stable diol **55** efficiently with 50% overall yield over two steps from **42**.

After successful installation of the furan and olefin, we proceeded to the type II [5+2] cycloaddition (Scheme 7). Acetalization of diol 55 with acetone by TsOH, followed by removal of TBS protecting group with TBAF, afforded 56 in good yield. VO(acac)<sub>2</sub> and TBHP were found to be the best reagents for the oxidative rearrangement of 56. Protection of the anomeric hydroxyl group with  $Ac_2O$  in one pot afforded precursor 57 in 71% yield. The type II intramolecular [5+2] cycloaddition of 57 gave target product 58 in 72% yield with

excellent *endo* selectivity and diastereoselectivity. The structure was confirmed by X-ray crystallographic analysis of its derivative (60, Scheme 7), obtained from 58 in two steps, namely, a reduction to give 59 and subsequent esterification. A suitable quantity (20 g) of 59 was successfully prepared using this facile synthetic route.

We next investigated the selective cleavage of the C–O bond in the bridged ring system (Scheme 8). Our initial attempt aimed to achieve direct cleavage of the C–O bond at the C4 position in enone 58 (Scheme 7). However, the treatment of enone 58 with  $SmI_2$  in various solvents failed to give the desired product. Accordingly, bromide 61, prepared from alcohol 59 in

pubs.acs.org/joc

Scheme 6. Attempts at a Three-Component Coupling Reaction



Scheme 7. Construction of the Tricycle Skeleton via Type II [5+2] Cycloaddition



one step, was treated with SmI<sub>2</sub> or *t*-BuLi to give diene **62** with cleavage of the oxygen bridge. However, the yield was relatively low and difficult to repeat (21%-35%). Subsequently, we switched to treatment of **61** with Na-naphthalenide in THF–H<sub>2</sub>O, which smoothly afforded diol **64** in 78% yield. Notably, when the reaction was conducted in anhydrous THF solution (gram scale), diene compound **63** was obtained as a major

product. The diene intermediate could also be converted to **64** by subjecting to the Na-naphthalenide conditions again, but the yield was lower than that of the one-pot process. Therefore, this remarkable reaction successfully cleaved the C4–O bond, removed the benzyl group, and reduced the less hindered C4–C5 double bond of the diene intermediate. The structure of diol **64** was finally confirmed by 2D-NMR.

Article

Scheme 8. Selective C-O Bond Cleavage



Scheme 9. Proposed S<sub>N</sub>2 and Radical Cyclization Pathways for Cyclopropanation



Scheme 10. Discovery of an Unusual S<sub>N</sub>1 Cyclization



G

As shown in Scheme 9, two cyclopropanation pathways ( $S_N 2$  and radical cyclization) were proposed for accessing compound 65 from 64. In the  $S_N 2$  pathway, the stereocenter at C24 needed

to be inverted from R(64) to S(66), then cyclized to give **65** via intermediate **67**. In the radical cyclization pathway, the external olefin in **68** needed to be installed first, with subsequent radical-

initiated cyclization<sup>9b</sup> affording compound **65** via intermediate **69**.

The radical cyclization pathway was studied first. We attempted to install the terminal alkene at C3 through selective iodination of the primary alcohol in 64, which seemed theoretically feasible, followed by elimination of the hydrogen halide under basic conditions. To our surprise, subjecting diol 64 to Ph<sub>3</sub>P/I<sub>2</sub>/imidazole conditions afforded ring closure product 71, containing a tetrahydrofuran moiety, in 83% yield (Scheme 10). We reasoned that the activated primary alcohol in 64 was attacked by the hydroxyl group (blue) at C24. Therefore, the secondary alcohol needed to be protected in advance. Twostep protection of the two hydroxyl groups furnished 72 in 57% yield, followed by deprotection of the TBDPS group. Surprisingly, when 72 was treated with TBAF, byproduct 71 was obtained in 10%-15% yield, along with the target product in 45% yield. Regarding the mechanism, this reaction proceeded via an S<sub>N</sub>1 pathway through cation intermediate 73, with the oxygen in the tetrahydrofuran moiety originating from the primary alcohol (red).

Inspired by this observation, a more direct and feasible method for cyclopropanation via a cationic intermediate was proposed. Aldehyde **36** was prepared from **64** in moderate yield over two steps (Scheme 11). As expected, the cyclization



proceeded smoothly under basic conditions to afford **76** diastereoselectively in 78% yield. Regarding the mechanism, cationic intermediate **75**, stabilized by the adjacent vinyl group, was proposed to be generated when treated with *t*-BuOK, which was then attacked by the enolate to yield the desired vinylcyclopropane.

Our total synthesis of cerorubenic acid-III now entered the final stages. First, a one-pot Wolff–Kishner reduction<sup>22</sup> (Scheme 12) and deprotection using acetic acid was conducted to afford diol 77 in a high yield. Subsequently, the less sterically

hindered hydroxyl group (left) in 77 was selectively protected by low-temperature acetylation. The remaining alcohol was oxidized by DMP in one pot to give the corresponding ketone in a high yield. Base-mediated elimination was conducted carefully with KHMDS to give target enone 78 in 80% yield over two steps. The next task was the crucial 1,4-reduction of enone 78 to complete the final chiral center. Fortunately, 78 was reduced by NaBH<sub>4</sub> and NiCl<sub>2</sub> to afford the corresponding ketone efficiently.<sup>23</sup> Subsequent olefination of the carbonyl group afforded triene 35. The endgame and completion of the total synthesis were realized by cross-metathesis (CM) to install the side chain. The designed CM reaction of 35 with methacrylic acid catalyzed by Grubbs II reagent failed to give the natural product. However, an alternative CM reaction with methacrylaldehyde using Grubbs II catalyst proceeded well, with subsequent oxidation by in situ generated Ag<sub>2</sub>O giving 1 in 27% overall yield from 78. To confirm this result, treatment of 1 with TMSCHN<sub>2</sub> afforded cerorubenic acid-III methyl ester (2)in 95% yield.<sup>24</sup> Therefore, the enantioselective total synthesis of cerorubenic acid-III was completed.

#### CONCLUSIONS

In summary, we have accomplished the first enantioselective total synthesis of cerorubenic acid-III in 19 steps after two different synthetic strategies were studied. This work features a powerful type II [5+2] cycloaddition reaction. The synthetically challenging bicyclo [4.4.1] ring system with a strained bridgehead double bond was constructed efficiently. Besides, a chemoselective cascade cleavage of 8-oxabicyclo[3.2.1]octene was realized using sodium naphthalenide condition. This reaction largely improved the synthetic efficiency as three transformations occurred in one operation. Finally, the vinylcyclopropane moiety was installed using an unusual transannular cyclization reaction with retention of the desired stereochemistry. The detailed efficient and diastereoselective approach described above can also be extended to the asymmetric synthesis of other cerorubenic acids, cerorubenols, and their derivatives and provide materials for further biological research.

#### EXPERIMENTAL SECTION

General Experimental Information. Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere under anhydrous conditions, and all reagents were purchased from commercial suppliers without further purification. Solvent purification was conducted according to Purification of Laboratory Chemicals (Perrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (<sup>1</sup>H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin-layer chromatography on plates (GF254) supplied by Yantai Chemicals (China) using UV light as a visualizing agent, an ethanolic solution of phosphomolybdic acid, or basic aqueous potassium permanganate (KMnO<sub>4</sub>), and heat as developing agents. If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China). NMR spectra were recorded on Bruker AV-500 and calibrated using a residual undeuterated solvent as an internal reference (CHCl<sub>3</sub>,  $\delta$  7.26 ppm <sup>1</sup>H NMR,  $\delta$  77.16 <sup>13</sup>C NMR; CH<sub>2</sub>Cl<sub>2</sub>, δ 5.32 ppm <sup>1</sup>H NMR, δ 54.00 <sup>13</sup>C NMR; C<sub>6</sub>D<sub>6</sub>, δ 7.15 ppm <sup>1</sup>H NMR,  $\delta$  128.00<sup>13</sup>C NMR). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, b = broad, m = multiplet, td = triplet of doublets, dt = doublet of triplets. High-resolution mass spectrometric (HRMS) data were recorded on a Brüker Apex IV RTMS instrument using a quadrupole analyzer or on a Thermo Scientific Q Exactive using an orbitrap analyzer. X-ray

pubs.acs.org/joc

Scheme 12. Total Synthesis of Cerorubenic Acid-III



diffraction data were collected at 100 K on a Bruker-D8 venture microsource diffractometer.

Procedures and characterization data for compounds 16, 17, 35, 42, 45, 55, 56, 57, 58, 59, 61, 64, 76, and 78 were reported previously.<sup>8</sup>

(5R,6R)-2-Methyl-5-(prop-1-en-2-yl)-6-(((trimethylsilyl)oxy)methyl)cyclohex-2-en-1-one (15). To a solution of 14 (5.0 g, 27.78 mmol) in anhydrous DCM (60 mL) was added imidazole (2.8 g, 41.67 mmol) at 0 °C. After the mixture was stirred at the same temperature for 5 min, chlorotrimethylsilane (3.6 g, 33.34 mmol) was added to the reaction slowly. The mixture was warmed to 25 °C and stirred for 2 h. The reaction was quenched by the addition of saturated NH<sub>4</sub>Cl (50 mL). Then the aqueous layer was extracted with DCM ( $3 \times 50$  mL). The combined organic layers were washed with brine (30 mL) and dried over Na2SO4. The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 30:1) to afford 15 (6.3 g, 90%) as a colorless oil:  $R_f = 0.65$  (hexane/EtOAc = 10:1); HRMS (ESI)  $m/z [M + H]^+$ calcd for C14H25O2Si 253.1618, found 253.1615; <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ )  $\delta$  6.66 (ddt, J = 5.6, 3.0, 1.4 Hz, 1H), 4.83–4.76 (m, 2H), 4.07 (dd, J = 9.7, 3.4 Hz, 1H), 3.58 (dd, J = 9.7, 3.5 Hz, 1H), 2.97–2.89 (m, 1H), 2.33 (ddt, J = 18.5, 11.6, 3.0 Hz, 3H), 1.79–1.73 (m, 3H), 1.70 (d, J = 1.2 Hz, 3H), 0.03 (d, J = 1.2 Hz, 9H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 199.1, 145.6, 143.8, 135.6, 112.9, 59.0, 51.6, 43.7, 30.4, 19.6, 16.2, -0.5.

tert-Butyl((4-(2-iodoethyl)furan-2-yl)methoxy)dimethylsilane (18). I<sub>2</sub> (3.0 g, 12 mmol), triphenylphosphine (3.1 g, 12 mmol), and imidazole (1.0 g, 15 mmol) were dissolved in anhydrous DCM (50 mL), and the mixture was stirred at room temperature for 5 min. A solution of compound 17 (2.6 g, 10.0 mmol) in anhydrous DCM (5 mL) was added dropwise to the mixture. The reaction was stirred at rt for 3 h. The mixture was quenched with saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (50 mL) and extracted with  $CH_2Cl_2$  (3 × 30 mL). The combined organic layers were washed with brine (15 mL). After drying over Na<sub>2</sub>SO<sub>4</sub>, the solution was concentrated in vacuo and purified by flash chromatography on silica gel quickly (hexane/EtOAc = 80:1) to afford 18 (3.3 g, 90%) as a colorless oil:  $R_f = 0.3$  (hexane/EtOAc = 50:1); HRMS (ESI) m/z [M + H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>23</sub>IO<sub>2</sub>Si 367.0585, found 367.0588; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24 (d, J = 1.0 Hz, 1H), 6.14 (d, J = 0.9 Hz, 1H), 4.60 (d, J = 0.7 Hz, 2H), 3.27 (t, J = 7.5 Hz, 2H), 2.97 (td, J = 7.6, 0.8 Hz, 2H), 0.91 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 154.7, 138.7, 124.4, 107.9, 58.2, 29.7, 25.9, 18.4, 4.8. - 5.3

(5R,6R)-1-(2-(5-(((*tert*-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-6-(hydroxymethyl)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-ol (19). To a solution of 18 (2.01 g, 5.5 mmol) in anhydrous Et<sub>2</sub>O (30 mL) under an argon atmosphere was added dropwise tBuLi (8.5 mL, 11.0 mmol, 1.3 M solution in pentane) at -78 °C. After stirring at -78 °C for 1 h, a solution of 15 (1.26 g, 5.0 mmol) in anhydrous Et<sub>2</sub>O (10 mL) was added dropwise. The reaction mixture was left to stir at -78 °C until completion (30 min), and it was quenched by saturated NH<sub>4</sub>Cl and extracted with Et<sub>2</sub>O ( $3 \times 30$  mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure to give a crude product. The crude product was redissolved in the MeOH (50 mL), and a catalytic amount of K<sub>2</sub>CO<sub>3</sub> (138 mg, 1.0 mmol) was added to the solution at room temperature; the mixture was stirred for 1 h at the same temperature. The reaction was quenched by saturated NH<sub>4</sub>Cl. Then, MeOH was removed under reduced pressure, and the aqueous was extracted with EtOAc ( $3 \times 30$  mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated in vacuo, and purified by flash chromatography on silica gel (hexane/EtOAc = 20:1) to afford 19 (1.79 g, 85%, dr = 2:1, partly separable) as a colorless oil. Note that to be accurate and for convenience, two diastereisomers of 19 were characterized by NMR spectroscopy and mass spectrometry independently (named 19a and 19b), but their relative configuration has not been determined. The same situation obtains compounds 20, 21, and 22: HRMS (ESI) m/z $[M + Na]^+$  calcd for  $C_{24}H_{40}NaO_4Si$  443.2588, found 443.2588. Compound **19a**:  $R_{f} = 0.30$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ )  $\delta$  7.17 (d, J = 1.1 Hz, 1H), 6.18–6.12 (m, 1H), 5.54 (dt, J= 3.1, 1.5 Hz, 1H), 4.80-4.69 (m, 2H), 4.58 (s, 2H), 3.81-3.69 (m, 2H), 3.31 (s, 1H), 2.90 (d, J = 4.6 Hz, 1H), 2.52–2.35 (m, 3H), 2.14– 1.88 (m, 5H), 1.77 (d, J = 1.9 Hz, 3H), 1.68 (d, J = 1.1 Hz, 3H), 0.91 (s, 9H), 0.09 (s, 6H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.6, 146.6, 138.1, 137.4, 126.1, 124.3, 112.9, 108.7, 77.0, 63.7, 58.4, 47.5, 42.8, 36.9, 30.4, 26.1, 21.4, 18.6, 17.8, 17.5, -5.1. Compound **19b**: R<sub>f</sub> = 0.28 (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz,  $CDCl_3$ )  $\delta$  7.14 (d, J = 1.1 Hz, 1H), 6.10 (d, J = 0.9 Hz, 1H), 5.69 (dq, J = 5.7, 1.7 Hz, 1H), 4.99-4.80 (m, 2H), 4.64-4.51 (m, 2H), 4.04 (dd, J = 11.9, 2.2 Hz, 1H), 3.73 (dd, J = 12.0, 3.3 Hz, 1H), 2.96 (d, J = 0.0 Hz, 2H), 2.71 (ddd, J = 12.0, 10.8, 5.7 Hz, 1H), 2.25–2.12 (m, 2H), 2.11–1.97 (m, 4H), 1.72 (t, J = 1.9 Hz, 6H), 1.65 (dtd, J = 12.2, 3.4, 2.2, 0.0 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 6H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.7, 147.5, 138.0, 135.7, 127.2, 125.3, 113.0, 108.5, 76.7, 61.1, 58.4, 42.9, 40.0, 36.7, 31.2, 26.0, 20.6, 19.1, 18.5, 17.9, -5.1.

(15,6*R*)-2-(2-(5-(((*tert*-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-2-hydroxy-3-methyl-6-(prop-1-en-2-yl)cyclohex-3ene-1-carbaldehyde (20). To a solution of 19 (1.68 g, 4.0 mmol) in DMSO (40 mL) was added IBX (2.8 g, 10.0 mmol) at room temperature, and the mixture was stirred for 1 h. The reaction was quenched by saturated Na<sub>2</sub>SO<sub>3</sub>. The mixture was diluted with water (200 mL) and extracted with Et<sub>2</sub>O ( $3 \times 50$  mL). The combined organic layers were washed with water (100 mL) again and then washed with brine (50 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated in vacuo, and purified by flash chromatography on silica gel (hexane/EtOAc = 15:1) to afford 20 (1.47 g, 88%) as a colorless oil: HRMS (ESI) m/z

calcd for [M + NH<sub>4</sub>]<sup>+</sup> C<sub>24</sub>H<sub>42</sub>NO<sub>4</sub>Si 436.2878, found 436.2878. Compound 20a:  $R_f = 0.55$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.77 (d, J = 3.4 Hz, 1H), 7.13 (d, J = 1.1 Hz, 1H), 6.09 (s, 1H), 5.54–5.45 (m, 1H), 4.90–4.80 (m, 2H), 4.57 (s, 2H), 2.91 (ddd, J = 11.8, 9.1, 6.7 Hz, 1H), 2.69–2.61 (m, 2H), 2.54–2.35 (m, 2H), 2.31–2.21 (m, 1H), 2.12–2.04 (m, 1H), 1.97 (ddd, J = 14.1, 12.2, 5.5 Hz, 1H), 1.86 (ddd, J = 14.1, 12.6, 4.5 Hz, 1H), 1.78 (d, J = 1.8 Hz, 3H), 1.74–1.70 (m, 3H), 0.90 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 206.3, 154.7, 146.4, 138.2, 137.6, 125.5, 123.7, 113.1, 108.5, 75.5, 59.1, 58.4, 40.5, 38.4, 30.1, 26.0, 20.8, 19.9, 18.6, 17.9, -5.1. Compound **20b**:  $R_f = 0.55$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 9.61 \text{ (d, } I = 4.6 \text{ Hz}, 1\text{H}), 7.15 \text{ (d, } I = 1.0 \text{ Hz}, 1\text{H}),$ 6.12 (d, J = 0.9 Hz, 1H), 5.74 (dt, J = 5.8, 1.7 Hz, 1H), 4.85 (dt, J = 5.6, 1.6 Hz, 2H), 4.62–4.50 (m, 2H), 2.94 (dt, J = 11.9, 5.9 Hz, 1H), 2.44 (ddd, I = 17.8, 9.4, 4.8 Hz, 2H), 2.20-2.12 (m, 1H), 2.07-1.99 (m, 1H)3H), 1.94 (ddd, J = 9.6, 6.0, 2.6 Hz, 2H), 1.76–1.73 (m, 3H), 1.69 (d, J = 1.2 Hz, 3H), 0.90 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  206.2, 154.7, 145.4, 138.2, 135.3, 127.6, 125.0, 113.8, 108.6, 75.0, 58.4, 55.3, 39.6, 37.4, 30.9, 26.1, 20.3, 19.6, 18.6, 17.4, -5.1.

Ethyl (E)-3-((1S,6R)-2-(2-(5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-2-hydroxy-3-methyl-6-(prop-1-en-2yl)cyclohex-3-en-1-yl)acrylate (21). n-BuLi (1.1 mL, 2.2 mmol, 2.0 M solution in pentane) was slowly added to a solution of triethylphosphonoacetate 20 (449 mg, 2.0 mmol) in THF (20 mL) at -78 °C. After 5 min, aldehyde (418 mg, 1.0 mmol) was slowly added, and the resulting mixture was stirred at -78 °C for 10 min and then at room temperature for 1 h. The reaction was quenched with the addition of brine (5 mL), and the mixture was diluted with ether (10 mL), washed with brine  $(3 \times 10 \text{ mL})$ , and dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated under reduced pressure and purified by flash chromatography on silica gel (hexane/EtOAc = 10:1) to afford 21 (288 mg, 59%; dr = 1.5:1) as a colorless oil. Note that data of two target (major) diastereisomers were shown. Compound 21a:  $R_f = 0.5$ (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19–7.14 (m, 1H), 6.93–6.84 (m, 1H), 6.12 (s, 1H), 5.97 (d, J = 15.6 Hz, 1H), 5.60 (d, J = 1.8 Hz, 1H), 4.86–4.76 (m, 2H), 4.59 (s, 2H), 4.21 (qd, J = 7.1, 0.7 Hz, 2H), 2.68–2.58 (m, 2H), 2.52–2.40 (m, 2H), 2.15 (dq, J = 6.4, 2.5 Hz, 2H), 1.92 (ddd, J = 13.8, 12.2, 5.7 Hz, 2H), 1.84 (s, 1H), 1.80 (q, J = 1.9 Hz, 3H), 1.78–1.69 (m, 2H), 1.67 (d, J = 1.4 Hz, 1H), 1.30 (dd, J = 7.2, 0.8 Hz, 3H), 0.92 (d, J = 0.8 Hz, 9H), 0.10 (d, J = 0.8 Hz, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 165.9, 154.5, 147.8, 146.5, 138.1, 136.7, 125.6, 124.3, 123.9, 113.1, 108.5, 75.2, 60.4, 58.3, 52.1, 44.6, 38.0, 29.3, 25.9, 20.5, 18.5, 18.4, 18.3, 14.3, -5.2. Compound 21b:  $R_f = 0.5$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (d, J = 1.1 Hz, 1H), 6.94 (dd, J = 15.9, 10.4 Hz, 1H), 6.11 (d, J = 1.0 Hz, 1H), 5.81 (d, J = 15.9 Hz, 1H), 5.79–5.70 (m, 1H), 4.86–4.69 (m, 2H), 4.60 (s, 2H), 4.20 (qd, J = 7.1, 1.3 Hz, 2H), 2.62 (td, J = 11.3, 5.5 Hz, 1H), 2.41 (dd, J = 11.8, 10.4 Hz, 1H), 2.33 (ddd, J = 10.8, 8.5, 5.7 Hz, 1H), 2.17–1.96 (m, 4H), 1.94–1.80 (m, 3H), 1.77 (dt, J = 2.5, 1.5 Hz, 3H), 1.75 (s, 1H), 1.64 (s, 1H), 1.31 (t, J = 7.2 Hz, 3H), 0.92 (s, 9H), 0.10 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>) δ 166.1, 154.6, 148.2, 145.9, 137.9, 135.2, 127.6, 124.9, 123.1, 113.2, 108.5, 74.4, 60.3, 58.3, 48.0, 42.6, 36.6, 30.7, 25.9, 20.1, 18.7, 18.5, 18.1, 14.3, -5.2.

Methyl (E)-3-((1S,6R)-2-(2-(5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-2-hydroxy-3-methyl-6-(prop-1-en-2yl)cyclohex-3-en-1-yl)acrylate (22). To a solution of 20 (1.25 g, 3.0 mmol) in DCE (50 mL) was added phosphorus ylide (5.0 g, 15 mmol) at rt. Then, the mixture was warmed to 80 °C and stirred at the same temperature overnight. After the reaction finished, the mixture was concentrated in vacuo and purified by flash chromatography on silica gel (hexane/EtOAc = 10:1) to afford 22 (1.28 g, 90%; dr  $\geq$  20:1) as a colorless oil: HRMS (ESI)  $m/z [M + NH_4]^+$  calcd for  $C_{27}H_{46}NO_5Si$ 492.3140, found 492.3140. Compound **22a**: *R*<sub>f</sub> = 0.5 (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.14 (d, J = 1.0 Hz, 1H), 6.86 (dd, *J* = 15.6, 9.9 Hz, 1H), 6.10 (s, 1H), 5.95 (d, *J* = 15.7 Hz, 1H), 5.58 (td, *J* = 3.8, 1.7 Hz, 1H), 4.78 (dt, J = 3.8, 1.5 Hz, 2H), 4.57 (s, 2H), 3.73 (s, 3H), 2.68-2.55 (m, 2H), 2.52-2.33 (m, 2H), 2.15-2.09 (m, 2H), 1.89 (ddd, *J* = 14.0, 12.3, 5.6 Hz, 1H), 1.78 (q, *J* = 2.0 Hz, 4H), 1.73–1.67 (m, 1H), 1.61 (s, 3H), 0.90 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 166.5, 154.6, 148.2, 146.6, 138.2, 136.9, 125.7, 124.5,

123.6, 113.3, 108.7, 75.4, 58.4, 52.3, 51.7, 44.7, 38.1, 29.5, 26.1, 20.6, 18.6, 18.5, 18.4, -5.1. Compound **22b**:  $R_f = 0.5$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 (d, J = 1.1 Hz, 1H), 6.93 (dd, J = 15.9, 10.4 Hz, 1H), 6.08 (d, J = 0.9 Hz, 1H), 5.80 (d, J = 15.9 Hz, 1H), 5.75-5.65 (m, 1H), 4.84-4.68 (m, 2H), 4.57 (s, 2H), 3.72 (s, 3H), 3.67-3.63 (m, 1H), 2.59 (td, J = 11.3, 5.3 Hz, 1H), 2.39 (dd, J = 11.8, 10.3 Hz, 1H), 2.34-2.24 (m, 1H), 2.09-2.00 (m, 3H), 1.89-1.79 (m, 2H), 1.77-1.74 (m, 3H), 1.57 (t, J = 1.0 Hz, 3H), 0.90 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 154.7, 148.6, 146.0, 138.1, 135.3, 127.8, 125.0, 122.9, 113.4, 108.6, 74.5, 58.4, 51.6, 48.1, 42.7, 36.7, 30.8, 26.1, 20.2, 18.8, 18.6, 18.2, -5.1.

Methyl (E)-3-((1S,6R)-2-(2-(5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-3-methyl-4-oxo-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)acrylate (23). To a slurry solution of pyridinium chlorochromate (1.5 g, 7.0 mmol) and 4 Å MS in dichloromethane (50 mL) was added a solution of alcohol 22 (1.66 g, 3.5 mmol) in dichloromethane (10 mL) at rt, and the resulting dark red mixture was stirred at the same temperature for 2 h. The reaction was worked up by the addition of ether (20 mL), and the formed solution was first filtered through a silica gel pad and washed with ether (3  $\times$  30 mL). The combined organic phases were sequentially washed with an aqueous solution of NaOH (5%, 50 mL), an aqueous solution of HCl (5%, 50 mL), and a saturated aqueous solution of NaHCO<sub>3</sub> ( $2 \times 40$  mL), and finally dried over anhydrous Na2SO4. The solvent was removed in vacuo, and the residue was purified by a flash chromatography on silica gel (hexane/EtOAc = 15:1) to afford 23 (1.28 g, 78%) as a colorless oil:  $R_f = 0.6$  (hexane/EtOAc = 5:1); HRMS (ESI)  $m/z [M + NH_4]^+$  calcd for C27H44NO5Si 490.2983, found 490.2982; <sup>1</sup>H NMR (500 MHz, chloroform-*d*)  $\delta$  7.11 (s, 1H), 6.89 (dd, J = 15.6, 8.5 Hz, 1H), 6.09 (s, 1H), 5.92-5.79 (m, 1H), 4.83 (s, 1H), 4.66 (s, 1H), 4.57 (s, 2H), 3.75 (s, 3H), 3.25 (t, J = 6.8 Hz, 1H), 2.65 (q, J = 5.6 Hz, 1H), 2.61-2.54 (m, 2H), 2.47 (ddt, J = 28.0, 15.4, 5.1 Hz, 3H), 2.25 (ddd, J = 12.4, 9.8, 5.8 Hz, 1H), 1.80 (d, J = 1.5 Hz, 3H), 1.69 (s, 3H), 0.90 (s, 9H), 0.08 (s, 6H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 166.4, 155.0, 153.3, 148.1, 144.5, 138.5, 133.4, 124.4, 123.4, 113.5, 108.4, 58.3, 51.9, 46.4, 45.5, 39.2, 34.2, 26.0, 22.9, 21.0, 18.6, 11.1, -5.1.

Methyl (*E*)-3-((1*S*,6*R*)-2-(2-(2-Acetoxy-5-oxo-5,6-dihydro-2*H*pyran-3-yl)ethyl)-3-methyl-4-oxo-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)acrylate (24). To a solution of 23 (944 mg, 2.0 mmol) in THF (20 mL) was added pyridine hydrofluoride (1.29 mL, 10 mmol, aq 70% HF) at 0 °C. Then, the mixture was warmed to rt and stirred at the same temperature stirred for 1 h. After the reaction finished, the mixture was cooled to 0 °C and quenched slowly with saturated NaHCO<sub>3</sub> (50 mL) until the pH was 7. The resulting mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated in vacuo, and purified by flash chromatography on silica gel (hexane/EtOAc = 5:1) to give the corresponding free alcohol (651 mg, 91%).

To a solution of the alcohol prepared above (537 mg, 1.5 mmol) in DCM (10 mL) was added 3-chloroperoxybenzoic acid (m-CPBA, 75% purity, 414 mg, 1.8 mmol) at rt. Then, the mixture was warmed to 38 °C and stirred at the same temperature for 1.5 h. After the reaction finished, the mixture was quenched with saturated  $Na_2SO_3$  (50 mL). The result mixture was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous  $Na_2SO_4$ , and concentrated in vacuo to give a crude product, which was used in the next step without further purification. The crude product was dissolved in anhydrous DCM (10 mL) and cooled to 0 °C. Et<sub>3</sub>N (0.32 mL, 2.3 mmol), 4-dimethylaminopyridine (DMAP, 92 mg, 0.75 mmol), and acetic anhydride (Ac<sub>2</sub>O, 0.22 mL, 2.3 mmol) were added to the reaction in sequence. Then mixture was stirred at the same temperature until the end of reaction. The reaction was quenched by saturated NH<sub>4</sub>Cl (10 mL), and the mixture was extracted with DCM ( $3 \times 10$ mL). The combined organic layers were washed with brine (10 mL) and dried over Na2SO4. The dried solution was filtered and concentrated and purified by flash chromatography on silica gel (hexane/EtOAc = 8:1) to afford 24 (530 mg, 85% for two steps; totally 77% for three steps from 23, dr  $\approx$  1:1) as a colorless oil:  $R_f = 0.52$ (hexane/EtOAc = 2:1); HRMS (ESI)  $m/z [M + NH_4]^+$  calcd for  $C_{23}H_{32}NO_7 434.2173$ , found 434.2172; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 

6.86 (dt, *J* = 15.7, 8.6 Hz, 1H), 6.43 (d, *J* = 2.7 Hz, 1H), 6.05 (d, *J* = 5.8 Hz, 1H), 5.89 (ddd, *J* = 15.6, 8.0, 0.9 Hz, 1H), 4.85 (d, *J* = 1.5 Hz, 1H), 4.71–4.61 (m, 1H), 4.41 (dd, *J* = 17.0, 1.2 Hz, 1H), 4.17 (d, *J* = 17.0 Hz, 1H), 3.76 (d, *J* = 0.7 Hz, 3H), 3.23 (q, *J* = 7.1 Hz, 1H), 2.67 (ddd, *J* = 7.6, 5.1, 2.4 Hz, 1H), 2.62–2.46 (m, 3H), 2.30–2.20 (m, 3H), 2.16 (d, *J* = 4.2 Hz, 3H), 1.82 (dd, *J* = 5.2, 1.5 Hz, 3H), 1.73–1.70 (m, 3H);  $^{13}C{^{1}H}$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 197.3, 193.2, 193.2, 169.9, 169.8, 166.2, 166.2, 156.3, 156.3, 151.3, 151.2, 147.3, 144.1, 144.1, 134.0, 125.4, 125.3, 123.8, 123.8, 113.9, 113.8, 88.4, 88.3, 66.5, 66.5, 52.0, 46.7, 46.5, 45.8, 45.6, 39.4, 39.3, 30.9, 30.6, 30.2, 30.1, 21.0, 21.0, 20.9, 20.8, 11.2.

Methyl (25,10R,10aR,115,11aR,125)-7-Methyl-3,8-dioxo-10-(prop-1-en-2-yl)-2,3,5,6,8,9,10,10a,11,11a-decahydro-2,11methanobenzo[5,6]cyclohepta[1,2-b]pyran-12-carboxylate (25). To a dried sealed tube with anhydrous acetonitrile ( $CH_3CN$ , 50 mL) were added 24 (208 mg, 0.5 mmol) and 2,2,6,6-tetramethylpiperidine (TMP, 0.12 mL, 0.75 mmol). Then the mixture was heated at 170 °C for 20 h. The reaction was worked up by transferring the solution to a round-bottomed flask; the solvents were removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford 25 (17.8 mg, about 10%) as a white solid. Crystals suitable for X-ray analysis were obtained from dissolving 25 in CH<sub>2</sub>Cl<sub>2</sub> followed by the addition of hexane and then allowing the solvent to evaporate slowly:  $R_f = 0.55$  (hexane/EtOAc = 2:1); HRMS (ESI)  $m/z [M + H]^+$  calcd for C<sub>21</sub>H<sub>25</sub>O<sub>5</sub> 357.1697, found 357.1694; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.86 (dt, J = 15.7, 8.6 Hz, 1H), 6.43 (d, J = 2.7 Hz, 1H), 6.05 (d, J = 5.8 Hz, 1H), 5.89 (ddd, J = 15.6, 8.0, 0.9 Hz, 1H), 4.85 (d, J = 1.5 Hz, 1H), 4.71-4.61 (m, 1H), 4.41 (dd, J = 17.0, 1.2 Hz, 1H), 4.17 (d, J = 17.0 Hz, 1H), 3.76 (d, J = 0.7 Hz, 3H), 3.23 (q, J = 7.1 Hz, 1H), 2.67 (ddd, J = 7.6, 5.1, 2.4 Hz, 1H), 2.62–2.46 (m, 3H), 2.30–2.20 (m, 3H), 2.16 (d, J = 4.2 Hz, 3H), 1.82  $(dd, J = 5.2, 1.5 Hz, 3H), 1.73-1.70 (m, 3H); {}^{13}C{}^{1}H} NMR (126)$ MHz, CDCl<sub>3</sub>) δ 197.0, 194.5, 172.7, 165.9, 152.9, 145.3, 132.9, 123.1, 112.7, 84.4, 81.0, 53.3, 51.9, 48.5, 48.0, 43.1, 36.7, 35.5, 33.1, 29.5, 22.5.

(E)-3-((1S,6R)-2-(2-(5-(((tert-Butyldimethylsilyl)oxy)methyl)furan-3-yl)ethyl)-3-methyl-4-oxo-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)allyl Acetate (26). To a solution of 22 (2.8 g, 6.0 mmol) in anhydrous DCM (50 mL) was added DIBAL-H (1.5 M in toluene, 10.0 mL, 15.0 mmol) dropwise at -78 °C. After the mixture was stirred at the same temperature for 15 min, the reaction was quenched by the addition of potassium sodium tartrate saturated solution (100 mL). The mixture was warmed to 25 °C and stirred for 3 h. Then it was transferred to a separatory funnel, and the aqueous layer was extracted with EtOAc ( $3 \times 50$  mL). The combined organic layers were washed with brine (30 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo to give a crude product, which was used in the next step without further purification. The crude product was dissolved in anhydrous DCM (50 mL) and cooled to 0 °C. Et<sub>3</sub>N (1.25 mL, 9.0 mmol), 4dimethylaminopyridine (DMAP, 73.6 mg, 0.75 mmol), and acetic anhydride (Ac<sub>2</sub>O, 0.86 mL, 9.0 mmol) were added to the reaction in sequence. The mixture was stirred at the same temperature until the end of the reaction. The reaction was quenched by saturated NH<sub>4</sub>Cl (30 mL), and the mixture was extracted with DCM ( $3 \times 30$  mL). The combined organic layers were washed with brine (20 mL) and dried over Na2SO4. The dried solution was filtered, concentrated, and purified by flash chromatography on silica gel (hexane/EtOAc = 20:1) to afford the acetate (2.49 g, 85%) as a colorless oil.

To a slurry solution of pyridinium chlorochromate (1.6 g, 7.5 mmol) and 4 Å MS in dichloromethane (50 mL) was added a solution of acetate prepared above (2.44 g, 5.0 mmol) in dichloromethane (10 mL) at rt, and the resulting dark red mixture was stirred at the same temperature for 2 h. The reaction was worked up by the addition of ether (20 mL), and the formed solution was first filtrated through a silica gel pad and washed with ether (3 × 30 mL). The combined organic phases were sequentially washed with an aqueous solution of NaOH (5%, 50 mL), an aqueous solution of HCl (5%, 50 mL), and a saturated aqueous solution of NaHCO<sub>3</sub> (2 × 40 mL) and finally dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed in vacuo, and the residue was purified by a flash chromatography on silica gel (hexane/ EtOAc = 20:1) to afford **26** (1.79 g, 74%; totally 63% for three steps from **22**) as a colorless oil:  $R_f = 0.7$  (hexane/EtOAc = 5:1); HRMS (ESI) m/z [M + Na]<sup>+</sup> calcd for  $C_{28}H_{42}NaO_5Si$  509.2694, found 509.2698; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.14 (s, 1H), 6.11 (s, 1H), 5.74–5.59 (m, 2H), 4.80 (t, J = 1.5 Hz, 1H), 4.64 (s, 1H), 4.56 (d, J = 7.8 Hz, 4H), 3.11 (t, J = 5.9 Hz, 1H), 2.62–2.52 (m, 3H), 2.52–2.37 (m, 3H), 2.31 (td, J = 10.9, 10.5, 5.2 Hz, 1H), 2.05 (s, 3H), 1.78 (d, J = 1.3 Hz, 3H), 1.69 (s, 3H), 0.90 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.4, 170.9, 155.3, 154.8, 145.1, 138.5, 135.1, 132.5, 127.0, 124.7, 113.0, 108.5, 64.5, 58.4, 46.7, 46.2, 39.3, 34.1, 26.0, 22.9, 21.1, 21.0, 18.6, 11.1, -5.1.

(E)-3-((1S,6R)-2-(2-(5-(Hydroxymethyl)furan-3-yl)ethyl)-3methyl-4-oxo-6-(prop-1-en-2-yl)cyclohex-2-en-1-yl)allyl Acetate (27). To a solution of 26 (1.46 g, 3.0 mmol) in THF (30 mL) was added pyridine hydrofluoride (1.94 mL, 10 mmol, aq 70% HF) at 0 °C. Then, the mixture was warmed to rt and stirred at the same temperature for 2 h. After the reaction finished, the mixture was cooled to 0 °C and quenched slowly with saturated NaHCO<sub>2</sub> until the pH was 7. The result mixture was extracted with EtOAc (3  $\times$  20 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous Na2SO4, concentrated in vacuo, and purified by flash chromatography on silica gel (hexane/EtOAc = 4:1) to afford 27 (1.08 g, 97%) as a colorless oil:  $R_f = 0.15$  (hexane/EtOAc = 5:1); HRMS (ESI) m/z [M + Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>28</sub>NaO<sub>5</sub> 395.1829, found 395.1827; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.17 (s, 1H), 6.18 (s, 1H), 5.73-5.56 (m, 2H), 4.80 (d, I = 1.9 Hz, 1H), 4.64 (s, 1H), 4.55 (s, 4H), 3.11 (t, J = 6.1 Hz, 1H), 2.57 (tq, J = 15.5, 5.1 Hz, 3H), 2.52-2.39 (m, J = 15.5, 5.1 Hz, 5.5) (m, J = 15.5, 5.5) (m, J = 15.3H), 2.32 (td, J = 10.8, 10.3, 5.0 Hz, 1H), 2.05 (s, 4H), 1.78 (d, J = 1.4 Hz, 3H), 1.69 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>) δ 198.4, 170.9, 155.2, 154.6, 145.1, 139.0, 135.0, 132.5, 127.1, 124.9, 113.0, 109.0, 64.5, 57.7, 46.7, 46.2, 39.4, 34.1, 22.8, 21.1, 21.0, 11.1.

(E)-3-((15,6R)-2-(2-(2-Acetoxy-5-oxo-5,6-dihydro-2H-pyran-3-yl)ethyl)-3-methyl-4-oxo-6-(prop-1-en-2-yl)cyclohex-2-en-1yl)allyl Acetate (28). To a solution of compound 27 (744 mg, 2.0 mmol) in THF (21.0 mL) and H<sub>2</sub>O (7.0 mL) were added NaHCO<sub>3</sub> (336 mg, 4.0 mmol), NaOAc (164 mg, 2.0 mmol), and NBS (374 mg, 2.1 mmol) sequentially at 0  $^{\circ}$ C, and the mixture was stirred at the same temperature for 30 min. The reaction was worked up by the addition of water (8.0 mL), followed by extraction with EtOAc ( $3 \times 10$  mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo to give a crude product, which was used in the next step without further purification. The crude product was dissolved in anhydrous DCM (15 mL) and cooled to 0 °C. Et<sub>3</sub>N (0.42 mL, 3.0 mmol), 4-dimethylaminopyridine (DMAP, 120 mg, 1.0 mmol), and acetic anhydride (Ac2O, 0.29 mL, 3.0 mmol) were added to the reaction in sequence. Then mixture was stirred at the same temperature until the end of reaction. The reaction was quenched by saturated NH<sub>4</sub>Cl (10 mL), and the mixture was extracted with DCM (3  $\times$  15 mL). The combined organic layers were washed with brine (15 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvents were removed under a vacuum, and the residue was purified by a flash column chromatography on silica gel (hexane/EtOAc = 15:1) to afford 28 (817 mg, 95% for two steps, dr  $\approx$  1:1) as a colorless oil:  $R_f = 0.55$  (hexane/EtOAc = 2:1); HRMS (ESI))  $m/z [M + H]^+$  calcd for C<sub>24</sub>H<sub>31</sub>O<sub>7</sub> 431.2064, found 431.2061; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.45 (d, J = 2.5 Hz, 1H), 6.07 (s, 1H), 5.69–5.63 (m, 2H), 4.81 (s, 1H), 4.63 (s, 1H), 4.55 (ddt, J = 17.9, 13.2, 5.8 Hz, 2H), 4.41 (d, J = 17.0 Hz, 1H), 4.16 (d, J = 17.0 Hz, 1H), 3.07 (d, J = 6.5 Hz, 1H), 2.60-2.55 (m, 2H), 2.54-2.44 (m, 2H), 2.38-2.23 (m, 3H), 2.16 (3H), 2.06 (3H), 1.79 (s, 3H), 1.69 (3H);  $^{13}C{^{1}H} NMR (126 MHz, CDCl_3) \delta 197.9, 193.3, 193.3, 170.9, 169.9,$ 169.8, 156.8, 156.7, 153.1, 153.1, 144.8, 144.7, 134.4, 134.4, 133.2, 133.1, 127.7, 127.6, 125.2, 125.1, 113.3, 88.5, 88.4, 66.5, 64.3, 47.0, 46.7, 46.4, 46.3, 39.5, 39.5, 30.6, 30.2, 30.1, 21.1, 21.0, 20.9, 20.8, 11.2.

((25,10*R*,10*aR*,115,11*aR*,12*R*)-7-Methyl-3,8-dioxo-10-(prop-1-en-2-yl)-2,3,5,6,8,9,10,10a,11,11a-decahydro-2,11methanobenzo[5,6]cyclohepta[1,2-*b*]pyran-12-yl)methyl Acetate (29). To a dried sealed tube with anhydrous acetonitrile (CH<sub>3</sub>CN, 50 mL) were added 28 (430 mg, 1.0 mmol) and 2,2,6,6tetramethylpiperidine (TMP, 0.24 mL, 1.5 mmol). Then the mixture was heated at 170 °C for 20 h. The reaction was worked up by transferring the solution to a round-bottomed flask, the solvents were

removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to afford 29 (262 mg, 71%) as a white solid. Crystals suitable for X-ray analysis were obtained from dissolving 29 in CH<sub>2</sub>Cl<sub>2</sub>, followed by the addition of hexane, and then allowing the solvent to evaporate slowly:  $R_f = 0.50$ (hexane/EtOAc = 2:1); HRMS (ESI))  $m/z [M + H]^+$  calcd for  $C_{22}H_{27}O_{5}$  371.1853, found 371.1851; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 6.03 (s, 1H), 4.79 (s, 1H), 4.50-4.44 (m, 2H), 4.34 (s, 1H), 4.25 (dd, J = 11.0, 6.5 Hz, 1H), 4.10 (dd, J = 10.9, 8.7 Hz, 1H), 3.10 (ddd, J = 12.8, 6.5, 2.4 Hz, 1H), 2.85 (d, J = 17.2 Hz, 2H), 2.77 (ddd, J = 12.0, 6.6, 2.3 Hz, 1H), 2.63 (d, *J* = 17.1 Hz, 1H), 2.49 (ddd, *J* = 11.0, 7.1, 4.2 Hz, 1H), 2.45-2.38 (m, 1H), 2.15 (d, J = 10.5 Hz, 1H), 2.09 (s, 3H), 2.08-2.03(m, 1H), 1.87 (td, J = 12.6, 6.6 Hz, 1H), 1.80 (s, 3H), 1.67 (s, 3H);  $^{13}C{^{1}H}$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.7, 195.3, 170.9, 165.9, 153.6, 145.3, 132.6, 123.4, 112.7, 84.1, 80.8, 66.1, 48.3, 47.5, 46.6, 42.9, 36.6, 35.6, 33.1, 22.5, 21.0, 10.8.

((2S,3S,10R,10aR,11S,11aR,12R)-3-Hydroxy-7-methyl-10-(prop-1-en-2-yl)-2,3,5,6,8,9,10,10a,11,11a-decahydro-2,11methanobenzo[5,6]cyclohepta[1,2-b]pyran-12-yl)methyl Acetate (30). To a solution of compound 29 (185 mg, 0.5 mmol) in anhydrous THF (10.0 mL) was added boron trifluoride etherate (1.1 mL, 9.0 mmol) at rt, and the mixture was stirred at the same temperature for 5 min. Then, sodium cyanoborohydride (NaBH<sub>3</sub>CN 471 mg, 7.5 mmol) was added, and the mixture was stirred at rt overnight. The reaction was quenched by added saturated NaHCO<sub>3</sub> (5 mL), and the mixture was extracted with EtOAc  $(3 \times 5 \text{ mL})$ . The combined organic layers were washed with brine (15 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvents were removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford **30** (100 mg, 56%) as a foam:  $R_f = 0.60$ (hexane/EtOAc = 1:1); HRMS (ESI)  $m/z [M + H]^+$  calcd for  $C_{22}H_{31}O_4$  359.2217, found 359.2214; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 5.31 (d, J = 1.9 Hz, 1H), 4.76-4.70 (m, 2H), 4.48 (dq, J = 1.8, 0.9 Hz, 1H), 4.24 (dd, J = 10.8, 5.2 Hz, 1H), 4.20-4.15 (m, 1H), 4.11 (d, J = 6.2)Hz, 1H), 4.00 (dd, J = 10.8, 9.3 Hz, 1H), 2.86 (ddd, J = 13.1, 5.5, 2.7 Hz, 1H), 2.54–2.47 (m, 1H), 2.33–2.24 (m, 2H), 2.14 (d, J = 9.0 Hz, 1H), 2.11–2.07 (m, 1H), 2.06 (s, 3H), 2.04–1.98 (m, 1H), 1.91 (dd, J = 7.0, 5.6 Hz, 1H), 1.87-1.83 (m, 2H), 1.78-1.74 (m, 1H), 1.73-1.71 (m, 3H), 1.55 (d, J = 1.1 Hz, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>2</sub>)  $\delta$ 171.3, 146.9, 144.8, 128.8, 128.4, 120.6, 110.1, 81.7, 80.4, 68.1, 67.7, 53.0, 45.3, 44.6, 43.3, 34.7, 33.7, 28.3, 22.7, 21.1, 21.0, 19.3.

((2R,10R,10aR,11S,11aR,12R)-7-Methyl-10-(prop-1-en-2-yl)-2,3,5,6,8,9,10,10a,11,11a-decahydro-2,11-methanobenzo-[5,6]cyclohepta[1,2-b]pyran-12-yl)methyl Acetate (32). NaH (20.8 mg, 0.52 mmol, 60% suspension in mineral oil) was washed twice with hexanes and added slowly to a well-stirred and precooled (0 °C) solution of alcohol 30 (71.6 mg, 0.2 mmol) in anhydrous THF (10 mL). Immediately thereafter,  $CS_2$  (36  $\mu$ L, 0.6 mmol) was added, and the red-orange solution was allowed to warm at 25 °C, at which temperature it was stirred over a period of 3 h. The reaction mixture was then recooled at 0  $^\circ$ C and treated with methyl iodide (64  $\mu$ L, 1.1 mmol). After the mixture was stirred at 25 °C for an additional 30 min, the colorless solution was quenched with ice-water (5 mL) and extracted with ethyl ether  $(3 \times 10 \text{ mL})$ . The combined ethereal layers were washed with aqueous saturated sodium bicarbonate (10 mL) and brine (10 mL). The organic layers were combined, dried over MgSO<sub>4</sub>, and concentrated under reduced pressure. The crude residue was subjected to chromatography (0-20% ether in hexanes) to afford the corresponding xanthate as a light-yellow liquid. This liquid was dissolved in dry benzene (10 mL) and treated with Bu<sub>3</sub>SnH (0.41 mL, 1.5 mmol). The reaction mixture was preheated at 80 °C and treated with AIBN (3.28 mg, 0.02 mmol) added in four portions over a period of 2 h. After the end of the reaction, the solvent was removed under reduced pressure and the crude residue was purified through flash chromatography on silica gel (hexane/EtOAc = 30:1) to afford a mixture of 31 and 32 (38 mg, 56%, 31/32 = 1.6:1, detected by crude NMR) as a foam:  $R_f = 0.2$  (hexane/EtOAc = 20:1); HRMS (ESI) m/z $[M + H]^+$  calcd for  $C_{22}H_{31}O_3$  343.2268, found 343.2270; <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 5.82 \text{ (ddd, } J = 9.8, 4.1, 2.8 \text{ Hz}, 1\text{H}), 5.65 \text{ (dt, } J = 9.8, 4.1, 2.8 \text{ Hz}, 1\text{H})$ 9.8, 1.9 Hz, 1H), 5.37–5.33 (m, 1H), 4.76–4.71 (m, 2H), 4.53–4.47

(m, 2H), 4.34 (ddd, J = 7.6, 4.5, 1.6 Hz, 1H), 4.25 (d, J = 5.4 Hz, 1H), 4.19–4.14 (m, 2H), 4.08 (d, J = 5.9 Hz, 1H), 4.01–3.95 (m, 2H), 3.26–3.17 (m, 1H), 2.85 (ddd, J = 13.0, 5.6, 2.5 Hz, 1H), 2.70 (ddd, J = 17.4, 5.4, 2.6 Hz, 1H), 2.55–2.48 (m, 1H), 2.37 (d, J = 11.4 Hz, 1H), 2.31 (ddd, J = 12.4, 5.7, 2.5 Hz, 1H), 2.28–2.23 (m, 2H), 2.23–2.16 (m, 2H), 2.14–2.09 (m, 2H), 2.06 (s, 6H), 1.95 (dtd, J = 13.8, 7.1, 6.6, 4.8 Hz, 4H), 1.89–1.81 (m, 6H), 1.79 (d, J = 4.3 Hz, 1H), 1.74 (s, 3H), 1.72 (s, 3H), 1.69–1.67 (m, 1H), 1.64 (td, J = 7.6, 2.6 Hz, 4H), 1.56 (s, 3H), 1.52 (s, 3H);  $^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  171.1, 171.0, 147.2, 147.2, 142.3, 142.3, 130.2, 129.8, 129.4, 129.3, 128.0, 126.6, 115.7, 109.8, 109.8, 81.4, 80.0, 77.7, 75.1, 68.0, 67.0, 55.9, 53.8, 52.5, 51.5, 45.7, 44.4, 43.0, 42.2, 40.6, 35.1, 34.4, 33.4, 30.2, 29.7, 28.9, 28.2, 28.2, 27.9, 26.9, 22.6, 22.6, 21.0, 21.0, 20.3, 19.2, 18.9, 17.5, 13.6.

(4aR,13R,13aS,14S,14aR)-3,3,10-Trimethyl-13-(prop-1-en-2-yl)-4a,5,8,9,11,12,13,13a,14,14a-decahydro-1*H*-7,14methanobenzo[4,5]cyclodeca[1,2-*d*][1,3]dioxine (34). Freshly cut lithium slices (28.0 mg, 4.0 mmol) were added rapidly to a solution of 31 and 32 (68.4 mg, 0.2 mmol) in ethylamine (5 mL) at 25 °C. The mixture turned blue and was vigorously stirred for further 45 min. The reaction was quenched with cyclopentadiene (1 mL) and saturated NH<sub>4</sub>Cl (aq) (3 mL). Water (1 mL) was added to the mixture, which was extracted with EtOAc (100 mL). The combined organic extracts were washed with 1 M HCl (aq), brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo to give a crude product of 33 (hard to purify), which was used in the next step.

The crude product was dissolved again in DCM (5 mL) at rt. Then, 2,2-dimethoxypropane (0.24 mL, 2.0 mmol) and *p*-toluenesulfonic acid (PTSA, 8.6 mg, 0.05 mmol) were added to the solution sequence, and the resulting mixture was stirred at the same temperature overnight. The reaction was quenched with saturated NaHCO<sub>3</sub> (1 mL) and filtered with Celite. The solution was extracted with EtOAc  $(3 \times 5 \text{ mL})$ . The combined organic extracts were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solution was concentrated in vacuo, and the residue was chromatographed on silica gel (hexane/EtOAc = 8:1) to afford a mixture of 34 (18 mg, 70% for two steps from 32) as a foam:  $R_f$ = 0.50 (hexane/EtOAc = 2:1); HRMS (ESI)  $m/z [M + H]^+$  calcd for  $C_{23}H_{35}O_2$  343.2632, found 343.2630; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 5.38–5.34 (m, 1H), 4.75 (t, J = 1.8 Hz, 1H), 4.53 (s, 1H), 4.07 (td, J = 7.8, 3.4 Hz, 1H), 3.89–3.77 (m, 2H), 2.91 (dt, J = 12.7, 3.7 Hz, 1H), 2.63-2.50 (m, 2H), 2.39 (dt, J = 14.7, 7.5 Hz, 1H), 2.21-2.16 (m, 2H),2.04-1.89 (m, 3H), 1.86-1.78 (m, 4H), 1.72 (d, J = 1.3 Hz, 3H), 1.70-1.65 (m, 2H), 1.62 (s, 3H), 1.44 (s, 3H), 1.42 (s, 3H), 1.40-1.36 (m, 1H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  147.5, 145.2, 130.0, 128.4, 117.6, 110.2, 98.6, 70.0, 63.3, 49.2, 47.0, 43.5, 37.5, 36.6, 36.1, 32.0, 31.7, 29.9, 28.7, 28.7, 22.3, 22.0, 19.2.

(25,35,45)-3-((E)-3-(Benzyloxy)prop-1-en-1-yl)-2-((S)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)furan-3-yl)-1-hydroxyethyl)-4-((S)-6-methylhept-5-en-2-yl)cyclohexan-1-one (49). n-BuLi (2.4 M in hexanes, 10.5 mL, 25 mmol) was added dropwise to a solution of (E)-(3-(benzyloxy)prop-1-en-1-yl)tributylstannane 47 (10.6 g, 24.5 mmol) in anhydrous THF (80 mL) at -50 °C, and the mixture was stirred at the same temperature for 1 h. The resultant solution was transferred via cannula to another flask containing a suspension of copper cyanide (CuCN, 2.1 g, 24.5 mmol) in anhydrous THF (50 mL, also cooled to -50 °C). The mixture was stirred for 15 min and then treated with MeLi (1.6 M in diethyl ether, 15.5 mL, 24.5 mmol), stirred for an additional 15 min, and cooled to -78 °C. A solution of enone 42 (2.5 g, 12 mmol) in THF (15 mL) was added over 30 min, and the mixture was stirred for an additional 30 min. Chlorotrimethylsilane (TMSCl, 2.1 mL, 24.5 mmol) was then added, and after 15 min, this was followed by TEA (4.2 mL, 30 mmol). The reaction was quenched by pouring into a 10% aqueous solution of NH<sub>4</sub>Cl (100 mL). The mixture was filtrated through a pad of Celite with the aid of EtOAc. The organic layer of the filtrate was extracted with EtOAc ( $2 \times 100$  mL). The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was passed through a short silica gel column with EtOAc/hexane (1:100-1:50) quickly. The eluate was concentrated to give the trimethylsilyl enol ether 48, which was used for the next step without further purification.

To a solution of the crude trimethylsilyl enol ether 48 (about 20 mmol) in anhydrous THF (40 mL) was added n-BuLi (2.4 M in hexanes, 5.0 mL, 12 mmol) at -78 °C, and stirring was continued at -30 °C for 1 h. Then, the mixture was cooled to -78 °C, and a solution of ZnBr<sub>2</sub> (3.0 g, 13.2 mmol) in THF (15 mL) was added dropwise. After the mixture was stirred at the same temperature for 30 min, a solution of aldehyde 41 (3.1 g, 12 mmol) in THF (6 mL) was added over 30 min, and the mixture was stirred for an additional 5 min. The reaction was quenched by pouring into a saturated aqueous solution of NaHCO<sub>3</sub> (100 mL) at 0 °C. The aqueous layer was extracted with EtOAc ( $3 \times 50$  mL). The combined organic layers were washed with brine (50 mL) and dried over  $Na_2SO_4$ . The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 10:1) to afford 49 (about 45–60% for two steps) as a foam:  $R_f = 0.45$  (hexane/EtOAc = 5:1); HRMS (ESI) m/z [M + Na]<sup>+</sup> calcd for C<sub>37</sub>H<sub>56</sub>NaO<sub>5</sub>Si 631.3789, found 631.3787; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.36–7.28 (m, 5H), 7.12 (s, 1H), 6.03 (s, 1H), 5.71 (dt, J = 15.5, 5.5 Hz, 1H), 5.30 (ddt, J = 15.6, 9.7, 1.6 Hz, 1H), 5.08–5.00 (m, 1H), 4.52 (d, J = 11.5 Hz, 4H), 4.03 (dd, J = 5.5, 1.6 Hz, 2H), 3.87-3.77 (m, 1H), 3.17 (d, J = 11.4 Hz, 1H), 2.87 (ddd, J = 14.4, 7.0, 1.2 Hz, 1H), 2.76–2.66 (m, 2H), 2.36 (tt, *J* = 13.1, 7.1 Hz, 2H), 2.24 (d, *J* = 11.4 Hz, 1H), 2.06–1.99 (m, 2H), 1.84–1.75 (m, 2H), 1.74–1.68 (m, 1H), 1.64 (d, J = 1.4 Hz, 3H), 1.55 (d, I = 1.3 Hz, 3H), 1.49 - 1.40 (m, 2H), 0.94 (d, I = 7.0 Hz, 4H), 0.89(s, 9H), 0.06 (s, 6H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  215.2, 154.7, 139.3, 138.4, 133.8, 131.6, 130.3, 128.5, 127.7, 127.7, 124.7, 122.7, 108.9, 72.1, 70.9, 70.0, 58.4, 55.6, 48.9, 47.4, 43.2, 32.8, 32.0, 29.9, 26.4, 26.3, 26.0, 25.9, 18.7, 18.6, 17.7, -5.1.

(S)-1-((15,25,35)-2-((E)-3-(Benzyloxy)prop-1-en-1-yl)-3-((S)-6-methylhept-5-en-2-yl)-6-oxocyclohexyl)-2-(5-(hydroxymethyl)furan-3-yl)ethyl Acetate (51). To a solution of 49 (1.4 g, 2.3 mmol) in DCM (30 mL) at 0 °C was added Et<sub>3</sub>N (0.49 mL, 3.5 mmol) and DMAP (146 mg, 1.2 mmol) subsequently. Then Ac<sub>2</sub>O (0.24 mL, 2.5 mmol) was added to the solution and stirred at rt for 15 min before the reaction was quenched by saturated NH<sub>4</sub>Cl (10 mL). Then the aqueous layer was extracted with DCM (3 × 20 mL). The combined organic layers were washed with brine (20 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 15:1) to afford the corresponding acetate as a foam.

The acetate prepared above (1.1 g, 1.6 mmol) was dissolved in CH<sub>3</sub>CN (30 mL) and cooled to 0 °C. Then, imidazole (1.6 g, 23 mmol) and triethylamine trihydrofluoride (1.5 g, 9.2 mmol) were added subsequently. After the mixture was stirred at the same temperature for 2 h, the reaction was quenched by a saturated aqueous solution of NaHCO<sub>3</sub> (20 mL) at 0 °C. The aqueous layer was extracted with EtOAc ( $3 \times 20$  mL). The combined organic layers were washed with brine (20 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 5:1) to afford 51 (789 mg, 64% for two steps) as a foam:  $R_f = 0.2$  (hexane/EtOAc = 2:1); HRMS (ESI)  $m/z \ [M + H]^+$  calcd for  $C_{33}H_{45}O_6$  537.3211, found 537.3210; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, J = 5.6 Hz, 4H), 7.15 (s, 1H), 6.13 (s, 1H), 5.51 (dt, J = 15.5, 5.5 Hz, 1H), 5.36–5.27 (m, 1H), 5.13 (td, J = 7.5, 1.8 Hz, 1H), 5.04 (tt, J = 6.5, 5.0, 2.0 Hz, 1H), 4.57–4.50 (m, 2H), 4.47–4.44 (m, 2H), 4.03 (ddd, J = 5.5, 3.9, 1.4 Hz, 2H), 2.99 (dd, J = 14.0, 7.9 Hz, 1H), 2.81 (dd, J = 14.1, 6.9 Hz, 1H), 2.47-2.37 (m, 3H), 2.31-2.24 (m, 1H), 2.03 (s, 3H), 1.95 (ddd, J = 9.4, 6.1, 3.2 Hz, 1H), 1.88 (t, J = 6.2 Hz, 1H), 1.82–1.72 (m, 2H), 1.56 (d, J = 1.2 Hz, 3H), 1.47 (ddd, J = 24.5, 12.2, 3.8 Hz, 2H), 1.34–1.21 (m, 3H), 0.93 (d, J = 6.9 Hz, 3H);  ${}^{13}C{}^{1}H$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 209.6, 170.7, 154.6, 140.1, 138.4, 133.5, 131.7, 129.6, 128.5, 127.8, 127.8, 124.6, 121.7, 109.5, 72.9, 72.1, 70.2, 57.7, 54.0, 47.0, 46.7, 42.1, 32.6, 29.7, 27.0, 26.3, 25.9, 24.5, 21.4, 18.5, 17.8.

(3aS, 3a1R, 6S, 6aS, 7S, 13aS, 14R)-8-((Benzyloxy)methyl)-2, 2, 14-trimethyl-6-((S)-6-methylhept-5-en-2-yl)-3a, 3a1, 4, 5, 6, 6a, 7, 8, 13, 13a-decahydro-1, 3-dioxa-7, 12methanocyclodeca[de]naphthalen-14-ol (62). To a solution of 61 (30.0 mg, 0.05 mmol) in Et<sub>2</sub>O (5 mL) at -78 °C was added t-BuLi (1.6

M, 0.24 mL, 0.15 mmol). Then, the mixture was stirred at the same temperature for 15 min before the reaction was quenched by saturated  $NH_4Cl$  (5 mL). Then the aqueous layer was extracted with EtOAc (3  $\times$ 5 mL). The combined organic layers were washed with brine (5 mL) and dried over Na2SO4. The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 15:1) to afford 62 (7.8 mg, 30%) as a foam:  $R_f = 0.5$  (hexane/EtOAc = 5:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.27 (m, 5H), 6.33 (d, J = 10.1 Hz, 1H), 6.18– 6.12 (m, 1H), 5.90 (s, 1H), 5.09 (d, I = 7.2 Hz, 1H), 4.58-4.42 (m, 2H), 4.14–4.01 (m, 2H), 3.68–3.59 (m, 1H), 3.50 (d, J = 3.2 Hz, 2H), 2.61 (dd, J = 11.0, 3.2 Hz, 1H), 2.46 (d, J = 5.0 Hz, 3H), 2.15 (s, 1H), 2.03–1.91 (m, 2H), 1.75 (d, J = 11.2 Hz, 2H), 1.70–1.68 (m, 3H), 1.62 (d, J = 1.3 Hz, 3H), 1.57 - 1.46 (m, 3H), 1.38 (s, 3H), 1.36 (s, 3H),1.28 - 1.15 (m, 4H), 1.06 (dd, J = 12.3, 4.8 Hz, 1H), 0.90 (d, J = 6.7 Hz)3H)

(1S,3aS,3a1R,6aS,8aR,11R,11aS,11bR)-5,5-Dimethyl-1-((S)-6methylhept-5-en-2-yl)-1,2,3,3a,3a1,6a,7,8a,10,11,11a,11b-dodecahydro-4,6,9-trioxa-8,11-(epipropan[1]yl[3]ylidene)naphtho[1,8-ef]azulene (71). To a solution of 64 (43.2 mg, 0.1 mmol) in DCM (10 mL) at rt was added triphenylphosphine (39.3 mg, 0.15 mmol) and iodide (30.5 mg, 0.12 mmol) subsequently. Then, the mixture was stirred at rt for 50 min before the reaction was quenched by saturated Na<sub>2</sub>SO<sub>3</sub> (5 mL). Then the aqueous layer was extracted with DCM ( $3 \times 20$  mL). The combined organic layers were washed with brine (20 mL) and dried over Na2SO4. The dried solution was filtered and concentrated. The residue obtained was purified by flash column chromatography on silica gel (hexane/EtOAc = 15:1) to afford 71 (34.4 mg, 83%) as a foam:  $R_f = 0.5$  (hexane/EtOAc = 10:1). Compound 71 was isolated as a byproduct from the deprotection reaction of compound 72: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.71 (dd, J = 9.0, 4.1 Hz, 1H), 5.14 (tt, J = 7.0, 1.5 Hz, 1H), 4.50 (d, J = 7.9 Hz, 1H), 4.09 (d, *J* = 7.8 Hz, 1H), 3.97–3.89 (m, 2H), 3.31 (ddd, *J* = 10.9, 9.4, 5.4 Hz, 1H), 2.68 (dd, J = 16.5, 12.8 Hz, 1H), 2.55 (q, J = 5.1 Hz, 1H), 2.42 (dd, *J* = 11.3, 5.4 Hz, 1H), 2.16–2.05 (m, 3H), 1.93–1.71 (m, 8H), 1.69 (d, I = 1.4 Hz, 3H, 1.60 (s, 3H), 1.52 (ddd, I = 14.0, 6.5, 3.3 Hz, 2H), 1.44-1.38 (m, 3H), 1.37 (s, 3H), 1.33 (s, 3H), 1.16-1.13 (m, 1H), 0.96 (d, J = 6.8 Hz, 3H).

(S,E)-2-Methyl-6-((1R,1aR,4aS,8S,8aS,8bR)-1-methyl-5methylene-1a,3,4,4a,5,6,7,8,8a,8b-decahydro-1H-1,2-(epipropan[1]yl[3]ylidene)benzo[*a*]cyclopropa[c][7]annulen-8-yl)hept-2-enoic Acid (1).<sup>8</sup> To a solution of 35 in anhydrous DCM (20 mL) were added methacrylaldehyde (0.29 mL, 3.5 mmol) and Grubbs II catalyst (81 mg, 0.1 mmol) subsequently. The reaction was sealed and heated at 52  $^{\rm o}{\rm C}$  for 15 h. After the mixture was cooled to 25 °C, the volatiles were removed under vacuo, and the residue was redissolved in EtOH (10 mL). To the vigorously stirred solution was added Ag<sub>2</sub>O (prepared in situ from a solution of silver nitrate (82 mg, 0.48 mmol) in water (1 mL) by the addition of a solution of sodium hydroxide (38 mg, 0.96 mmol) in water (1 mL) dropwise). After stirring for 1 h, the mixture was carefully acidified with AcOH and filtered. The filtrate was concentrated in vacuo, and the residue was extracted with ether. The combined organic layers were washed with brine (5 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The dried solution was filtered and concentrated. The residue obtained was purified quickly by flash column chromatography on silica gel (hexane/EtOAc = 3:1) to afford 1 as a colorless oil (32 mg, 27% for three steps):  $R_f = 0.45$  (hexane/EtOAc = 5:1);  $[\alpha]_{D}^{25}$  -38 (c 0.32, CH<sub>2</sub>Cl<sub>2</sub>); HRMS (ESI) m/z [M + H]<sup>+</sup> calcd for C25H37O2 369.2788, found 369.2788; <sup>1</sup>H NMR (500 MHz,  $CD_2Cl_2$ )  $\delta$  6.90 (t, J = 7.6 Hz, 1H), 5.69–5.62 (m, 1H), 4.76 (d, J = 2.0 Hz, 1H), 4.70 (d, J = 2.1 Hz, 1H), 2.49–2.42 (m, 1H), 2.34–2.29 (m, 1H), 2.29-2.23 (m, 1H), 2.25-2.08 (m, 5H), 2.03-1.94 (m, 1H), 1.84 (m, 1H), 1.83 (s, 3H), 1.81–1.76 (m, 1H), 1.72–1.60 (m, 3H), 1.59– 1.53 (m, 2H), 1.50–1.45 (m, 1H), 1.39–1.32 (m, 1H), 1.21–1.17 (m, 1H), 1.16–1.12 (m, 1H), 1.10 (s, 3H), 0.96 (d, J = 9.2 Hz, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.68 (t, J = 9.9 Hz, 1H); <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 173.2, 152.3, 146.1, 140.9, 127.1, 124.6, 106.4, 45.0, 40.8, 36.5, 33.0, 32.9, 32.8, 32.6, 31.2, 29.1, 28.9, 27.5, 27.1, 25.0, 24.3, 24.2, 21.0, 18.2, 12.3.

Methyl (S,E)-2-Methyl-6-((1R,1aR,4aS,8S,8aS,8bR)-1-methyl-5-methylene-1a,3,4,4a,5,6,7,8,8a,8b-decahydro-1H-1,2-(epipropan[1]yl[3]ylidene)benzo[a]cyclopropa[c][7]annulen-8-yl)hept-2-enoate (2).<sup>8</sup> To a solution of 1 (10 mg, 0.03 mmol) in hexane (2.5 mL) and MeOH (2.5 mL) was added a solution of TMSCHN<sub>2</sub> (2 M in hexane, 27  $\mu$ L, 0.05 mmol). The solution was stirred at rt for 40 min and quenched with AcOH until no bubbles came out. The volatiles were removed under a vacuum, and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to afford the cerorubenic acid-III methyl ester (2) as a colorless oil (9.8 mg, 95%):  $R_f = 0.59$  (hexane/EtOAc = 20:1);  $[\alpha]_D^{25} - 50$  (c 1.0,  $CH_2Cl_2$ ),  $[\alpha]_D^{25} -22$  (c 0.16,  $CHCl_3$ ); -28 (c 0.054,  $CHCl_3$ ); {lit.<sup>6g</sup>  $[\alpha]_{D}^{20}$  -139 (c 0.16, CHCl<sub>3</sub>); lit.<sup>6g</sup> -124 (c 0.001, CHCl<sub>3</sub>); lit.<sup>3</sup>  $[\alpha]_{D}^{24}$ -60 (c 0.001, CHCl<sub>3</sub>); HRMS (ESI) m/z [M + H]<sup>+</sup> calcd for  $C_{26}H_{39}O_2$  383.2945, found 383.2944; <sup>1</sup>H NMR (500 MHz,  $C_6D_6$ )  $\delta$ 6.93 (dt, J = 1.5, 8.0 Hz, 1H), 5.71–5.65 (m, 1H), 4.95 (s, 1H), 4.89 (d, J = 1.8 Hz, 1H), 3.45 (s, 3H), 2.53–2.46 (m, 1H), 2.25–2.13 (m, 5H), 2.11-2.03 (m, 1H), 2.00 (m, 1H), 1.90 (m, 1H), 1.87 (s, 3H), 1.83 (dt, *J* = 10.3, 5.2 Hz, 1H), 1.80–1.73 (m, 1H), 1.66–1.31 (m, 8H), 1.19 (dt, J = 6.7, 4.4 Hz, 1H, 1.05 (s, 3H), 0.92 (d, J = 8.5 Hz, 1H), 0.81 (d, J =6.7 Hz, 3H, 0.71 (dd, J = 10.5, 9.1 Hz, 1H);  $^{13}\text{C}{^{1}\text{H}}$  NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>) δ 168.1, 151.3, 142.6, 140.5, 127.7, 124.4, 106.9, 51.3, 44.9, 40.6, 36.3, 32.9, 32.8, 32.6, 32.2, 31.1, 28.9, 28.6, 27.3, 26.5, 24.8, 24.2, 23.9, 20.7, 18.1, 12.6. (127.7, the signal of the enoate carbon 19, is obscured by solvent peaks, and it was elucidated by the correlations of H21 and C19 in the HMBC spectrum).

# ASSOCIATED CONTENT

## **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00185.

Comparison of spectroscopic data of our synthetic cerorubenic acid-III ester (2) with that of Paquette's reports; reference; X-ray crystallography data for compounds 25, 29, 60; and copies of NMR spectra of synthesized compounds 15, 18–32, 34, 49, 51, 62, 71, 1, and 2 (PDF)

#### Accession Codes

CCDC 1869291 and 2052612–2052613 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/ cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

# AUTHOR INFORMATION

#### Corresponding Author

Chuang-Chuang Li – Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China; orcid.org/0000-0003-4344-0498; Email: ccli@sustech.edu.cn

#### Authors

- Xin Liu Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Junyang Liu Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and

Technology, Shenzhen 518055, China; orcid.org/0000-0002-4622-5200

Jianlei Wu – Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c00185

#### **Author Contributions**

<sup>#</sup>X.L. and J.L. contributed equally to this work.

#### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21971105), the Guangdong Basic and Applied Basic Research Foundation (2019A1515111071 and 2021A1515010188), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Shenzhen Science and T e c h n o l o g y I n n o v a t i o n C o m m i t t e e (JCYJ20190809181011411 and ZDSYS20190902093215877), and the Shenzhen Peacock Plan (KQTD2016053117035204).

## REFERENCES

(1) (a) Wang, L. S.; Yang, B.; Lin, X. P.; Zhou, X. F.; Liu, Y. H. Sesterterpenoids. *Nat. Prod. Rep.* **2013**, *30*, 455–473. (b) Liu, Y.; Wang, L.; Jung, J. H.; Zhang, S. Sesterterpenoids. *Nat. Prod. Rep.* **2007**, *24*, 1401–1429. (c) Hanson, J. R. The Sesterterpenoids. *Nat. Prod. Rep.* **1996**, *13*, 529–535.

(2) (a) Chen, Y. Y.; Zhao, J.; Li, S. P.; Xu, J. Total Synthesis of Sesterterpenoids. *Nat. Prod. Rep.* **2019**, *36*, 263–288. (b) Hog, D. T.; Webster, R.; Trauner, D. Synthetic Approaches toward Sesterterpenoids. *Nat. Prod. Rep.* **2012**, *29*, 752–779. (c) Maimone, T. J.; Baran, P. S. Modern Synthetic Efforts toward Biologically Active Terpenes. *Nat. Chem. Biol.* **2007**, *3*, 396–407.

(3) Tempesta, M. S.; Iwashita, T.; Miyamoto, F.; Yoshihara, K.; Naya, Y. A New Class of Sesterterpenoids from the Secretion of Ceroplastes-Rubens (Coccidae). J. Chem. Soc., Chem. Commun. 1983, 1182-1183. (4) (a) Noda, T.; Kitamura, C.; Takahashi, S.; Takagi, K.; Kashio, T.; Tanaka, M. Host Selection Behavior of Anicetus-Beneficus Ishii Et Yasumatsu (Hymenoptera, Encyrtidae). 1. Ovipositional Behavior for the Natural Host Ceroplastes-Rubens Maskell (Hemiptera, Coccidae). Appl. Entomol. Zool. 1982, 17, 350-357. (b) Takahashi, S.; Katabayashi, J. Host Selection Behavior of Anicetus-Beneficus Ishii Et Yasumatsu (Hymenoptera, Encyrtidae). 2. Bioassay of Oviposition Stimulants in Ceroplastes-Rubens Maskell (Hemiptera, Coccidae). Appl. Entomol. Zool. 1984, 19, 117-119. (c) Takabayashi, J.; Takahashi, S. Host Selection Behavior of Anicetus-Beneficus Ishii Et Yasumatsu (Hymenoptera, Encyrtidae). 3. Presence of Ovipositional Stimulants in the Scale Wax of the Genus Ceroplastes. Appl. Entomol. Zool. 1985, 20, 173-178.

(5) (a) Bredt, J. Steric Hindrance in the Bridge Ring (Bredt's Rule) and the Meso-Trans-Position in Condensed Ring Systems of the Hexamethylenes. Justus Liebigs Ann. Chem. 1924, 437, 1-13.
(b) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Chemistry and Biology of Taxol. Angew. Chem., Int. Ed. Engl. 1994, 33, 15-44. (c) Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Natural Products with Anti-Bredt and Bridgehead Double Bonds. Angew. Chem., Int. Ed. 2014, 53, 13664-13688. (d) Liu, J. Y.; Liu, X.; Wu, J. L.; Li, C. C. Total Synthesis of Natural Products Containing a Bridgehead Double Bond. Chem. 2020, 6, 579-615.

(6) (a) Paquette, L. A.; Poupart, M. A. Rapid Construction of the Tetracyclic Nucleus of Cerorubenic Acid-III by Oxyanionic Cope Chemistry. *Tetrahedron Lett.* **1988**, *29*, 273–276. (b) Paquette, L. A.;

Poupart, M. A. Studies Directed toward the Total Synthesis of Cerorubenic Acid-III. 1. Expedient Construction of the Tetracyclic Core by Oxyanionic Sigmatropy. J. Org. Chem. 1993, 58, 4245-4253. (c) Paquette, L. A.; Lassalle, G. Y.; Lovely, C. J. Studies Directed toward the Total Synthesis of Cerorubenic Acid-III. 2. Analysis of the Inability to Realize D-Ring Formation by Means of Extraannular Robinson Annulation. J. Org. Chem. 1993, 58, 4254-4261. (d) Paquette, L. A.; Deaton, D. N.; Endo, Y.; Poupart, M. A. Studies Directed toward the Total Synthesis of Cerorubenic Acid-III. 3. A Convergent Enantioselective Approach Involving New Arrangements for the Actuation of Ring-D Cyclization. J. Org. Chem. 1993, 58, 4262-4273. (e) Paquette, L. A.; Hormuth, S.; Lovely, C. J. Studies Directed toward the Total Synthesis of Cerorubenic Acid-III. 4. Exploration of an Organometallic Approach to Construction of the Eastern Sector. J. Org. Chem. 1995, 60, 4813-4821. (f) Rigby, J. H.; Ateeq, H. S. Synthetic Studies on Transition-Metal-Mediated Higher-Order Cycloaddition Reactions -Highly Stereoselective Construction of Substituted Bicyclo [4.4.1]-Undecane Systems. J. Am. Chem. Soc. 1990, 112, 6442-6443. (g) Paquette, L. A.; Dyck, B. P. Studies Directed toward the Total Synthesis of Cerorubenic Acid-III. 5. A Radical Cyclization Route Leading to the Methyl Ester of the Natural Isomer. J. Am. Chem. Soc. 1998, 120, 5953-5960.

(7) For our recent total synthesis of bioactive natural products with a seven-membered ring, see: (a) Chen, B.; Liu, X.; Hu, Y. J.; Zhang, D. M.; Deng, L. J.; Lu, J. Y.; Min, L.; Ye, W. C.; Li, C. C. Enantioselective Total Synthesis of (-)-Colchicine, (+)-Demecolcinone and Meta-colchicine: Determination of the Absolute Configurations of the Latter Two Alkaloids. *Chem. Sci.* **2017**, *8*, 4961–4966. (b) Liu, X.; Hu, Y.-J.; Chen, B.; Min, L.; Peng, X.-S.; Zhao, J.; Li, S.; Wong, H. N. C.; Li, C. C. Asymmetric Total Syntheses of Colchicine,  $\beta$ -Lumicolchicine, and Allocolchicinoid N-Acetylcolchinol-O-Methyl Ether (NCME). *Org. Lett.* **2017**, *19*, 4612–4615. (c) Cheng, M. J.; Zhong, L. P.; Gu, C. C.; Zhu, X. J.; Chen, B.; Liu, J. S.; Wang, L.; Ye, W. C.; Li, C. C. Asymmetric Total Synthesis of Bufospirostenin A. *J. Am. Chem. Soc.* **2020**, *142*, 12602–12607. (d) Tong, Z. Z.; Ding, H. F. Asymmetric Total Synthesis of Spirostanol Bufospirostenin A. *Youji Huaxue* **2020**, *40*, 3984–3985.

(8) Liu, X.; Liu, J. Y.; Wu, J. L.; Huang, G. C.; Liang, R.; Chung, L. W.; Li, C. C. Asymmetric Total Synthesis of Cerorubenic Acid-III. *J. Am. Chem. Soc.* **2019**, *141*, 2872–2877.

(9) Ying, W.; Barnes, C. L.; Harmata, M. Toward the Total Synthesis of Elisapterosin B: A Hg(OTf)<sub>2</sub>-Promoted Diastereoselective Intramolecular Friedel-Crafts Alkylation Reaction. *Tetrahedron Lett.* **2011**, *52*, 177–180.

(10) (a) Venugopalan, B.; Shinde, S. L.; Karnik, P. J. Role of Radical-Initiated Cyclization Reactions in the Synthesis of Artemisinin Based Novel Ring Skeletons. *Tetrahedron Lett.* **1993**, *34*, 6305–6308. (b) Masuda, K.; Tanigawa, M.; Nagatomo, M.; Urabe, D.; Inoue, M. Construction of Carbocycles Initiated by Cu-catalyzed Radical Reaction of  $Cl_2C(CN)_2$ . *Tetrahedron* **2017**, *73*, 3596–3605.

(11) For our recent work with type II [5+2] cycloaddition reaction, see: (a) Mei, G. J.; Liu, X.; Qiao, C.; Chen, W.; Li, C. C. Type II Intramolecular [5+2] Cycloaddition: Facile Synthesis of Highly Functionalized Bridged Ring Systems. *Angew. Chem., Int. Ed.* **2015**, *54*, 1754–1758. (b) Min, L.; Liu, X.; Li, C. C. Total Synthesis of Natural Products with Bridged Bicyclo[m.n.1] Ring Systems via Type II [5+2] Cycloaddition. *Acc. Chem. Res.* **2020**, *53*, 703–718. (c) Wang, X. F.; Wang, B.; Li, C. C. Synthetic Study toward the Total Synthesis of Lycoclavatumide. *Org. Lett.* **2020**, *22*, 8989–8992.

(12) Achmatowicz, O., Jr; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. Synthesis of Methyl 2, 3-Dideoxy-DL-alk-2enopyranosides from Furan Compounds: A General Approach to the Total Synthesis of Monosaccharides. *Tetrahedron* **1971**, *27*, 1973– 1996.

(13) Li, Y.; Feng, J. P.; Wang, W. H.; Chen, J.; Cao, X. P. Total Synthesis and Correct Absolute Configuration of Malyngamide U. J. Org. Chem. 2007, 72, 2344–2350.

(14) Srikrishna, A.; Viswajanani, R.; Sattigeri, J. A.; Yelamaggad, C. V. Chemoselective Reductive Deoxygenation of  $\alpha,\beta$ -Unsaturated Ketones and Allyl Alcohols. *Tetrahedron Lett.* **1995**, *36*, 2347–2350.

(15) (a) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. A General Model for Selectivity in Olefin Cross Metathesis. *J. Am. Chem. Soc.* **2003**, *125*, 11360–11370. (b) Xu, J.; Caro-Diaz, E. J. E.; Trzoss, L.; Theodorakis, E. A. Nature-Inspired Total Synthesis of (–)-Fusarisetin A. *J. Am. Chem. Soc.* **2012**, *134*, 5072–5075.

(16) (a) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Stereoselective Cyclopropanation Reactions. *Chem. Rev.* 2003, 103, 977–1050. (b) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J. Biosynthetic Inspirations: Cationic Approaches to Cyclopropane Formation. *Tetrahedron* 2003, 59, 5623–5634. (c) Ebner, C.; Carreira, E. M. Cyclopropanation Strategies in Recent Total Syntheses. *Chem. Rev.* 2017, 117, 11651–11679.

(17) (a) Bhatt, M. V.; Kulkarni, S. U. Cleavage of Ethers. *Synthesis* **1983**, *1983*, *249–282*. (b) Maercker, A. Ether Cleavage with Organo-Alkali-Metal Compounds and Alkali Metals. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 972–989.

(18) Yang, Y.; Haskins, C. W.; Zhang, W. D.; Low, P. L.; Dai, M. J. Divergent Total Syntheses of Lyconadins A and C. *Angew. Chem., Int. Ed.* **2014**, *53*, 3922–3925.

(19) Nicolaou, K. C.; Sarlah, D.; Shaw, D. M. Total Synthesis and Revised Structure of Biyouyanagin A. *Angew. Chem., Int. Ed.* 2007, *46*, 4708–4711.

(20) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.; Jorgensen, K. A. A General Organocatalyst for Direct -Functionalization of Aldehydes: Stereoselective C-C, C-N, C-F, C-Br, and C-S Bond-Forming Reactions. Scope and Mechanistic Insights. J. Am. Chem. Soc. **2005**, *127*, 18296–18304.

(21) Nicolaou, K. C.; Bellavance, G.; Buchman, M.; Pulukuri, K. K. Total Syntheses of Disorazoles  $A_1$  and  $B_1$  and Full Structural Elucidation of Disorazole  $B_1$ . J. Am. Chem. Soc. **2017**, 139, 15636–15639.

(22) Hunag, M. A Simple Modification of the Wolff-Kishner Reduction. J. Am. Chem. Soc. **1946**, 68, 2487–2488.

(23) Dhawan, D.; Grover, S. K. Facile Reduction of Chalcones to Dihydrochalcones with  $NaBH_4/Ni^{2+}$  System. Synth. Commun. 1992, 22, 2405–2409.

(24) The structural assignment to 1 was based on detailed <sup>1</sup>H and <sup>13</sup>C NMR spectral analysis of its methyl ester 2.<sup>3,6g</sup> For details about the NMR comparison, please see the Supporting Information.