Anti-inflammatory phospholipase-A₂ inhibitors. II. Design, synthesis and structure–activity relationship

W Wilkerson, I DeLucca, W Galbraith, J Kerr

DuPont Merck Pharmaceutical Company, E354/347 Experimental Station, Wilmington, DE 19880-0353, USA (Received 26 April 1991; accepted 5 March 1992)

Summary — The design and synthesis of a novel series of phospholipase- A_2 (PLA₂) inhibitor with antiinflammatory activity was based on a systematic structure-activity relationship (SAR) analysis.

phospholipase-A₂ (PLA₂) / antiinflammatory / structure-activity relationship (SAR)

Introduction

Recently we reported on the synthesis and antiinflammatory profile of a series of dehydroabietylamine derivatives with anti-PLA₂ activity [1]. This class of compounds was the result of a massive synthetic effort based on the X-ray crystal structure of porcine pancreatic PLA₂ [2], and the analysis of a series of structures reported by Wallach [3, 4] to be PLA₂ inhibitors with antiinflammatory activity. The results of these analyses led to the development of a template for the design of a novel series of antiinflammatory PLA₂ inhibitor.

The template was based on the observation that the active site of porcine pancreatic PLA₂ (PAN-PLA₂) contained calcium, a large lipophilic pocket, and many potential hydrogen bonding sites, and the structural unit of U-3585 [3, 4]. These observations suggested that a PLA₂ inhibitor should, at a minimum, contain a large and/or lipophilic group to occupy that region of the enzyme normally occupied by the alkenyl portion of arachidonic acid, and a group capable of coordinating with the calcium ion at the active site. The general composition of this template is shown in scheme 1, where R is large and/or lipophilic; X is NH, S, O, or CH_2 ; n is a tether of 1 to 4 carbons to link X and Y; Y is = O, OH, or NH_2 to coordinate with calcium; and Z is a relatively small group that might influence the electron density on Y. The observation that Z should be relatively small was further dictated by the fact that the calcium ion of the enzyme is deep within the enzyme active site. The ultimate objective was to develop a better drug by 'dissecting'

a reported antiinflammatory PLA_2 inhibitor (U-3585) into various molecular components, determining the contribution of those parts to biological activity, and incorporating that information and understanding into the design of novel compounds with a better *in vitro* and *in vivo* activity profile than the lead compound (U-3585).

Tables I and II contain some of the 600 compounds and biological data used in this study.

Chemistry

The proposed inhibitors shown in table I, where n = 2, were generally synthesized by reacting a 2-haloketone or ester with a primary amine or thiol as shown in scheme 2. This approach was not successful when the halide was reacted with an alcohol. Following the course of the reactions by TLC indicated the disappearance of the starting materials, but upon workup, the desired ketoether (X = O) was not obtained; only the starting alcohol was isolated. The conclusion was made that the desired product was formed during the reaction, but during work-up the product underwent a 'retro-Michael' reaction. In some instances,

Scheme 1.

 Table I. Physical data on compounds 1–106.

 $\operatorname{R-X-(CH_2)_n-C(Y)-Z}$

Compd	R ^a	X	n	Y	Z	<i>mp</i> (° <i>C</i>)	Yield (%)	Formula ^b
1	DHA	NH	3	H, OH	n-Hexyl	oil	86	C ₃₀ H ₅₁ NO
2	DHA	NH HCl	2	H, OH	Н	foam	97	C ₂₃ H ₃₇ NO HCl
3	DHA	NH HCl	3	H, OH	Me	foam	58	C ₂₅ H ₄₁ NO HCl
4	DHA	NH HCl	3	H, NH ₂ HCl	Me	foam	73	$C_{25}H_{42}N_2$ 2HCl
5	DHA	NH HCl	3	H, ÔH	4-F-Phe	208–209	91	C ₃₀ H ₄₂ NOF HCl
6	DHA	NH HCl	3	H, OH	Phe	205–207	57	C ₃₀ H ₄₃ NO HCl
7	DHA	NH HCl	2	H, NH ₂ HCl	4-F-Phe	215 dec	96	$C_{29}H_{41}N_2F$ 2HCl
8	DHA	NH HCl	2	H, NH ₂ HCl	Phe	262–264	41	$C_{29}H_{42}N_2$ 2HCl
9	DHA	NH HCl	2	H, NH ₂ HCl	4-MeO-Phe	212 dec	99	$C_{30}H_{44}N_2O$ 2HCl
10	DHA	NH HCl	2	H, NH ₂ HCl	4-MeS-Phe	210 dec	76	$C_{30}H_{44}N_2S$ 2HCl
11	NAP-1	NH HCl	2	O=	OEt	115–118	30	$C_{17}H_{21}NO_2HCI$
12	NAP-2	NH HCl	2	O=	4-F-Phe	206-208	71	$C_{21}H_{20}NOFHCI$
13	NAp-2	NH HCI	2	O=	4-MeO-Phe	195–196	51	$C_{22}H_{23}NO_2$ HCl
14	NAP-2	NH HCl	2	O=	4-MeS-Phe	190–191	62	$C_{22}H_{23}NOS HCl$
15	CHM	NH HCl	2	O=	4-F-Phe	200-202	68	$C_{16}H_{22}$ NOF HCl
16	CHM	NH HCI	2	0=	4-MeS-Phe	186-188	81	$C_{17}H_{25}NOSHCI$
17	CHM	NH HCI	2	0=	OEt	213-215	50	$C_{12}H_{23}NO_2$ HCl
18	DHA	NH HCI	3	0=	OEt	145-148	35	$C_{26}H_{41}NO_2HCI$
19	DHA	NH HCI	3	0=	Me	152-155	92	C ₂₅ H ₃₉ NO HCI
20	DHA	NH HCI	3	O=	4-F-Phe	170–171	35	$C_{30}H_{40}$ NOF HCI
21	DHA	NH	2	MeO-N=	4-MeO-Phe	011	99	$C_{31}H_{44}N_2O_2$
22	DHA	NH HCI	2	н, Он	4-MeO-Phe	136 dec	88	$C_{30}H_{43}NO_2$ HCI
23	DHA	NH ISOH	2		4-MeO-Phe	180-18/	40	$C_{30}H_{41}NO_2C_7H_8O_3S$
24	DHA	NH HCI	2	H, OH	4-MeS-Phe	158 dec	/5	$C_{30}H_{43}NOSHCI$
20			2	U=	4-MeS-Phe	19/-198	83 06	$C_{30}H_{41}NOSC_7H_8U_3S$
20	DHA		2	MeO-N=	4-MeS-Phe	011	90	$C_{31}\Pi_{44}N_2OS$
21		NH ISOH	2		4-F-Phe	102 104	40	$C_{29}\Pi_{38}NOFC_{7}\Pi_{8}O_{3}S$
20		NH HCI	2		4 - F - F = Dho	192 - 194	02 00	$C_{29}\Pi_{40}$ NOF ICI
29	n Dodaavl		2	$n, Nn_2 nCl$	$4 - \Gamma - \Gamma \Pi c$	160 172	99 74	$C_{30}\Pi_{43}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2$
21	n-Douecyl		2		$4 - \Gamma - \Gamma hc$	109-172	55	C H NOF HCl
32	n-Dodecyl	NH HC1	$\frac{2}{2}$	$M_{e}\cap N_{-}$	4-1-1 hc 4-E-Phe	81_82	93	C + N OF HCI
32	n-Dodecyl	NH HCI	2	H NH HCI	4-F-Phe	243-245	91	$C^{2211_{37}}$ H N E 2HCl
34	NAP-2	NH HCI	1	H NH $HC1$	4-F-Phe	186_189	37	$C_{21}H_{37}R_{21}$ 211C1 $C_{1}H_{1}N_{1}F$ 2HC1
35	NAP-2 NAP-2	NH HCI	$\frac{1}{2}$	H NH ² HCl	4-F-Phe	280-281	96	$C_{20} H_{21} V_2 P_2 HC1$
36	NAP-2 NAP-2	NH HCI	2	H NH ₂ HCl	4-F-Phe	182-185	38	$C_{21}H_{23}H_{21} 2HCl$
37	n-Decvl	CH.	2	H NH ₂ HCl	4-F-Phe	145-147	91	$C_{22}H_{22}NF$ HCl
38	n-Decyl	S ²	$\overline{2}$	H NH, HCl	4-F-Phe	110-112	88	C ₁₀ H ₃₄ NFS HCl
39	n-Decyl	NH HCI	$\overline{2}$	H. NH. HCl	4-F-Phe	233-234	99	$C_{19}H_{22}N_{2}F$ 2HCl
40	NAP-1	NEt HCl	$\overline{2}$	H. NH ₂ HCl	4-F-Phe	120 dec	95	$C_{22}H_{27}N_{2}F$ 2HCl
41	NAP-1	NH HCl	2	H, NH, HCl	4-F-Phe	263-265	94	$C_{21}H_{23}N_{2}F$ 2HCl
42	4-Me-Phe	S	3	H, NH,	4-F-Phe	oil	99	$C_{17}H_{20}NFS$
43	4-Me-Phe	S	3	H, NHÁc	4-F-Phe	69–73	86	$C_{19}H_{22}$ NOFS
44	DHA	NH AcOH	3	H, NH ₂ AcOH	Phe	97–101	99	$C_{30}H_{44}N 2C_2H_4O_2$
45	DHA	NAc	3	H, ŇHAc	Phe	glass	99	$C_{34}H_{48}N_2O_2$
46	n-Butyl	NH HCl	2	H, NH ₂ HCl	4-F-Phe	255-257	58	$C_{13}H_{21}N_2F$ 2HCl
47	n-Hexyl	NH HCl	2	$H, NH_2 HCl$	4-F-Phe	240-241	77	$C_{15}H_{25}N_{2}F$ 2HCl
48	n-Heptyl	NH HCl	2	H, NH ₂ HCl	4-F-Phe	172–174	85	C ₁₆ H ₂₇ N ₂ F 2HCl
49	n-Octyl	NH HCl	2	H, NH_2 HCl	4-F-Phe	222-224	52	$C_{17}H_{29}N_2F$ 2HCl
50	n-Undecyl	NH HCl	2	$H, NH_2 HCl$	4-F-Phe	204-206	80	$C_{20}H_{35}N_2F$ 2HCl
51	n-Tridecyl	NH HCl	2	$H, NH_2 HCl$	4-F-Phe	226-228	70	$C_{22}H_{39}N_2F$ 2HCl
52	n-Tetradecyl	NH HCl	2	$H, NH_2 HCl$	4-F-Phe	245 dec	68	$C_{23}H_{41}N_2F$ 2HCl
53	n-Hexadecyl	NH HCl	2	$H, NH_2 HCl$	4-F-Phe	246 dec	80	$C_{25}H_{45}N_2F$ 2HCl
54	n-Octadecyl	NH HCI	2	$H, NH_2 HCl$	4-F-Phe	248 dec	87	$C_{27}H_{49}N_2F$ 2HCl
55	t-Octyl	NH HCI	3	H, NH_2 HCl	4-F-Phe	139 dec	59 77	$C_{18}H_{31}N_2F$ 2HCl
56	n-Butyl	NH HCI	3	$H, NH_2 HCI$	4-F-Phe	218-220	11	$C_{14}H_{23}N_2F$ 2HCl
57	n-Heptyl	NH HCl	3	H, NH ₂ HCI	4-F-Phe	204-206	83	$C_{17}H_{29}N_2F$ 2HCl

Table I. Continued.

Compa	R ^a	X	n	Y	Ζ	$mp(^{\circ}C)$	Yield (%)	Formula ^b
58	n-Octyl	NH HCl	3	H, NH ₂ HCl	4-F-Phe	114-116	99	C ₁₈ H ₃₁ N ₂ F 2HCl
59	n-Decyl	NH HCl	3	H, NH, HCl	4-F-Phe	182–184	67	$C_{20}^{10}H_{35}^{2}N_{2}F$ 2HCl
60	n-Undecyl	NH HCl	3	H, NH, HCl	4-F-Phe	206-208	91	$C_{21}^{20}H_{37}^{37}N_{2}^{5}F$ 2HCl
61	n-Dodecyl	NH HCl	3	H, NH, HCl	4-F-Phe	183–184	84	$C_{22}^{21}H_{20}^{3}N_{2}F$ 2HCl
62	n-Tridecvl	NH HCl	3	H. NH, HCl	4-F-Phe	180-182	52	$C_{aa}^{22}H_{aa}^{39}N_{a}F$ 2HCl
63	n-Tetradecyl	NH HCl	3	H. NH. HCI	4-F-Phe	227-229	84	$C_{1}H_{1}N_{2}F^{2}HC^{2}$
64	n-Hexadecyl	NH HCl	3	H. NH. HCl	4-F-Phe	185-188	99	C_{24} L_{43} L_{27} L_{43} L_{27} L_{43} L_{43} L_{27} L_{43} L
65	n-Octadecyl	NH HCl	3	H. NH. HCl	4-F-Phe	154-156	58	$C_{26}H_{47}H_{27}$
66	4-Me-Phe	S	3	$\Omega =$	4-F-Phe	oil	99	C H NOS
67	n-Undecyl	NH HC1	2	0=	4-F-Phe	174 dec	71	C H NOF HCl
68	n-Undecyl	NH HCI	$\frac{1}{2}$	MeO-N=	4-E-Phe	90-93	97	C H N OF HCl
69	HOC(CE) _Phe	NH	2	H NH	4 - F - Phe	136-137	60	C H N OF
70	$HOC(CE_3)_2$ -The	NMe	$\frac{2}{2}$	H NH	4-F-Phe	142 144	01	C H N OF
70	(1 Dur)	NH	2	n, m_2	4 - 1 - 1 hc	142 - 144	00	$C_{19}\Pi_{19}\Pi_{2}O\Pi_{7}$
/1	$(\mathbf{T} - \mathbf{Y})$	1111	2	0-	4-1-1 nc	115 460	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$C_{21} \Pi_{19} \Pi_{2} O \Pi_{2} \Pi C \Pi_{2}$
72	$(\mathbf{I} \mathbf{I} \mathbf{E}) \subset \mathbf{\Pi}$	NILI	2	U MU	4 E Dha	107 dag	08	C II NE2UCIIIO
12	(4-ryl)	INIT	2	$\mathbf{n}, \mathbf{nn}_2$	4-r-riie	165 000	90	$C_{21}H_{22}N_3F$ SHCI H_2O
72	(FIIE)CH	NTL LICI	2	IL NIL LICI	4 E Dha	242 244	00	
73	i-Ociyi		2	$\mathbf{H}, \mathbf{NH}_2 \mathbf{HCI}$	4-F-Phe	242-244	99 54	$C_{17}H_{29}N_2F$ 2HCl
74	n-Hexadecyl		1	0=	4-F-Phe	129-131	54	$C_{24}H_{40}$ NOF HCI
15	n-Octadecyl	HN-C=U	2		Phe	91-92	//	$C_{28}H_{47}NO_2$
/0	n-Octadecyl	NH HCI	2	$H, NH_2 HCI$	Pne	248-249	99	$C_{28}H_{52}N_2$ 2HCl
77	n-Tetradecyl	NH HCI	2		4-F-Phe	118-120	22	$C_{23}H_{38}$ NOF HCI
78	t-Butyl	NH HCI	2	$H, NH_2 HCI$	4-F-Phe	260-263	86	$C_{13}H_{21}N_2F$ 2HC1
79	s-Butyl	NH HCI	2	$H, NH_2 HCI$	4-F-Phe	250-253	76	$C_{13}H_{21}N_2F$ 2HCl
80	n-Hexyl	NH HCI	2	H, OH	4-F-Phe	166 dec	91	$C_{15}H_{26}NOFHCI$
81	n-Octyl	S	3	H, NH_2 HCI	4-F-Phe	143	59	$C_{18}H_{30}NFS$ HCl
82	n-Octyl	HN-C=O	2	0=	Phe	75–76	89	$C_{18}H_{27}NO_2$
83	n-Octyl	CH_2	2	$H, NH_2 HCI$	4-F-Phe	129–132	94	C ₁₈ H ₃₀ NF HCl
84	n-Decyl	S	2	H, OH	4-F-Phe	oil	99	C ₁₉ H ₃₁ OFS
85	n-Decyl	NH HCl	3	H, H	Phe	187 dec	96	C ₂₀ H ₃₅ N HCl
86	n-Decyl	NH HCl	3	H, NH ₂ HCl	Phe	186–190	98	$C_{20}H_{36}N_2$ 2HCl
87	n-Decyl	NH HCl	2	O=	4-F-Phe	183–184	67	C ₁₉ H ₃₀ NOF HCl
88	n-Decyl	NH HCl	2	MeO-N=	4-F-Phe	94–98	97	C ₂₀ H ₃₂ N ₂ OF HCl
89	n-Decyl	HN-C=O	2	0=	4-F-Phe	93–94	78	$C_{20}H_{30}NO_2F$
90	n-Decyl	NH HCl	3	H, NH ₂ HCl	4-F-Phe	187–188	94	C ₂₀ H ₃₅ N ₂ F 2HCl
91	n-Undecyl	NH HCl	2	Н, Н	Phe	199 dec	96	$C_{20}H_{35}N$ HCl
92	CHM	NH HCl	3	H, OH	4-F-Phe	138–140	56	C ₁₇ H ₂₆ NOF HCl
93	3- ^t Bu-Phe	0	3	H, OH	4-F-Phe	oil	91	$C_{20}H_{26}O_{2}F$
94	3- ^t Bu-Phe	0	3	H, NH ₂ HCl	4-F-Phe	187–190	83	C ₂₀ H ₂₆ NOF HCl
95	4-Me-Phe	S	3	H, NH_2 HCl	4-F-Phe	177–180	86	C ₁₇ H ₂₀ NFS HCl
96	DHA	NH TsOH	3	O=	4-F-Phe	180–182	70	$C_{30}H_{40}$ NOF $C_7H_8O_3S$
97	4-Biphenyl-	NH HCl	2	H, NH ₂ HCl	4-F-Phe	246-248	99	$C_{22}H_{23}N_2F$ 2HCl
	methyl			-				
98	4-Me-Phe	NH HCl	2	H, NH ₂ HCl	4-F-Phe	236-238	67	C ₁₆ H ₁₉ N ₂ F 2HCl
99	4-Decyl-Phe	NH HCl	2	H, NH ₂ HCl	4-F-Phe	208-210	89	$C_{25}H_{37}N_{2}F$ 2HCl
100	DHA	NH TsOH	2	0=	Phe	162–164	20	$C_{20}H_{30}NO_{2}C_{7}H_{*}O_{3}S$
101	DHA	HN-C=O	2	H, OH	Н	foam	99	$C_{24}H_{37}NO_{2}$
102	DHA	NH HCl	3	H, OH	Н	171-173	60	
103	DHA	NH HCl	2	H, OH	Phe	131 dec	85	$C_{20}^{4}H_{41}^{3}$ NO HCl
104	DHA	NH HCl	1	H, OH	Phe	226-228	36	$C_{10}^{41}H_{10}^{41}NOHCl$
105	NAP-2	NH HCl	2	H, NH, HCl	4-MeO-Phe	240 dec	98	C ₂₂ H ₂₆ N ₂ O 2HCl
106	DHA	NAc	2	H, NĤAc	4-F-Phe	98-102	99	$C_{33}^{22}H_{45}^{20}N_2O_2F$

 a DHA = dehydroabietyl; NAP-2 = naphthyl-2-ethyl; NAP-1 = naphthyl-1-ethyl; CHM = cyclohexanemethylene. b All compounds were analyzed for C, H, N and S where necessary and found to be within $\pm 0.4\%$ of theoretical values.

 Table II. Biological data on compounds 1–106 and standards.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
	Cmpd	$\begin{array}{c} PAN - PLA_2 \\ (IC_{50}, \mu M) \end{array}$	$\begin{array}{c} PMN-PLA_2\\ (IC_{50},\mu M) \end{array}$	Car paw (% nh) (100 mg/kg)	Car paw (ED ₃₀ , mg/kg)	Cmpd	$\begin{array}{c} PAN-PLA_2\\ (IC_{50},\mu M)\end{array}$	$\frac{PMN-PLA_2}{(IC_{50}, \mu M)}$	Car paw (% nh) (100 mg/kg)	Car paw (ED ₃₀ , mg/kg)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	48.0	> 750.0			57		1914	43-100	62.5
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2	14	45.0	10-100		58		180.0	46-100	50.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2.1	260.0	24-100	82.0	50		30.0	76-100	27.7
	4	15	5 4	66-100	7.0	60	26	10.7	69_100	35.0
6 1800 150 41-50 22.3 62 3.4 69-100 34.5 7 2.3 5.6 81-50 8.0 63 3.5 8100 452 8 3.5 12.0 60-100 44.9 64 1.8 68-100 35.1 9 5.0 14.0 30-100 100.0 65 2.4 56-100 49.5 10 3.8 9.0 51-100 58.8 66 0.54 >750.0 30-100 100.0 12 11.0 67 0.44 25.0 44-100 59.0 15 > 25.0 71 0.20 420.0 50 50.0 16 5.6 72 1.9 310.0 32-50 50.0 100 22.5 100 22.0 100 22.5 12.0 22.0 75.0 8-100 76 575.0 16-100 100 22.5 23.0 23.0 76 45-100 58.2 23.0 25.0 25.0 100 100.0 25.2 23.0 23.0 16.00 <th>5</th> <th>14.0</th> <th>75</th> <th>49-50</th> <th>59</th> <th>61</th> <th>2.0</th> <th>74</th> <th>61 100</th> <th>35.0</th>	5	14.0	75	49-50	59	61	2.0	74	61 100	35.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ğ	180.0	15.0	41-50	22.3	62		7.4	60 100	34.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ž	2.3	5.6	81-50	8.0	62		2.5	58 100	45.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŕ	35	12.0	60-100	44.9	03		5.J 1.9	58-100 68-100	45.2
	ğ	5.0	14.0	30-100	100.0	04		1.0	06-100 56 100	40.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	3.8	9.0	51-100	58.8	05	0.54	2.4	20 100	49.0
	11	300.0	2.0	51 100	2010	00	0.54	> /50.0	30-100	100.0
13 655 58.0 69 6.0 7.4 14 25.0 70 3.2 750.0 74 9.9 $31-100$ 42.5 16 5.6 72 1.9 310.0 $32-50$ 46.9 73 41.7 750.0 $62-100$ 42.5 19 1.8 110.0 75 >750.0 $66-3$ $44-100$ 58.3 23 55.0 220.0 76 6.3 $44-100$ 58.3 23 55.0 310.0 85.0 79 25.0 750.0 $16-100$ 58.3 24 2.9 75.0 $34-100$ 85.0 79 25.0 750.0 $16-100$ 58.3 23.0 22.0 85.0 85.0 79 25.0 750.0 16.45 10.0 100.0 24 2.9 750.0 $54-50$ 8.0 82 2750.0 $21-100$ 21.0 25.0 95 36.6 83 40.0 66	12	11.0				07	0.44	25.0	44-100	59.0
14 25.0 69 5.0 74 15 > 25.0 70 3.2 $<$ 750.0 17 > 25.0 71 0.20 420.0 18 2.5 470.0 32-50 46.9 73 41.7 750.0 $62-100$ 42.5 19 1.8 110.0 75 > 750.0 86-100 75 > 750.0 16-100 21 > 25.0 12.0 75 > 750.0 16-100 56.5 23 55.0 310.0 32-50 46.9 74 9.9 31-100 100.0 23 55.0 10.0 75 > 750.0 16-100 75 24 2.9 > 75.0 34-100 85.0 79 > 25.0 > 750.0 30-100 100.0 25 230.0 54.50 8.0 82 > 750.0 30-100 100.0 26 25.0 750.0 54-50 8.0 82 > 750.0 20-100 22.0 28 5.0 25.0 8.0 82 27.0 <	13	6.5	58.0			68	6.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	25.0	2010			69	5.6	7.4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	> 25.0				70	3.2	< 750.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	5.6				71	0.20	420.0		
18 2.5 470.0 $32-50$ 46.9 73 41.7 750.0 $62-100$ 42.3 19 1.8 110.0 750.0 $8-100$ 75 9.9 $31-100$ 100.0 20 1.00 750.0 $8-100$ 76 6.3 $44+100$ 59.0 21 >25.0 12.0 76 6.3 $44+100$ 59.0 22 150.0 220.0 77 76 6.3 $44+100$ 59.0 22 25.0 >750.0 $34-100$ 85.0 79 $22.5.0$ >750.0 $15-100$ 23 5.0 25.0 $49-50$ 3.6 83 40.0 $64-100$ 39.1 24.6 2.7 76 85.0 83 40.0 $64-100$ 39.1 31 8.0 4.9 $72-100$ 22.0 86 62.7 $72-100$ 22.0 $87.1.1$ 65.5 $21-100$ 23.2 33 3.1 4.9 $72-100$ <th< th=""><th>17</th><th>> 25.0</th><th></th><th></th><th></th><th>72</th><th>1.9</th><th>310.0</th><th>32-50</th><th>50.0</th></th<>	17	> 25.0				72	1.9	310.0	32-50	50.0
16 1.8 110.0 74 9.9 31-100 1000 20 1.00 > 750.0 8-100 75 > 750.0 16-100 1000 21 > 25.0 12.0 76 6.3 44-100 59.0 22 15.0 220.0 77 7.6 45-100 58.2 23 55.0 310.0 79 > 25.0 > 750.0 15-100 1000 24 2.9 > 75.0 34-100 85.0 79 > 25.0 > 750.0 15-100 25 230.0 25.0 44.00 64.100 39.1 100.0 25 23.0 25.0 44.00 64.100 39.1 30.0 <th>18</th> <th>2.5</th> <th>470.0</th> <th>32-50</th> <th>46.9</th> <th>73</th> <th>41.7</th> <th>750.0</th> <th>62–100</th> <th>42.9</th>	18	2.5	470.0	32-50	46.9	73	41.7	750.0	62–100	42.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1.8	110.0			74		9.9	31-100	100.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1.00	> 750.0	8-100		75		> 750.0	16-100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	> 25.0	12.0			76		6.3	44–100	59.0
23 55.0 310.0 78 > 25.0 > 75.0 30-100 100.0 24 2.9 > 75.0 34-100 85.0 79 > 25.0 > 75.0 15-100 100.0 25 230.0 80 36.8 54-50 16.8 26 > 25.0 81 1.8 13.0 10-100 100.0 28 5.0 25.0 44.0 17-100 85 38.0 23-100 30.190 91.0 30.100 91.0 30 19.0 48.0 17-100 85 38.0 23-100 32.0 33 3.1 4.9 72-100 22.0 88 42-100 63.1 34 14.0 34-100 71.8 92 >25.0 750.0 17-100 36 16.0 30 25.0 576.8 32-100 73.0 65-100 72.2 37 14.0 34-100 71.8 92 >25.0 750.0 28-20 33.3 50-100 59.2 39 4.5 25.0 63-100	$\overline{\overline{22}}$	15.0	220.0			77		7.6	45-100	58.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{\overline{23}}$	55.0	310.0			78	> 25.0	> 750.0	30–100	100.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{24}$	2.9	> 75.0	34-100	85.0	79	> 25.0	> 750.0	15 - 100	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	230.0				80		36.8	54–50	16.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	> 25.0				81	1.8	13.0	10-100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	40.0	> 750.0	54-50	8.0	82		> 750.0	20-100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	5.0	25.0	49–50	3.6	83		40.0	64–100	39.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	2.6	2.7	63-50	5.0	84		> 750.0	9-100	
318.04.943-5018.2866.2 $72-100$ 32.63220.0871.165.521-10032.6333.14.9 $72-100$ 22.08842-10063.13414.089> 750.017-10054.3906.379-10028.73616.09137.036-10072.037.036-10072.03714.034-10071.892> 25.045-10059.23813.027-10078.993> 25.0> 750.028-20394.525.063-10041.9944.212.017-204020.093.4953.054.020-10042417.547.049-10057.09632.0> 750.043-509.0422.344.09716.039.026-1004411.077-10029.09813.050-10040.845> 750.043-509.097.51.810-10046805.1576.832-10073.8101> 25.023.344-10060.547400.0403.641-10064.5101> 25.023.344-10060.5495.4110.056-10049.11028.052.053-10057.5495.4110.056-10049.11028.0	30	19.0	48.0	17-100		85		38.0	23-100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	8.0	4.9	43-50	18.2	86		6.2	72–100	32.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	20.0				87	1.1	65.5	21-100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	3.1	4.9	72–100	22.0	88			42-100	63.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	14.0				89		> 750.0	17 - 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	2.0	150.0	51-100	54.3	90		6.3	79–100	28.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	16.0				91		37.0	36-100	72.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	14.0		34–100	71.8	92	> 25.0		45-100	59.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38		13.0	27 - 100	78.9	93	> 25.0	> 750.0	28-20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	4.5	25.0	63–100	41.9	94	4.2	12.0	17-20	
417.547.049–10057.096 32.0 > 750.0 $43-50$ 9.0422.344.09716.0 39.0 $26-100$ 43> 25.0997.51.810-1004411.077-10029.09813.050-10040.845> 750.040.8 $32-100$ 73.81004.8150.0 $32-50$ 40.846 805.1 576.8 $32-100$ 73.81004.8150.0 $32-50$ 40.847400.0403.641-10064.5101> 25.023.344-10060.5495.4110.056-10049.110322.1120.0502.93.3 $81-100$ 26.0104100.0380.0105513.14.774-10033.010522.010048-503.5533.61.843-10060.0U-35852.3> 250.053-100> 20.0547.71.636-10069.7Mepacrin 22.0100.048-503.555120.0> 750.041-10065.7Mepacrin 22.0> 750.048-10< 1.0	40	20.0	93.4	10 100		95	3.0	54.0	20-100	
42 2.3 44.0 97 16.0 39.0 $26-100$ 43 > 25.0 98 13.0 $50-100$ 40.8 44 11.0 $77-100$ 29.0 98 13.0 $50-100$ 40.8 45 > 750.0 99 7.5 1.8 $10-100$ 46 805.1 576.8 $32-100$ 73.8 100 4.8 150.0 $32-50$ 40.8 47 400.0 403.6 $41-100$ 64.5 101 > 25.0 23.3 $44-100$ 60.5 48 18.0 169.7 $49-100$ 58.6 102 8.0 52.0 $46-100$ 57.9 49 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 $53.30.0$ 51 3.1 4.7 $74-100$ 33.0 105 22.0 $53-100$ >20.0 51 3.1 4.7 $74-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 $Mepacrin 22.0$ 100.0 $48-50$ 3.5 55 120.0 >750.0 $41-100$ <th>41</th> <th>7.5</th> <th>47.0</th> <th>49–100</th> <th>57.0</th> <th>96</th> <th>32.0</th> <th>> 750.0</th> <th>43-50</th> <th>9.0</th>	41	7.5	47.0	49–100	57.0	96	32.0	> 750.0	43-50	9.0
43> 25.09813.0 $50-100$ 40.84411.077-10029.09813.0 $50-100$ 40.845> 750.0997.51.810-10046805.1576.8 $32-100$ 73.81004.8150.0 $32-50$ 40.847400.0403.641-10064.5101> 25.023.344-10060.54818.0169.749-10058.61028.052.046-10057.9495.4110.056-10049.110322.1120.075.9502.93.381-10026.0104100.0380.075.9513.14.774-10033.010522.075.053-100> 20.0523.04.471-10035.010630.890.537-10081.0533.61.843-10060.0U-35852.3> 250.053-100> 20.0547.71.636-10069.7Mepactin 22.0100.048-503.555120.0> 750.057.914065.710043.910.056430.541-10065.710025.0250.043-91.056430.541-10065.710025.025.025.043-91.056430.541-10065.716015.0250.043-91.0 <th>42</th> <th>2.3</th> <th>44.0</th> <th></th> <th></th> <th>97</th> <th>16.0</th> <th>39.0</th> <th>26-100</th> <th></th>	42	2.3	44.0			97	16.0	39.0	26-100	
4411.0 $77-100$ 29.0 99 7.5 1.8 $10-100$ 45 > 750.0 100 4.8 150.0 $32-50$ 40.8 46 805.1 576.8 $32-100$ 73.8 100 4.8 150.0 $32-50$ 40.8 47 400.0 403.6 $41-100$ 64.5 101 > 25.0 23.3 $44-100$ 60.5 48 18.0 169.7 $49-100$ 58.6 102 8.0 52.0 $46-100$ 57.9 49 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 > 250.0 $53-100$ > 20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 > 750.0 56.7 $Mepacrin 22.0> 750.048-10< 1.056430.541-10065.7Mepacrin 21.0250.043-91.056430.541-10065.7Mepacrin 21.0250.043-91.0$	43	> 25.0	11.0	77 100	2 0.0	98	13.0		50-100	40.8
45> 750.046 805.1 576.8 $32-100$ 73.8 100 4.8 150.0 $32-50$ 40.8 47 400.0 403.6 $41-100$ 64.5 101 >25.0 23.3 $44-100$ 60.5 48 18.0 169.7 $49-100$ 58.6 102 8.0 52.0 $46-100$ 57.9 49 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 $37-100$ 81.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 57.9 23.0 250.0 $43-9$ 1.0 56 430.5 $41-100$ 65.7 Mepacrin 22.0 250.0 $43-9$ 1.0	44	750.0	11.0	77-100	29.0	99	7.5	1.8	10-100	
46 805.1 576.8 $32-100$ 73.8 101 ≥ 25.0 23.3 $44-100$ 60.5 47 400.0 403.6 $41-100$ 64.5 102 8.0 52.0 $46-100$ 57.9 48 18.0 169.7 $49-100$ 58.6 102 8.0 52.0 $46-100$ 57.9 49 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 $37-100$ 81.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 ≥ 250.0 $53-100$ ≥ 20.0 54 7.7 1.6 $36-100$ 69.7 Mepactin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 57.9 25.0 >750.0 $48-10$ < 1.0 56 430.5 $41-100$ 65.7 Indomethacine 315.0 250.0 $43-9$ 1.0	45	> 750.0	57 < 0	22 100	72.0	100	4.8	150.0	32-50	40.8
47400.0403.041-100 64.3 102 8.0 52.0 $46-100$ 57.9 4818.0169.7 $49-100$ 58.6 103 22.1 120.0 49 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 57.9 250.0 $43-9$ 1.0 56 430.5 $41-100$ 65.7 Indomethacine 315.0 250.0 $43-9$ 1.0	46	805.1	5/6.8	52-100 41 100	13.8	101	> 25.0	23.3	44-100	60.5
4616.0109.749-10036.010322.1120.049 5.4 110.0 $56-100$ 49.1 103 22.1 120.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 55.7 120.0 250.0 $43-9$ 1.0 56 430.5 $41-100$ 65.7 100 250.0 $43-9$ 1.0	47	400.0	403.0	41-100	04.J 50 4	102	8.0	52.0	46-100	57.9
45 5.4 110.0 $30-100$ 45.1 104 100.0 380.0 50 2.9 3.3 $81-100$ 26.0 104 100.0 380.0 51 3.1 4.7 $74-100$ 33.0 105 22.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 57 $1-100$ 65.7 Indomethacine 315.0 250.0 $43-9$ 1.0	4ð 40	16.0	109.7	47-100 56 100	J0.0 40.1	103	22.1	120.0	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 50	2.4	110.0	SU-100 81 100	47.1 26 0	104	100.0	380.0		
51 3.1 4.7 $74-100$ 53.0 106 30.8 90.5 $37-100$ 81.0 52 3.0 4.4 $71-100$ 35.0 106 30.8 90.5 $37-100$ 81.0 53 3.6 1.8 $43-100$ 60.0 $U-3585$ 2.3 >250.0 $53-100$ >20.0 54 7.7 1.6 $36-100$ 69.7 Mepacrin 22.0 100.0 $48-50$ 3.5 55 120.0 >750.0 $41-100$ 65.7 Indomethacine 315.0 250.0 $43-9$ 1.0	50 51	2.9 2 1	5.5 1 7	01-100 74 100	20.0	105	22.0	2.5010		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	3.1 2.0	4.1	74-100	35.0	106	30.8	90.5	37-100	81.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 52	2.0	4.4 1 Q	/1-100	55.0 60.0	Ū-358	5 2.3	> 250.0	53-100	> 20.0
55 120.0 > 750.0 56 430.5 $41-100$ 65.7 Interpretation 25.0 > 750.0 $48-10$ < 1.0	33 54	3.0 77	1.0	45-100 36, 100	60.0	Mena	rin 22.0	100.0	48-50	3.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 55	120.0	1.0	30-100	09.7	Dexameth	asone > 25.0	> 750.0	48-10	< 1.0
	33 56	120.0	2730.0 430.5	41-100	657	Indometha	cine 315.0	250.0	43-9	1.0
	50			41-100						

599

when a 2-halopropiophenone was reacted with a primary amine, another product was isolated. This compound was later identified and confirmed by directed synthesis as a piperidine (Ib) [5], which resulted from the dialkylation of the amine followed by a very facile internal Aldol condensation. We found that by preforming the Michael acceptor (enone) in situ and reacting the enone with the acid addition salt of the amine, we could reduce the amount of Ib formed. Attempts to synthesize inhibitors where n = 3 by the procedure discussed above were unsuccessful, specifically where R-XH represented a primary amine. The chlorogroup of the 3-chloroketones were extremely resistant to nucleophilic displacement by the amines. To obtain the desired 3-aminoketone (VI), we had to protect the ketone as the ketal (V) and conduct the reaction in refluxing DMF in the presence of excess base and sodium iodide. Generally the yields of VI were low following the procedure shown in scheme 3. This approach was applicable for the nucleophilic thiols and alcohols. During these studies, we discovered that some of the better antiinflammatory PLA₂ inhibitors were the 3-aminoalcohols (VII) and diamines (IX), and as a consequence, a better synthetic route was desired. Using the procedure shown in scheme 4, we

Scheme 3. Synthetic approach to the butyl series.

were able to react an amine with a benzoyl carboxylic acid, using dicyclohexylcarbodiimide (DCC), to give the ketoamide (X) in good to excellent yields. Other

Scheme 4. Alternative approach to the butyl series.

methods of activating the carboxyl, such as forming the mixed anhydride of ethyl chloroformate or the acid chloride, were investigated and found to be less desirable.

The aminoketones (Ia and VI) were reduced to the aminoalcohols (II and VII respectively) using sodium borohydride or borane-tetrahydrofuran complex (BH₃-THF). The ketoamide (X) was also reduced to VII using BH₃-THF. These reduction methods were also acceptable for converting the ketosulfides and ketoethers to the corresponding alcoholsulfides and alcoholether, respectively.

The ketones (Ia, VI and X) were treated with methoxylamine hydrochloride in a mixture of dry pyridine and absolute ethanol (1:1) to give the corresponding oximes, which were reduced to the diamines (IV and IX) using BH_3 -THF under refluxing conditions. Again, this approach was applicable to the ketosulfides and ketoethers.

Generally, all *in vitro* and *in vivo* studies were conducted on racemates or mixtures of diastereomers (cases where R was optically pure). In one study, enantiomerically enriched preparations of **50**, (+)**50** and (-)**50**, were obtained by the asymmetric reduction of the corresponding oxime using a modification of the method described by Sakito *et al* [6].

Results and discussion

The search for antiinflammatory drugs based on the inhibition of PLA₂ was initiated using the following protocol: compounds were synthesized and submitted for screening against PAN-PLA₂ [7] or PMN-PLA₂ [8]. Compounds having $IC_{50}s$ of less than 25 or 100 μ M, respectively, were then submitted for carrageenan paw edema inhibition (car paw) [9] evaluation. Compounds that elicited a 40% or greater inhibition in edema at 100 mg/kg orally were then subjected to dose response studies to determine car paw ED₃₀ expressed in mg/kg. However, some compounds not conforming to the above protocol were fully characterized if we thought that the additional data would be useful in developing the SAR. Over time, this protocol underwent many changes such as choice of enzyme and screening doses. Most of the initial studies were based on PAN–PLA₂ that was abandoned in favor of the 'more relevant' PMN-PLA₂. Initial screening dose for car paw was 20 mg/kg, which was abandoned in favor of 100 mg/kg because of inconsistency in data replication. Unfortunately, many data points were not repeated using the updated protocol(s). The driving force, which motivated some of these changes, was to find a safe orally active antiinflammatory based on an anti-PLA₂ mechanism of action.

Enzymes

At the beginning of these studies, the best characterized and most available PLA_2 was from the porcine pancreas (Sigma Chemical Co). Thus, early SAR studies were conducted on this enzyme. The general opinion, however, was that the PAN–PLA₂, an extracellular digestive enzyme, was not an ideal enzyme for antiinflammatory drug design. To address this problem, we undertook the isolation and characterization of the PLA₂ from rat PMNs [8].

A comparison of 92 proposed inhibitors of PAN– PLA₂ and PMN–PLA₂ indicated that there was little correlation between the 2 enzymes with respect to the inhibitors as shown in Eq 1 where *n* is the number of data points, r^2 is the coefficient of determination, and *s* is the standard deviation of the regression.

$$PMN-PLA_2 = 0.58 (PAN-PLA_2) + 99.23$$
(1)
 $n = 92, r^2 = 0.12, s = 154.23$

Inhibitor design

The synthesis of compounds based on a hypothesis of drug-active site interaction of a 'lead' compound is simply referred to as 'analoging'. By using computer modeling techniques and the X-ray crystal data for PAN–PLA₂ [2], each fragment optimization of the lead molecule was rationally designed. The use of the template strategy was an attempt to organize the synthetic approach and fragment selection [10]. The authors are well aware that the interaction between substrate–enzyme involves many physical chemical interactions, and that the alternation of one can greatly influence the others.

In our attempts to improve on the structure U-3585, we dissected the molecule and assigned structural functions based on our understanding of the X-ray data of PAN-PLA₂. This effort allowed us to make the following assumptions:

- 4-fluorophenyl (\vec{Z}); a lipophilic group, electronically capable of influencing the electron density on the neighboring ketone, and having the ability to form hydrogen bond or participating in a π - π interaction with aromatic amino acids in the active site of the enzyme;

ketone (Y); a group capable of forming hydrogen bonds and coordinating with calcium at the active site;
 n; a spacer between Y and X;

- secondary amine (X); a group capable of forming salt bridges and hydrogen bonds; and

- 4-trifluorophenyl-4'-cyclohexyl (R); a 'large' and/or lipophilic group possibly filling the space normally occupied by the alkenyl portion of arachidonic acid of the substrate.

Using this analysis, we proposed the target(s) described in scheme 1 where R is large and/or lipo-

philic; X is NH, S, O, or CH_2 ; *n* is 1 to 3; Y is O=, OH, or NH₂; and Z is aromatic, substituted aromatic, or lower alkyl.

We initiated the study by investigating the nature and limitations of the Z-group. A series of compounds was synthesized where Z was aromatic, small alkyl, or H. The results from this study are shown in tables III and IV. The most potent inhibitors of PLA_2 were molecules where Z was a small group such as H, Me, or substituted aromatics. The Z group was limited to 4-substituted benzenoids (Z'-W) where W was H, F, MeO, and MeS mainly because of synthetic utility and availability of starting materials.

The data shown in table V demonstrate that the better inhibitors are produced when $Y = NH_2$ or OH. A similar pattern of activity can be seen in table III. Generally the primary amino-group produced better PLA₂ inhibition and antiinflammatory activity than the alcohol that was in turn, better than the ketone. Further evidence of the importance of Y = H, NH_2 can be seen in the comparison of 7 (Y = H, NH_2) and **106** (Y = H, NHAc) and **42** (Y = H, NH_2) and **43** (Y = H, NHAc).

The data in table VI indicate that there is a correlation between the 'spacer' n and PLA₂ inhibitory activity. As a result of these findings, we concentrated our efforts on species where n = 2 or 3. However, where comparisons could be made, we found little difference in the *in vivo* activity. A constant concern about adverse central nervous system effects further

Table III. Activity as a function of Z.

guided our choice of targets in that we avoided synthesizing many 2-amino-alcohols.

In an attempt to find the best moiety for X, we synthesized a very limited series of compounds where X was CH₂, S, or NH. It should be noted that attempts to prepare compounds where X was oxygen and n was 2 were not successful by the route shown in scheme 2; the resulting ketoether undergoes facile 'retro-Michael' reaction. The results from this study are shown in table VII. Although 37 and 38 are about twice as potent against the $PMN-PLA_2$ enzyme as 39, they are about half as efficacious as 39 in the car paw. Generally, the data indicated that the best antiinflammatory PLA₂ inhibitor resulted when X was NH. Further indication that alkylation or acylation of X, where X = NH, resulted in loss of activities can be seen in the comparisons of 40 and 41, 69 and 70, and 7 and 106; and those cases in tables I and II where R-NH-CO was transformed to R-NH-CH₂.

The data in tables I–VIII suggest that the best antiinflammatory PLA_2 inhibitors should have the general structure shown in formula II where the nature of the R-moiety has not been fully defined.

where Y is NH₂ or OH

		11
		11
	_	

	$\mathbf{R}^{-}\mathbf{A}^{-}(\mathbf{C}\mathbf{R}_{2})_{\mathbf{n}}^{-}\mathbf{C}^{-}\mathbf{Z}$									
Cmpd	Rª	X	n	Y	Z	$\begin{array}{l} PAN-PLA_2\\ (IC_{50}, \mu M) \end{array}$	$\begin{array}{c} PMN-PLA_2\\ (IC_{50}, \mu M) \end{array}$	Car paw ED ₃₀ , mg/kg		
1	DHA	NH HCl	3	Н, ОН	n-Hexyl	48.0	> 750.0	> 50.0		
2	DHA	NH HCl	- 3	H, OH	Н	1.4	< 7.5	> 50.0		
3	DHA	NH HC1	3	H, OH	Me	2.1	260.0	82.0		
4	DHA	NH HCl	3	H, NH, HCl	Me	1.5	5.4	7.0		
5	DHA	NH HCl	3	H, ŐH	4-F-Phe	14.0	7.5	5.9		
6	DHA	NH HCl	3	H, OH	Phe	180.0	15.0	23.0		
7	DHA	NH HCl	2	H, NH, HCl	4-F-Phe	2.3	5.6	8.0		
8	DHA	NH HCl	2	H, NH ₂ HCl	Phe	3.5	10.0	44.9		
9	DHA	NH HCl	2	H, NH, HCl	4-MeO-Phe	5.0	14.0	100.0		
10	DHA	NH HCl	2	H, NH ₂ HCl	4-MeS-Phe	3.8	9.0	58.8		
11	2-NAP	NH HCl	2	=Õ	OEt	300.0				
12	2-NAP	NH HCl	2	=O	4-F-Phe	11.0				
13	2-NAP	NH HCl	2	=O	4-MeO-Phe	6.5				
14	2-NAP	NH HCl	2	=O	4-MeS-Phe	> 25.0				
18	DHA	NH HCl	3	=O	OEt	2.5		46.9		
19	DHA	NH HCl	3	=O	Me	1.8				
20	DHA	NH HCl	3	=O	4-F-Phe	1.0		> 50.0		

 $R-X-(CH_2)_n-C-Z$

^aDHA = dehydroabietyl; NAP-2 = naphthyl-2-ethyl.

Table IV. a.	Activity	as a function	of substitution	W	on Z.
--------------	----------	---------------	-----------------	---	-------

Ra Y W Cmpd PAN-PLA₂, IC₅₀, $PAN-PLA_2$, IC_{50} , $\mu M, Found$ µM, Calcd 22 DHA H, OH 15.0 14.4 MeO 24 DHA H, OH 2.9 2.2MeS 28 H. OH F 5.0 5.3 DHA 103 H, OH DHA Η 22.122.4 23 DHA =O MeO 55.0 55.4 25 229.6 230.0 DHA =0 MeS 27 DHA =O F 40.0 41.8 100 DHA =0 Η 4.8 3.0 H, NH_2 HCl 10 NAP-2 MeS 3.8 4.3 NAP-2 H, NH₂ HCl 0.3 35 F 0.7 105 NAP-2 H, NH₂ HCl MeO 22.0 21.9 12 NAP-2 =Ō F 11.011.113 NAP-2 **=**O MeO 6.5 6.4 14 NAP-2 =O 25.0 25.0 MeS

R-NH-(CH2)2-C

Table IV. b. Selected aromatic substituent constants for W.

<>_w								
W	π	σp	F	R	MR			
Н	0.00	0.00	0.00	0.00	1.03			
F	0.14	0.06	0.43	-0.34	0.92			
MeO	-0.02	- 0.27	0.26	-0.51	7.87			
MeS	0.61	0.00	0.20	-0.18	13.82			

5

^aDHA = dehydroabietyl; NAP-2 = naphthyl-2-ethyl.

We had observed that slight differences in the Rgroup affected the biological profile of the inhibitors. Typical examples are shown in table IX. We finally turned our efforts to understanding the requirements of the R-group. Throughout these studies, the only requirement for R was that it be large and/or lipophilic. This allows us to progress initially from the *n*butyl group to the dehydroabietyl group without fully understanding the requirements.

In an attempt to understand the requirements for R, we studied those compounds in table II where Z was 4-fluorophenyl, Y was NH₂ (HCl), *n* was 2 or 3, and X was NH (HCl); PMN PLA₂ IC₅₀s had been determined; and car paw ED₃₀s had been calculated. This selection process provided us with a series of antiinflammatory PLA₂ inhibitors where R varied only in log P, 'bulkiness' as represented by MR, the distance between X and Y, and molecular shape. We used computer calculated molar refractivity (C-MR) and the computer calculated log P (ClogP) of the molecules although they were co-linear for many members of the series, and the computer-generated log P's for some of the members of the series were unrealistic. However, the ClogP values were co-linear with a homologous series of alkylamines used by Lien and Wang [11]. Attempts to determine true log P's from octanol-water partitioning using UV spectroscopy on some members of the series were unsuccessful.

The intent was to obtain a simple qualitative understanding of the contribution R had on biological activity. Plots of log (PMN PLA₂ IC₅₀) vs ClogP and C-MR, as shown in Fig 1a, b indicated that PLA₂ inhibition was related to inhibitor lipophilicity and bulkiness though not to the degree, as had been anticipated. Curve-fitting to these 2 plots (Fig 1a and Eqs 2, 3) resulted in the anticipated parabolas. Analysis of these curves indicated that for this series of compounds, the best PMN PLA₂ inhibitors should have ClogP = 11–13 and C-MR = 14–16. Alter-

Table V. Activity as a function of Y.

Cmpd	Rª	X	п	Y	Ζ	$PAN-PLA_{2},$ $IC_{50}, \mu M$	$\begin{array}{c} PMN-PLA_2,\\ IC_{50}, \mu M \end{array}$	Car paw, ED ₃₀ , mg/kg		
21	DHA	NH	2	MeO-N=	4-MeO-Phe	> 25.0	12.0			
9	DHA	NH HCl	2	H, NH ₂ HCl	4-MeO-Phe	5.0	14.0			
22	DHA	NH HCl	2	H, ÓH	4-MeO-Phe	15.0	220.0			
23	DHA	NH TsOH	2	O=	4-MeO-Phe	55.0	310.0			
24	DHA	NH HCl	2	H, OH	4-MeS-Phe	2.9	> 75.0	85.0		
10	DHA	NH HCl	2	H, NH ₂ HCl	4-MeS-Phe	3.8	< 7.5	58.8		
25	DHA	NH TsOH	2	O=	4-MeS-Phe	230.0				
26	DHA	NH	2	MeO-N=	4-MeS-Phe	> 25.0				
27	DHA	NH HCl	2	O=	4-F-Phe	40/0	> 750.0	8.0		
28	DHA	NH HCl	2	H, OH	4-F-Phe	5.0	25.0	3.6		
7	DHA	NH HCl	2	H, NH ₂ HCl	4-F-Phe	1.8	5.6	8.0		
20	DHA	NH HCl	3	Ο= ²	4-F-Phe	1.0	> 750.0	> 50.0		
5	DHA	NH HCl	3	H, OH	4-F-Phe	14.0	7.5	5.9		
29	DHA	NH HCl	3	H, NH ₂ HCl	4-F-Phe	2.6	2.7	5.0		
30	<i>n</i> -Dodecyl	NH HCl	2	O=	4-F-Phe	19.0	48.0	> 100.0		
31	n-Dodecvl	NH HCl	2	H, OH	4-F-Phe	8.0	4.9	18.2		
32	n-Dodecyl	NH HCl	2	MeO-N=	4-F-Phe	20.0				
33	n-Dodecyl	NH HCl	2	H, NH ₂ HCl	4-F-Phe	3.1	4.9	22.0		

 $R-X-(CH_2)_n-C(Y)-Z$

^aDHA = dehydroabietyl

Table VI. Activity as a function of *n*.

 $R-X-(CH_2)_n-C(Y)-Z$

Cmpd	R ^a	X	n	Y	Ζ	$PAN-PLA_{2}, \\ IC_{50}, \mu M$	$\frac{PMN-PLA_2}{IC_{50}, \mu M},$	Car paw, ED ₃₀ , mg/kg
28	DHA	NH HCl	2	H, OH	4-F-Phe	5.0	25.0	3.6
5	DHA	NH HCl	3	H, OH	4-F-Phe	14.0	7.5	5.9
7	DHA	NH HCl	2	H, NH, HCl	4-F-Phe	1.8	5.6	8.0
29	DHA	NH HCl	3	H, NH ₂ HCl	4-F-Phe	2.6	2.7	5.0
34	NAP-2	NH HCl	1	H, NH ₂ HCl	4-F-Phe	14.0		
35	NAP-2	NH HCl	2	H, NH, HCl	4-F-Phe	0.7	150.0	54.3
26	NAP-2	NH HCl	3	H, NH_2^2 HCl	4-F-Phe	16.0		

^aDHA = dehydroabietyl; NAP-2 = naphthyl-2-ethyl

natively, the data in table X could be fitted to a linear model as shown in graph 1b and Eqs 4 and 5. A comparison of Eq 2 vs Eq 4 and Eq 3 vs Eq 5 showed that the relationship between enzyme inhibitory activity and ClogP and CMR was better expressed by the parabolic model than the linear model. Table XII lists the relevant statistical data on Eqs 2–5. There was little statistically significant difference between the 2 models. The linear model possibly describes one leg of the parabola. Further, a parabolic (quadratic equation) interpretation is logical, suggesting an ideal lipophilic and size requirement; whereas a linear model would be total nonsense, suggesting no limit to

Table VII. Activity as a function of X.

	, ~ F
\sim	~~~~"
\sim	NH2 HCI

Cmpd	X	<i>PMN–PLA</i> ₂ , <i>IC</i> ₅₀ , μ <i>M</i>	Car paw ED ₃₀ , mg/kg
37	CH ₂	14.0	71.8
38	S	13.0	78.9
39	NH HCl	25.0	41.9

Table	VIII.	Activity	as a	function	of X	and Y.

Cmpd		Y R-X-(CH ₂) _n -C-Z								
	R ^a	X	n	Y	Z	$\begin{array}{c} PAN - PLA_2 \\ (IC_{50}, \mu M) \end{array}$	$\begin{array}{c} PMN-PLA_2\\ (IC_{50},\mu M) \end{array}$	Car paw ED ₃₀ , mg/kg		
40 41 42	NAP-1 NAP-1 4-MeS-Phe	NEt HCl NH HCl S	2 2 3	NH ₂ HCl NH ₂ HCl NH ₂ HCl	4-F-Phe 4-F-Phe 4-F-Phe	20.0 7.5 2.3	47.0 44.0	57.0		
43 44 45	4-MeS-Phe DHA DHA	S NH AcOH NAc	3 3 3	NĤAc NH ₂ AcOH NHAc	4-F-Phe Phe Phe	> 25.0	11.0 11.0 >750.0	29.0		

^aDHA = dehydroabietyl; NAP-1 = naphthyl-1-ethyl.

Table IX. Activity as a function of the structure of R.

		R.N.H2 H.H.F.2HCI		
Cmpd	R	$\begin{array}{c} PAN-PLA_2,\\ IC_{50}, \mu M\end{array}$	<i>PMN–PLA</i> ₂ , <i>IC</i> ₅₀ , μ <i>M</i>	Car paw, ED ₃₀ , mg/kg
35		0.7	150.0	54.3
41		7.5	47	57.0

the size or lipophilicity of the inhibitors of the enzyme. Our interpretation of these data have not been accepted without controversy [12].

$$log (PLA_2 IC_{50}) = 4.3-0.7 (log P) + 3.0e^{-2} (log P)^2 (2)$$

$$n = 28 r^2 = 0.90 s = 0.31 F = 106.48$$

$$log (PLA_2 IC_{50}) = 9.1 - 1.1 (MR) + 3.3e^{-2} (MR)^2$$
(3)

$$n = 28 r^2 = 0.78 s = 0.46 F = 43.77$$

$$log (PLA_2 IC_{50}) = 3.5-0.4 (log P)$$
(4)

$$n = 28 r^2 = 0.87 s = 0.34 F = 181.71$$

$$log (PLA_2 IC_{50}) = 5.6-0.5 (MR)$$
(5)
 $n = 28 r^2 = 0.76 s = 0.47 F = 80.46$

Plots of car paw ED₃₀, μ M/kg vs ClogP and C-MR are shown in figure 2a, b. Regression analysis, to determine which model (parabolic or linear) provided a better description of the data, produced Eqs 6–9. Again the parabolas provided the better fit, and indicated that the best antiinflammatories should have ClogP = 6–8 and C-MR = 11–13. These data would suggest that the lipophilicity

Car paw ED₃₀ = 397.5–98.2 (log P) + 7.4 (log P)² (6) n = 28 $r^2 = 0.64$ s = 37.11 F = 22.0

Car paw ED₃₀ = 194.3–14.0 (log P) (7)
$$n = 28$$
 $r^2 = 0.29$ $s = 51.0$ $F = 10.6$

Car paw ED₃₀ = 941.0–143.7 (MR) + 6.0 (MR)² (8)
$$n = 28$$
 $r^2 = 0.59$ $s = 39.6$ $F = 17.9$

Car paw ED₃₀ = 314.1–19.2 (MR) (9)
$$n = 28$$
 $r^2 = 0.41$ $s = 46.4$ $F = 18.1$

and size requirements for optimal antiinflammatory are different from those required for PLA₂ inhibition (Clog P = 11–13 and C-MR = 14–16). A plot of car paw ED₃₀ vs log (PMN–PLA₂) is shown in figure 3. The best representation for the data in table X, as plotted in figure 3, was a line with an $r^2 = 0.41$. Visual analysis of this plot showed 2 sets of outliers. When the outliers were removed from consideration, the linear correlation went from $r^2 = 0.41$ to 0.85 (Fig 4).

The outliers 53 and 54 belong to a homologous series of propyl diamines (33, 39, 46–54) differing only in the number of methylenes (n = 2) in R. A

Fig 1. a. Plot of log(PMN PLA₂ IC₅₀, μ M) vs Clog P and C-MR for compounds in table X: the polynomial regression. **b.** Plot of log(PMN PLA₂ IC₅₀, μ M) vs Clog P and C-MR for compounds in table X: the linear regression.

visual analysis of figure 5 clearly suggest that except for **53** and **54**, the relationship between antiinflammatory activity and PLA_2 inhibition is linear. A similar result can be seen for the butyl diamine series (n = 3) in figure 6. In the absence of other data, we interpreted these deviations from linearity to be the result of poor gastrointestinal absorption or drug distribution. Compounds **72** and **99** are relatively bulky groups and as such may also be affected by poor drug metabolism. Compound **99** also exists as a possible mixture of four diastereomers. Clearly log P and MR do not explain the differences in biological activity observed for the sets of compounds in table IX. These observations suggest that secondary and/or tertiary structures play an important role in the biology of these compounds.

A more rigorous statistical analysis (QSAR) of the compounds in table II, including other mediators of inflammation such as cyclooxygenase, 5-lipoxygenase, PAF, and IL-1 biosynthesis; and a limited amount of drug metabolism data is planned (Wilkerson W, unpublished observations).

Stereospecificity

As can be seen from the data in table XII, there was no significant difference in the biological data produced by the enriched samples over the racemate. This lack of stereospecificity may indicate allosteric binding [12].

Conclusion

The data in this report suggests that compounds described in figure 2 where Z is 4-fluorophenyl; Y is H, NH₂ or H, OH; n is 2 or 3; X is NH; and R is large and/or lipophilic are orally active antiinflammatories that are more efficacious than indomethacin, and a large degree of the observed antiinflammatory activity can be attributed to the inhibition of PLA₂. We have attempted to correlate in vitro activity with in vivo activity without fully understanding the metabolism of the compounds. Studies are planned to determine the metabolic fate of some members of the above series, particularly those compounds that have antiinflammatory activity different from that predicted. The data obtained in this study will be used to refine our template so that we might be able to design and synthesize more potent and efficacious antiinflammatory PLA₂ inhibitors.

Experimental protocols

Chemical methods

Melting points were determined with a Thomas-Hoover melting point apparatus and are uncorrected. The NMR spectra were recorded with an IBM/Bruker WPS 200 spectrometer, IR spectra were recorded with a Perkin-Elmer 1600 FTIR spectrophotometer, optical rotations were determined on a Perkin-Elmer PE 241 polarimeter, and mass spectra were performed with a Hewlett-Packard HP5988A GC-MS system. Thin layer chromatography (TLC) was performed on silica gel plates.

" V F								
a.	Cmpd	R	$\begin{array}{c} PAN-PLA_2\\ IC_{50}, \mu M \end{array}$	$\frac{PMN-PLA_2}{IC_{50}}, \mu M$	Car paw, % Inh @ 100 mg/kg	Car paw ED ₃₀ , mg/kg	C-MR ^a	Clog P ^{a,b}
	46	<i>n</i> -Butyl	805.1	576.8	32.0	73.8	6.688	1.921
	47	<i>n</i> -Hexyl	400.0	403.6	41.0	64.5	7.616	2.979
	48	n-Heptyl	18.0	169.7	49.0	58.6	8.079	3.508
	49	n-Octyl	5.4	110.0	56.0	49.1	8.543	4.037
	39	n-Decyl	4.5	25.0	63.0	41.9	9.471	5.095
	50	<i>n</i> -Undecyl	2.9	3.3	81.0	16.0	9.935	5.624
	33	n-Dodecyl	3.1	4,9	72.0	22.0	10.399	6.153
	51	<i>n</i> -Tridecyl	3.1	4.7	74.0	33.0	10.862	6.682
	52	<i>n</i> -Tetradecyl	3.0	4.4	71.0	35.0	11.326	7.211
	53	<i>n</i> -Hexadecyl	3.6	1.8	43.0	60.0	12.254	8.269
	54	<i>n</i> -Octadecvl	7.7	1.6	36.0	69.7	13 181	9 327

Table X. a. Activity as a function of the size of R for the propyl series. b. Calculated vs found Car paw ED₃₀ using Eq 17^c.

2HCI

R-NH-(CH₂)₂-CH(NH₂)-(4-F-Phe) 2HCl

b.	Cmpd	PMN–PLA ₂ , IC ₅₀ , μM	Car paw, % Inh @ dose, mg/kg	C-MR	Car paw, ED ₃₀ , mg/kg Found	Car paw, ED ₃₀ , mg/kg Calcd ^c
	7	5.6	81–50	13.400	8.0	49.1
	35	150.0	51-100	9.960	54.3	70.0
	41	47.0	49–100	9.960	57.0	54.0
	46	576.8	32-100	6.688	73.8	66.1
	69	7.4	not done	8.982	not done	21.8
	72	310.0	32–50	10.108	50.0	81.0
	73	750.0	62-100	8.543	42.9	82.0
	78	> 750.0	30-100	6.688	100.0	> 69.7
	97	39.0	26-100	9.855	not done	51.0
	99	1.8	10-100	11.982	not done	23.3
	106	90.5	37–100	15.326	81.0	102.3

^aComputer calculated for the 'free base', Paloma College; ^bthe computer program 'flags' values > 7.0 as 'unreal in nature'. ^cCar paw, ED₃₀ = 13.85 In(PMN PLA₂, IC₅₀) + 7.02 (C MR) – 68.93.

The synthetic methods and schemes for some of the compounds discussed above have been disclosed earlier [1]. Depending on the nature of the reactants and the desired product, additional members of the series may be synthesized using the procedures shown below.

1-(4-Fluorophenyl)-3-(dodecylamino)-1-propanone hydrochloride 30

A solution of 3-chloro-4'-fluoropropiophenone (18.66 g, 0.1 mol) in 100 ml THF was treated with triethylamine (11.1 g, 0.11 mol) and stirred at room temperature for 1 h. The mixture was treated with n-dodecyl-amine hydrochloride (22.18 g, 0.1 mol) and refluxed for 6 h. The mixture was cooled to room temperature and concentrated *in vacuo*. The residue was partitioned between 200 ml CH₂Cl₂ and 100 ml 5% NaHCO₃. The

organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The residue was triturated with 110 ml 1 N HCl–Et₂O, and the resulting solid was collected by filtration, washed with Et₂O, and dried to give the desired product in 66% (24.5 g) yield; mp 169–172°C; IR (nujol): 1673 cm⁻¹ C = O; NMR (CDCl₃ TMS): δ 0.87 (t, 3H, CH₃), 1.2 [m, 18H, (CH₂)₉], 1.87 (m, 2H, CH₂-C-N), 3.0 (t, 2H, CH₂CO), 3.37 (m, 2H, CH₂-N), 3.67 (t, 2H, CH₂-N), [7.03 (d of d, 2H), 7.93 (m, 2H) 4-F-Phe]; mass spec *m/e* 335/180; Anal for C₂₁H₃₄NOF HCl, MW 371.96 (C, H, N).

1-(4-Fluorophenyl)-3-(dodecylamino)-1-propanol hydrochloride 31

A suspension of **30** (4.5 g, 0.012 mol) in 50 ml THF and 15 ml *i*-PrOH was cooled in an ice bath and treated with NaBH₄

Cmpd	R	$\begin{array}{c} PMN-PLA_2,\\ IC_{50}, \mu M \end{array}$	Car paw, % Inh @ 100 mg/kg	Car paw, ED ₃₀ , mg/kg	C-MR	Clog P	Caw paw, Calcd ED ₃₀ ª
55	<i>t</i> -Octyl	> 750.0	< 30	not done	9.007	3.956	
56	n-Butyl	430.5	41	65.7	7.152	2.450	55.1
57	<i>n</i> -Heptyl	191.4	44	62.5	8.543	4.037	55.8
58	n-Octyl	180.0	46	50.2	9.007	4.566	58.1
59	n-Decyl	30.0	76	27.7	9.935	5.624	46.0
60	n-Undecyl	10.7	69	35.0	10.399	6.153	38.6
61	n-Dodecyl	7.4	61	35.0	10.862	6.682	37.9
62	n-Tridecyl	3.4	69	34.9	11.326	7.211	33.0
63	<i>n</i> -Tetradecyl	3.5	58	45.2	11.790	7.740	36.3
64	<i>n</i> -Hexyldecyl	1.8	68	35.1	12.718	8.798	35.5
65	<i>n</i> -Octadecyl	2.4	56	49.0	13.645	9.856	44.3

^aCalcd Car paw $ED_{30} = 10.02 In(PMN-PLA_2 IC_{50}) + 6.34 (C MR) - 51.03 from eq 24.$

Table XII. Statistics on equations 2–5.

Equation	$Eq 2 3.0 e^{-2} (log P)^2 - 0.7 (log P) + 4.3$	$Eq \ 4$ - 0.4 (log P) + 3.5	Eq 3 3.3 $e^{-2} (MR)^2 - 1.1 (MR) + 9.1$	Eq 5 - 0.4 (MR) + 5.6
n	28	28	28	28
Coefficient of determination (r^2)	0.90	0.87	0.78	0.76
Adjusted coefficient (r^2)	0.89	0.87	0.76	0.75
Coefficient of correlation (r)	0.95	0.94	0.88	0.87
Standard error of estimate	0.31	0.34	0.46	0.47
F-ratio	106.48	181.71	43.77	80.46
Probability $> F$	0.000	0.000	0.000	0.000

Data obtained using Cricket Graph 1.3 and StatWorks 1.2 using a Macintosh IIx

(0.9 gm, 0.024 mol) and stirred at room temperature until no starting material remained as evidenced by TLC (CHCl₃-MeOH, 9:1). The mixture was concentrated *in vacuo*, and the residue was triturated with 100 ml 1 N HCl. The resulting gelatinous product was collected with difficulty by filtration, washed with water, dried, washed with Et₂O, and redried to give the desired product in 55% (2.5 g) yield; mp 235°C dec; IR (nujol): 3400 cm⁻¹ OH; NMR (DMSO-d₆ TMS): δ 0.86 (t, 3H, CH₃), 1.28 [m, 18H, (CH₂)₉], 1.53 (m, 2H, CH₂-C-N), 1.93 (m, 2H, CH₂-C), 2.73 (m, 2H, CH₂-N), 2.87 (m, 2H, CH₂-N), 4.67 (m, 1H, H-C-O), [7.16 (d of d, 2H), 7.37 (m, 2H) 4-F-Phe]; mass spec *m/e* 337/164; Anal for C₂₁H₃₆NOF HCl, MW 373.99 (C, H, N).

1-(4-Fluorophenyl)-3-(dodecylamino)-1-propanone-O-methyloxime **32**

A mixture of **30** (15.0 g, 0.0403 mol) and methoxyamine hydrochloride (6.7 g, 0.081 mol) in 100 ml Pyr–EtOH (1:1) was stirred at room temperature for 24 h, refluxed for 3 h, and concentrated *in vacuo*. The residue was triturated with cold water, and the resulting solid was collected by filtration,

washed with water, and dried to give the desired product in 93% (15.0 g) yield; mp 81–82°C; NMR (CDCl₃ TMS): δ 0.9 (t, 3H, CH₃), 1.23 (m, 18H), 1.87 (m, 2H, CH₂-C-N), 2.93 (t, 2H, CH₂-CN), 3.13 (m, 2H, CH₂-N), 3.70 (t, 2H, CH₂-N), 3.97 (s, 3H, OCH₃), [7.03 (d of d, 2H), 7.87 (m, 2H) 4-F-Phe]; mass spec *m/e* 364/346; Anal for C₂₂H₃₇N₂OF HCl, MW 401.01 (C, H, N).

1-(4-Fluorophenyl)-3-(dodecylamino)-1-propaneamine dihydrochloride **33**

To a cold suspension of **32** (10.0 g, 0.025 mol) in 50 ml dry THF was added 1 M BH₃–THF complex (100 ml), and the mixture was stirred at room temperature for 16 h and refluxed for 3 h. The mixture was cooled in an ice bath, and the excess borane was decomposed with MeOH. The mixture was concentrated *in vacuo*, treated with 100 ml 6 N HCl, heated at 80°C for 1 h, and concentrated *in vacuo*. The mixture was made alkaline with 1 N NaOH, and extracted with Et₂O. The ether layer was washed with 1 N NaOH, water, and brine; dried over MgSO₄; and filtered; and the filtrate was treated with 50 ml 1 N HCl–Et₂O while vigorously stirring in an ice bath. The result-

Fig 2. a. Car paw IC₅₀, μ M/kg vs Clog P and C-MR for compounds in table X: the parabolic model. **b.** Car paw IC₅₀, μ M/kg vs Clog P and C-MR for compounds in table X: the linear model.

ing white solid was collected by filtration, washed with Et₂O, and dried to give the desired product in 91% (9.3 g) yield; mp 243–245°C; NMR (DMSO–d₆ TMS): δ 0.83 (t, 3H, CH₃), 1.23 (m, 20H), 1.56 (m, 2H, CH₂-C-N), 2.1–3.0 (m, 6H, CH₂-N-CH₂-CH₂-C-N), 4.50 (m, 1H, H-C-N), [7.30 (d of d, 2H), 7.67 (m, 2H), p-F-Phe]; mass spec *m/e* 336/150; Anal for C₂₁H₃₇N₂F 2 HCl, MW 409.46 (C, H, N).

Fig 3. Plot of Car paw ED₃₀, μ M/kg vs log(PMN PLA₂ IC₅₀, μ M) for compounds in table X.

1-(4-Fluorophenyl)-4-(4'-methylphenyl)-1-butanone 66

A mixture of 4-thiocresol (24.8 g, 0.2 mol), 4-chloro-4'-fluorobutyrophenone (40.1 g, 0.2 mol) and triethylamine (22.3 g, 0.22 mol) in 150 ml THF was stirred under nitrogen for 16 h at room temperature, and concentrated *in vacuo*. The residue was partitioned between 300 ml Et₂O and 200 ml water, and the organic layer was washed with 5% NaHCO₃, water, and brine; dried over MgSO₄; filtered; and concentrated to an oil to give the product in 99% (57.1 g) yield; IR (neat): 1700 cm⁻¹ C = O; NMR (CDCl₃ TMS): δ 1.8–1.95 (m, 2H, CH₂-C-CO), 2.26 (s, 3H, CH₃), 2.98 (t, 2H, CH₂-CO), 3.16 (t, 2H, CH₂-S), [7.1–7.4 (m, 6H), 7.9–8.1 (m, 2H) Ar]; mass spec *m/e* 288; Anal for C₁₇H₁₇OFS, MW 288.38 (C, H, S).

1-(4-Fluorophenyl)-4-[(2-methyl-2-propyl)phenoxy]-1-buta-none **93**

A suspension of NaH (2.6 g, 0.11 mol) and 4-chloro-4'-fluorobutyrophenone-2,2-dimethylpropylene ketal (28.7 g, 0.1 mol) in 100 ml dry DMF was cooled in an ice bath and treated with a solution of 3-*tert*-butylphenol (15.0 g, 0.1 mol) in 75 ml dry DMF. The mixture was stirred in the ice bath for 1 h, and refluxed for 16 h. The mixture was cooled to room temperature and concentrated *in vacuo*. The residue was partitioned between 200 ml Et₂O and 100 ml 5% NaHCO₃, and the organic layer was washed with water and brine, dried over MgSO₄, filtered, and concentrated to an oil (40.0 g) with an IR (neat) showing no hydroxyl or carbonyl. The ketalether (33.0 g, 0.082 mol) was dissolved in 100 ml MeOH, treated with 25 ml conc HCl, and stirred at room temperature until TLC (CHCl₃-MeOH, 9:1) indicated no starting material. The mixture was diluted to 500 ml with water, and the resulting

y = 1.0 + 75.9[Sel log(PMN PLA2)] R^2 = 0.850

Fig 4. Plot of Car paw ED₃₀, μ M/kg vs log (PMN PLA₂ IC₅₀, μ M) for selected compounds in table X.

ketone was collected by filtration, washed with water, and dried to give the product in 97% (25.0 g) yield; mp 69–70°C; IR (nujol): 1678 cm⁻¹ C = O; NMR (CDCl₃ TMS): δ 1.33 (s, 9H, 'Bu), 2.25 (d of t, 2H, CH₂), 3.20 (t, 2H, CH₂CO), 4.08 (t, 2H, CH₂-O), [6.73 (m, 1H), 6.8–7.3 (m, 5H), 8.00 (m, 2H), Ar]; mass spec *m/e* 314; Anal for C₂₀H₂₃O₂F, MW 314.38 (C, H).

1-(4-Fluorophenyl)-4-[(2-methyl-2-propyl)phenoxy]-1-butanol 94

A solution of 95 (6.0 g, 0.019 mol) in 50 ml dry THF was cooled in an ice bath and treated with 1 M BH₃–THF (25 ml) and stirred at room temperature for 4 h. The excess BH₃ was decomposed with water, and the mixture was concentrated *in vacuo*. The residue triturated with 50 ml conc HCl at 80°C for 1 h, cooled to room temperature, and extracted with 100 ml ether. The ether solution was washed with water and brine, dried over MgSO₄, filtered, and concentrated to an oil of constant weight. The product was obtained in 91% (5.5 g) yield; IR (neat): 3392 cm⁻¹ OH; NMR (CDCl₃ TMS); δ 1.30 (s, 9H, 'Bu); 1.6–2.0 (m, 4H, CH₂-C-O), 3.98 (t, 2H, CH₂-O), 4.73 (t, 1H, CH-O), 6.5–7.4 (m, 8H, Ar); mass spec *m*/e 316; Anal for C₂₀H₂₅O₂F, MW 316.40 (C, H).

Biological methods

Porcine pancreatic phospholipase-A₂ assay (PAN–PLA₂)

The assay was a modification of that reported by Hirata *et al* [7]. Inhibitors were dissolved in 0.2 M Tris-HCl (trihydroxy-methyl aminoethane hydrochloride) at pH 8.5 or dissolved in

Fig 5. Plot of Car paw ED_{30} , μ M/kg vs log (PMN PLA₂ IC₅₀, μ M) for compounds in table X where n = 2.

DMSO and then diluted with Tris–HCl buffer (maximum DMSO concentration, 7%). The reaction was run in a total volume of 0.1 ml with the enzyme at a final concentration of 19 units/ml (0.025 µg protein/ml) which gave approximately 5000–8000 dpm (disintegrations per minute) of activity in a buffer containing 25 mM Tris (trihydroxymethyl aminoethane), 25 mM glycylglycine, 25 mM CaCl₂, and 0.75 mM EDTA (tetra sodium salt), pH 8.5. The test compound was added to the enzyme mixture, incubated for 2 min. To this mixture was added the substrate [(arachidonyl-1-¹⁴C)-L- α -1-palmitoyl-2-arachidonyl phosphatidylcholine] at a final concentration of 7 µM (40 000 dpm) to begin the reaction that proceeded for 5 min at 37°C. The reaction was terminated by freezing in dry ice–ethanol slurry, and the arachidonic acid products were separated from the unreacted substrate using silica gel columns.

All reactions were run in duplicate, and each reported value represents the results of at least 3 sets of duplicates. IC_{50} , in μM , was calculated by linear regression analysis using 3 concentrations of drug, spanning the 50% inhibition point.

Rat polymorphonuclear leukocyte phospholipase- A_2 (PMN-PLA₂) [8]

A partially purified PLA₂ from casein-elicited rat neutrophils was used as the enzyme. The low speed subtenant from a neutrophil homogenate was fractionated on a discontinuous sucrose gradient. A brown band penetrating into 25% sucrose was the PLA₂ source. Enzyme (15–30 µg protein), calcium ion containing buffer (pH 7.5) and drug were incubated at 37°C for 2 min. Substrate, a sonicated dispersion of 1-palmitoyl-2⁻¹⁴Carachidonyl phosphatidylcholine (\approx 2 µM), was added, and

Sei Paw ED30 y = 10.3 + 69.2[log(PMN PLA2IC50)] R² = 0.773

Fig 6. Plot of Car paw ED₃₀, μ M/kg vs log (PMN PLA₂ IC₅₀, μ M) for compounds in table X where n = 3.

incubation continued for 30 min. The reaction mixture was worked up as outlined above. IC_{50} value, in μM , was calculated by linear regression analysis using 3 concentrations of drug spanning the 50% inhibition point.

Carrageenan-induced edema in rat hind paw (car paw) [9] The method is a modification of the method reported by Winters *et al* [9]. Male Charles River CD rats were given a single oral dose (1.0 ml/100 g body weight) of compound suspended in 0.25% aqueous methocel. To insure uniform hydration, tap water was given immediately after dosing to a total of 5.0 ml/rat. One h later, 0.1 ml of carrageenan (1% sol-

Table XIII. Data on the enriched isomers of 50.

Table XIV. Standards.

Standard	$\frac{PAN-PLA_2}{IC_{50}}, \mu M$	<i>PMN–PLA</i> ₂ , <i>IC</i> ₅₀ , μ <i>M</i>	Car paw % Inh @ dose, mg/kg (ED ₃₀ , mg/kg)
Dexamethasone	> 25.0	> 750.0	48 10 (< 1.0)
Indomethacin	315.0	250.0	43% 9 (1.0)
Mepacrin	22.0	100.0	48% 50 (3.5)
U-3585	2.3	> 250.0	53% 100 (> 20.0)

ution in 0.9% NaCl) was injected into the plantar area of the left hind paw. Volume of the injected paw was recorded immediately after injection. Three hours later the volume of the paw was again measured. Activity is recorded as the calculated percentage inhibition of edema cause by the dose of 100 mg/kg of drug. ED_{30} , in mg/kg, was calculated by linear regression analysis using three concentrations of drug, spanning the 30% inhibition point.

Acknowledgments

The authors would like to thank T Ferago, J Giannaras, R Goodman, L Mantegna, M McGowan, L Moody, D Pedicord, B Rule, T Stevens and D Treml for their assistance in conducting the biological assays.

References

- Wilkerson W, DeLucca I, Galbraith W, Gans K, Harris R, Kerr J (1991) Eur J Med Chem 26, 667–676
- 2 Dijkstra B, Renetseder R, Kalk K, Hol W, Drenth J (1983) J Mol Biol 168, 163
- 3 Wallach DP (1980) US Pat 4, 239, 780
- 4 Wallach DP, Brown VJ (1981) Biochem Pharmacol 11, 1315
- 5 Draper MD, Keller K (19??) US Pat 3, 272, 838
- 6 Sakito Y, Yoneyoshi Y, Suzukamo G (1988) Tetrahedron Lett 29(2), 223
- 7 Hirata F (1980) Proc Natl Acad Sci (USA) 77, 2533
- 8 Galbraith W, Ignar D (1985) Pharmacologist 27, 177
- 9 Winters CA, Risley EA, Nuss GW (1962) Proc Soc Biol Med 111, 544
- 10 Franke R (1984) In: Theoretical Drug Design Methods Elsevier, New York
- 11 Lien EJ, Wang PH (1980) J Pharm Sci 69, 648
- 12 Monod J, Changeux P, Jacob F (1965) J Mol Biol 6, 306

Cmpd	$\begin{array}{c} PAN-PLA_2,\\ IC_{50}, \mu M\\ (\pm se)^{\mathrm{a}} \end{array}$	$\begin{array}{c} PMN-PLA_2,\\ IC_{50}, \mu M\\ (\pm se)^{a} \end{array}$	Car paw, % Inh @ 100 mg/kg (± se) ^a	Isomer ratio ^b	[a] ²⁵ D° (c, 1, MeOH) ^c
50	2.9 (0.4)	3.3 (0.6)	81.0 (3)	50:50	0.0
(+)-50	1.5 (0.3)	4.0 (0.9)	73.0 (1)	82:18	+ 5.6
(–) -50	8.5 (0.5)	3.7 (0.6)	70.0 (3)	21:79	- 7.4

2HC

^aMean \pm standard error, n = 3; ^bdetermined by analytical chiral HPLC, error $\pm 5\%$; ^c \pm absolute error of 0.5°.