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Abstract: A practical synthesis of 3,4-dihydro-3-methyl-2H-1,3-
benzothiazine-2-imine via intramolecular palladium-catalyzed C–S
bond formation is presented and exemplified for both alkyl- and
arylisothiocyanates.
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In the course of a recent research program, a direct synthe-
sis of a series of 3,4-dihydro-3-methyl-2H-1,3-benzo-
thiazine-2-imines, that would be amenable to parallel
synthesis, was required. According to the literature, the
3,4-dihydro-2H-1,3-benzothiazine-2-imine motif can be
accessed via photocyclization of an anionic thiocarbonyl
sulfur species with a proximate chloroarene moiety
(Scheme 1, equation 1),1 or by tandem pyrolysis of 2H-
benzo[b]thiet 12 and [8π + 2π] hetero Diels–Alder cyclo-
addition with N,N′-dialkyl or diarylcarbodiimide di-
polarophiles (Scheme 1, equation 2).3 However, neither of
those approaches conveniently introduces diversity at the
C2 imine position. A broader variation on the 3,4-di-
hydro-2H-1,3-benzothiazine-2-imine core was described
by Ohno with a one-pot thiourea formation and key intra-
molecular SNAr on a bromoarene scaffold to set up the
carbon–sulfur bond (Scheme 1, equation 3).4 Noticeably,
the reported SNAr proved to be effective only with an ac-
tivated bromoarene having a σ- or π-acceptor substituent
in the ortho position, which is in turn a clear limitation.5

In a recent alternative, Orain et al. published a two-step
synthesis of 3,4-dihydro-2H-1,3-benzothiazine-2-imines
from 2-iodo N-methyl benzylamine derivatives and sub-
stituted phenylisothiocyanates. In this process, limited to
the use of arylisothiocyanates, the key C–S bond was set
up through a regioselective intramolecular palladium-
mediated cyclization between the thiourea moiety and the
iodoarene (Scheme 1, equation 4).6 Although this route is
suitable for a late-stage incorporation of a C2 imine sub-
stituent, we felt there was still significant room for im-
provement: firstly to achieve a more practical one-pot
process; whereby the intermediate thiourea would not be
isolated. Secondly, from a methodological viewpoint, the
use of the less expensive 2-bromo N-methylbenzylamine

(2) compared to the less readily available 2-iodo analogue
would permit extension of scope to further variations on
the core structure. Only two examples of related intra-
molecular palladium-mediated thiourea cyclization from
bromoarenes have been reported, with variable yield.6,7 In
this letter, we present a concise route that is amenable to
the introduction of both alkyl- and arylisothiocyanates as
highly variable substrates (Scheme 1, equation 5). Opti-

Scheme 1 Various synthetic approaches towards the 3,4-dihydro-3-
methyl-2H-1,3-benzothiazine-2-imine motif
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mization of our novel one-pot two-step process was initi-
ated by reacting 2 with cyclohexyl isothiocyanate as a
model substrate (Table 1, entry 1). Initial assessment of
the two previously reported conditions for intramolecular
thiourea C–S bond formation with bromoarenes resulted
in disappointing outcomes.

Thus, a combination of monodendate ligand Ph3P with
Et3N in refluxing dioxane led to a sluggish reaction and
modest conversion. Alternatively, a mixture of strongly
basic and hindered Fu’s phosphine [P(t-Bu)3] and Cs2CO3

Table 1  Synthesis of 3,4-Dihydro-3-methyl-2H-1,3-benzothiazine-
2-imine

Entry RNCS Product Yield 
(%)a
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3a
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8
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34b

66f

10

3j
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57f

a Isolated yields.
b Unless otherwise noted all the reactions were performed in a sealed 
vessel with 2 (0.7 mmol), RNCS (1.1 equiv), Cs2CO3 (2.2 equiv), 
Pd2(dba)3 (0.05 equiv), and Xantphos (0.1 equiv) in dry degassed tol-
uene (1.4–1.5 mL) at 100–105 °C for 8–16 h.
c Control reaction: same conditions as b) but without any ligand and 
palladium source.
d Conversion by HPLC at λ = 254 nm for the following reaction con-
ditions: 2 (0.7 mmol), RNCS (1.1 equiv), Et3N (2.0 equiv), Pd[PPh3]4 
(0.10 equiv), Ph3P (0.10 equiv) in dry degassed dioxane (1.2–1.3 mL) 
at 100 °C for 16 h.
e Conversion by HPLC at λ = 254 nm for the following reaction con-
ditions: 2 (0.7 mmol), RNCS (1.1 equiv), Cs2CO3 (2.2 equiv), Pd[P(t-
Bu)3]2 (0.10 equiv) in dry degassed dioxane (1.2–1.3 mL) at 95–
100 °C for 16 h.
f Reaction conditions: 2 (0.7 mmol), RNCS (1.1 equiv), Cs2CO3 (2.7 
equiv), Pd2(dba)3 (0.12–0.15 equiv) and DPPF (0.25–0.30 equiv) in 
dry degassed toluene (1.5 mL) at 125–130 °C for 24–32 h.

Table 1  Synthesis of 3,4-Dihydro-3-methyl-2H-1,3-benzothiazine-
2-imine (continued)
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in dioxane afforded better conversions (still less than two
thirds), but the reaction did not proceed to completion at
100 °C. By analogy with the known reluctance of aryl-
amidate complexes to undergo fast reductive elimination
from palladiumII due to κ2-amidate coordination,8 we hy-
pothesized that a putative κ2-‘isothioamidate-type’ com-
plex 4 may arise in the catalytic cycle (Figure 1), thus
inhibiting reductive elimination and therefore catalytic
turnover. It has also been shown that the use of large-bite-
angle bidendate ligands prevents κ2-binding modes.9

Gratifyingly, we found that a system of Xantphos,
Pd2(dba)3, and Cs2CO3 in toluene afforded 3a in quantita-
tive yield. To rule out a possible thiourea cyclization driv-
en by SNAr, a control experiment was carried out under
similar conditions, omitting the catalytic system and, as
expected, no trace of 3a was found. Our protocol was next
exemplified with a range of alkyl isothiocyanates (Table
1, entries 2–8), providing the corresponding 3,4-dihydro-
2H-1,3-benzothiazine-2-imines 3b–h in moderate to ex-
cellent yields.10 Notably, esters and basic groups were tol-
erated in the reaction. Unfortunately, phenyl- and to a
lesser extent benzyl isothiocyanates reacted poorly under
those conditions (Table 1, entries 9 and 10). This trend
was assigned to both a lower nucleophilicity of the inter-
mediate thiourea and an increased ionic character of the
PdII ‘isothioamidate’ complex leading to a stronger Pd–S
bond.9 The reductive elimination was therefore slower
and occurred in very low yield. Eventually, we were able
to achieve reasonable conversion rates and deliver prod-
ucts 3i–j in acceptable yields by increasing temperature,
reaction time, catalyst loading, and using DPPF as an al-
ternative ligand. Although we cannot provide a clear ex-
planation for this ligand effect, we suggest that the
chelating bidendate ligand maintains a fast rate of reduc-
tive elimination for steric reasons – in other words, by en-
forcement of cis geometry and angle minimization
between the two metal-bound substituents. Electronic fac-
tors in this case cannot be invoked since DPPF is more

electron donating than Xantphos and thus tends to disfa-
vor reductive elimination.11,12 A control experiment was
next conducted in order to probe whether intramolecularity
plays a role in the key C–S bond formation. Thus, a mix-
ture of bromobenzene, diethylamine, and cyclohexyl iso-
thiocyanate was reacted under standard conditions to
deliver the arylated isothiourea 6 in quantitative yield
(Scheme 2). Apparently, intramolecularity is not a key
driver for the coupling. We believe that the wide-bite-
angle bidendate chelating ligand imposes a great steric
strain on the seven-membered ring isothioamidate com-
plex 5, promoting fast reductive elimination of palladium-
bound substituents. The associated cost in energy could
somehow compensate for favorable six-membered ring
formation. 

In order to expand the scope of the reaction to commer-
cially available chloroarene 7, several attempts using
monodendate ligands were performed but all met with
failure (Scheme 3). More specifically, reactions conduct-
ed in the presence of commercially available bipyrazole
BippyPhos (Figure 2),13 or Buchwald’s XPhos, ligands,
known to promote, respectively, smooth intermolecular
coupling of chloroarenes with phenylureas, and intermo-
lecular o-chloroanilines urea cyclizations afforded 3a
only in trace amounts.14,15 It is recognized that both steri-
cally demanding ligands facilitate dissociation to mono-
phosphine–palladium adducts to which the chloroarene
rapidly oxidatively adds as a result of the phosphine elec-
tron density.16,17 In addition, coordination of the isothio-
urea with the monophosphine LPd(Ar)Cl complex should
also be faster relative to the coordinatively saturated
L2Pd(Ar)Cl complex.8 Therefore, the poor results ob-
served in this C–S bond formation may again stem from
problematic reductive elimination.

In conclusion, a simple procedure to rapidly access the
3,4-dihydro-2H-1,3-benzothiazine-2-imine motif in the
o-bromoarene series has been developed using Pd0 chem-

Figure 1 Putative κ2-‘isothioamidate’complex 4 and κ1-‘isothioami-
date’complex 5
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Scheme 2 Intermolecular palladium-catalyzed isothiourea coupling
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istry and validated with both alkyl- and arylisothiocya-
nates. Utilization of wide-bite-angle bidendate ligands
was found to be crucial for successful outcomes. Applica-
tion of the current methodology to substituted o-bromo
N-alkyl benzylamine substrates is under way and will be
reported in due course.
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