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N-Heterocyclic carbenes (NHCs) were demonstrated to be efficient catal
N-benzyloxycarbonyl, or  N-tert-butoxycarbonyl imines. Chiral NHC 8b, conven
of arylalkylketenes with a variety of  N-tert-butoxycarbonyl arylimines to g

yield: 53% - 78%
ee: upto 99%

ysts for the Staudinger reaction of ketenes with N-tosyl,
iently prepared from L-pyroglutamic acid, catalyzed the reactions
ive the corresponding cis-f-lactams in good yields with good

diastereoselectivities and excellent enantioselectivities (up to 99% ee). Two possible catalytic pathways, initiated by the addition of NHC to

ketenes or imines, were discussed.

The chemistry of N-heterocyclic carbenes (NHCs) has grown functionalized aldehydes, such@g-unsaturated aldehydés,

dramatically since the discovery of stable carbeén€hey
have been widely utilized as powerful reagehtgplied as
ligands for organometallic catalystsand have developed
into nucleophilic organocatalyst©wing to their capability
to attack the carbonoxygen double bond of aldehydes,

NHCs were demonstrated very successfully as catalysts for

the umpolung of aldehydesand the extended umpolung of
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a-haloaldehydes] a,3-epoxyaldehyde’ cyclopropanecar-
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found to be excellent catalysts for transesterification, acyla-
tion, ring-opening polymerization, activation of silylated
nucleophiles, and other reactiohs.
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Introduced by Staudinger a century ago, ketenes areWe were pleased to find that 10 mol % of NHCcould
remarkable for the diverse range of useful products from their catalyze the reaction of phenylethylketeria)( with N-
reactions?? In line with our research of NHC-catalyzed tosylphenylimine 2a) to give the corresponding-lactam
reactions'? we proposed that NHCs may be able to attack 3a in high yield, while only a trace amount &a was
ketene to give a reactive zwitterigk and thus be potential  detected in the absence of the catalyst (eq 2).
catalysts for the Staudinger reactions of ketenes with imines

to give f-lactams (eq 1)*1° i
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First reported by Staudinger, the cycloaddition reaction  This result prompted us to explore chiral NHCs for the
of ketenes with imines is a versatile and efficient route to enantioselective Staudinger reaction (Table 1). Several
construct S-lactamst® However, there are only a few

examples for the catalytic enantioselective Staudinger reac_

tions. Lectka et al. reported their pioneering work that the b ination of Chiral for th di
quinine derivatives, as the nucleophilic catalysts, could |2Pl€ 1. Investigation of Chiral NHCs for the Staudinger

catalyze the reaction of ketenes withtosyl a-iminoesters Reactlono "

ith hi i iviti i 0 - 538, ba
with high enantloselectlwt!elj.Thls strategy was advanced )NI\ Gomany _ molsoz j N
by Fu et al. to the reaction of ketenes witktosyl and Y A H
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N-triflyl imines to givecis- andtrans3-lactams, respectively, 1a 2
using planar-chiral derivatives of 4-(dimethylamino)pyridine
as catalystd? In this communication, NHCs proved to be _ _N ® ’»_
efficient catalysts for the Staudinger reaction of ketenes with Q N N‘ph g, N‘Ph

not only N-tosyl but alsa\-tert-butoxycarbonyl (Boc) imines.
Initially, N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene 5 6
(4),*° a stable NHC, was tested for the Staudinger reaction.

yield ee
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Scheme 1. Synthesis of Chiral NHC Precurso8s and 8b
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Staudinger reaction efficiently, whil8b showed better
diastereo- and enantioselectivity (entries 5 and 6). It is
surprising to find that the enantioselectivity decreased sharply
whenN-tosyl(4-chlorophenyl)imin@c was employed instead

of furylimine 2b (entry 6 vs 7). We conjectured that the
electron-deficient 4-chlorophenyl group is the possible reason
for the decrease of selectivity. Thus, imines with a less
electron-withdrawing protective group were investigated. It
was found that the reaction wit-benzyloxycarbonyl (Cbz)
imine 2d, andN-tert-butoxycarbonyl (Boc) imineafforded

the corresponding-lactams with gooctis-selectivity and
with 89 and 95% ee, respectively (entries 8 and 9). Further

experiments showed that decreasing the loading of catalyst

8b from 20 to 10 mol % made no notable change in yield
and selectivity (entry 10).

Substrate scope investigation revealed that a wide variety
of ketenes and imines reacted smoothly to afford corre-
sponding -lactams in good yields with good to high

3). Themeta or para-substituted arylimines affordegtlac-
tams with somewhat decreased diastereoselectivities as
compared tmrtho-substituted ones, but excellent enantiose-
lectivities were still achieved (entries-3). Arylimines from
a strong electron-deficient one (4-MQH,;) to a less
electron-deficient one (2-furyl) worked well (entries-8).
Arylalkylketenes with either an electron-donating substituent
(4-MeO) or an electron-withdrawing substituent (4-Cl) are
suitable substrates (entries-23). It should be noted that
the reaction with alkylimines was sluggish and failed to give
the g-lactams under current standard reaction conditions.
An advantage of this work is that the resultiNgBoc-pro-
tectedf-lactam3 could be easily deprotected to afford the
free S-lactam in high yield (eq 3). Furthermore, thdactam
ring was reductively opened by LiAlHo afford y-amino-
alcohol without erosion in stereochemical purity (eq 4).

O, .Boc O,
:tN CF3COOH thH
Ete—. .  Et—m—. @)
PR Ar ovc R A
) 11 Ar = 3-CICgHs
3h:99% ee 94%, 97% ee
O, .Boc Ar
]tNI LiAIH4 NHB
Etm——. ° HO N oc 4
or Ar THF, 0°C Ph Et @
3h: 99% ee 12 Ar = 3-ClCgHg4

62%, 99% ee

Similarly to the mechanisms suggested by Fu et al. in their
catalytic Staudinger reactio%the NHC may add to ketene

diastereoselectivities and excellent enantioselectivities (Table(mechanism A) or imine (mechanism B) to initiate the

2). Theortho-substituted arylimines (2-Cl, 2-Bg8,) worked
well and benefited the diastereoselectivities (entries 2 and

catalytic cycle (Figure 1).

Table 2. Asymmetric Staudinger Reaction Catalyzed8iy

S
+ o R=—,
Ar1)LR AZTTH THF, it AT AR

1 2 3 (major isomer)
yield ee
entry 1: ArL, R 2: Ar? (%)*  cis/trans® (%)°
1 Ph, Et 4-CICgH4 3e,2 72 75:25 96
2 Ph, Et 2-CICgH4 3fd 71 91:9 99
3 Ph, Et 2-BrC¢H,4 3g, 58 94:6 97
4 Ph, Et 3-CICgH4 3h, 66 80:20 929
5 Ph, Et 4-BrCgHy 3i, 71 78:22 99
6 Ph, Et 4-NO2C¢Hys 35, 75 71:29 99
7 Ph, Et Ph 3k, 64 75:25 929
8 Ph, Et 2-furyl 31, 57 83:17 98
9 Ph, Me 2,4-CloC¢Hs 3m, 53 86:14 93
10 4-MeOCgHy, Et  2-CIC¢Hy4 3n, 78 93:7 91
11 4-MeOCgH4, Et  2,4-CloCsHs 3o, 62 89:11 96
12 4-ClCgHy, Et 2-CICgH4 3p, 61 99:1 97
13 4-ClCgHy, Et 4-CICgH4 3q, 53 83:17 99

alsolated yield.? Determined byH NMR of the reaction mixture.
¢ Enantiomeric excesses of tees-isomer and theransisomer of3e 3h,
3j, 3k, 3n, and 30 are 27, 65, 81, 67, 10, and 30%, respectivéjhe
absolute configuration o8f and 3e was determined by X-ray and CD
spectra, respectively.
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Figure 1. Two possible catalytic mechanisms.

Experiments showed NHBbY' (generated from precursor
8b in situ) could react with ketenga rapidly, but we failed
to identify the keteneNHC zwitterionA.
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It was reported that NHCs could react witki-tosyl
imines?! and we successfully isolated the NH{nine
adductl3 (intermediateC in Figure 1) from the reaction of
NHC 4 with N-tosyl imine2a.'32?It was found that adduct
13 could react with phenylethylketene to gigelactam3a
in 88% yield with the same diastereoselectivity as that in
the catalytic version (eq 2 vs eq 5). However, it should be
noted that the formation of addudB is reversible}® and
the cyclization of intermediat® to S-lactam is disfavored
according to Baldwin’s rule€ Thus, it cannot be ruled out
that adductl3 may decompose in situ to imine and NHC
and then formB-lactam3a by mechanism A.

) O,
N, “NTs g THF, 1t NTs
[N/:(B oM ~ 7 vH O
\ P E 8% Et  Ph
Ar 3a

13 Ar=2,6-Pr,CsH, (trang/cis = 76:24)

As for the reaction of ketenes with less electron-deficient
imines, such a®l-Cbz andN-Boc imines, mechanism A is
apparently favored over mechanism B because the NHC
reacts very sluggishly with those imines.

In conclusion, chiral NHCs were proven for the first time
to be efficient catalysts for the Staudinger reaction of ketenes

(21) He, M.; Bode, J. WOrg. Lett.2005 7, 3131.
(22) It was found that NH@b' could react withN-tosyl imines, but we
were unable to identify or isolate the corresponding NHi@ine adduct.
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with imines. The concept of activation of ketenes by NHC
may find further application in the catalytic transformation
of ketenes, especially those of the cycloaddition reaction.
Furthermore, to the best of our knowledge, this communica-
tion represents the first example of catalytic enantioselective
Staudinger reaction witN-Boc imines. Several advantages
of this methodology, including ready availability of catalyst
8b, excellent enantioselectivities, facile removal of the Boc
group, and easy scale-up of the reactiomake it potentially
useful in the synthesis dfis-f-lactams witha-quaternary
andg-tertiary stereocenters. Further investigation of substrate
scope and the detailed reaction mechanism is underway in
our laboratory.
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