
Diastereoselective Coupling of 1,3-Diene, Ketone, and Organometallic Reagents by Nickel
Catalyst: Stereoselective Construction of Tetrasubstituted Carbon Centers

Nozomi Saito, Tetsuro Yamazaki, and Yoshihiro Sato�

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812

(Received March 23, 2009; CL-090295; E-mail: biyo@pharm.hokudai.ac.jp)

A nickel-catalyzed three-component coupling of 1,3-diene,
ketone, and organoboron or organosilicon reagents was investi-
gated. While the coupling reaction using PhB(OH)2 afforded a
1,3-syn-substituted 4-penten-1-ol derivative as a single diaster-
eomer, the reaction in the presence of tetraorganosilicon reagent
under similar conditions exclusively produced the corresponding
1,3-anti isomer. In both reactions, a tetrasubstituted carbon cen-
ter was constructed in a highly diastereoselective manner.

Multicomponent coupling reactions have attracted much at-
tention as an efficient methodology in recent organic synthesis.1

We have demonstrated a nickel-catalyzed multicomponent cou-
pling of 1,3-dienes, aldehydes, and silane.2–4 Recently, we also
reported a diastereoselective coupling of 1,3-dienes, aldehydes,
and organoboron or organosilicon reagents (Scheme 1).5,6 That
is, the coupling of 1 and 2 using organoboronic acid 3 gave
syn-4 diastereoselectively. On the other hand, the diastereoselec-
tivity was changed in the reaction using organosilicon reagent 5
under similar conditions, producing the corresponding stereo-
isomer anti-4. In this context, we envisaged that if a ketone
was used instead of aldehyde in this reaction, a coupling product
having a tetrasubstituted carbon should be obtained. Further-
more, the stereochemistry at C1 and C3 positions would be con-
trolled by the class of organometallic reagent.

According to previously optimized conditions,5 diene 6 and
acetophenone (7a) reacted with PhB(OH)2 (3) in the presence of
Ni(cod)2 and PPh3 in CPME (cyclopentyl methyl ether) at 50 �C
for 75 h, giving the coupling product 8a in 73% yield as a single
diastereomer (Table 1, Run 1). As expected, the relative config-
urations of the hydroxy group at the C1 position and the phenyl
group at the C3 position were determined to be 1,3-syn from
a NOESY experiment of 9 derived from 8a.7 After screening
ligands, it was found that P(p-tolyl)3 is suitable in this reaction,
giving syn-8a in good yield (Run 4).

Coupling reactions of 6 and various ketones 7 under optimal
conditions were investigated (Table 2). While the reaction of 6
and 7b with a methoxy group on the aromatic ring gave syn-
8b in low yield, the reaction of 7c–7e bearing an electron-with-
drawing group on the aromatic ring afforded the corresponding
syn-8c–8e in high yields (Runs 2–4).8 Coupling with propiophe-

none derivative 7f also proceeded diaseteoselectively to give the
product 8f in 77% yield (Run 5). Although aliphatic ketones 7g–
7h and cycloalkanones 7i–7k were also applicable to this reac-
tion, the yields of products 8g–8k were moderate to low (Runs
6–10). On the other hand, the reaction of an internal diene
(e.g. 1,4-diphenylbuta-1,3-diene) and acetophenone (7a) gave
no coupling product and only starting diene was recovered, prob-
ably due to the steric repulsion.

Next, we turned our attention to multicomponent coupling
of 1,3-diene, ketone, and organosilicon reagent 59 (Table 3). Ac-
cording to our previous protocol,5 the reaction of 6, 7, and 5 was
carried out in the presence of Ni(cod)2, IMes.HCl, and Cs2CO3

in CPME at 50 �C. As a result, the coupling product anti-8a was
obtained in 32% yield as a single diastereomer (Run 1), whose
stereochemistry was determined from a NOESY experiment of
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Table 1. Coupling reactions of 6, 7a, and 3 using various ligandsa
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6

10 mol% Ni(cod)2
10 mol% ligand

+

7a

Ph

HOPh

13

syn -8a5 equiv PhB(OH)2 (3)
3 equiv Cs2CO3
CPME, 50 °C

CH3
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3) PDC

3 steps 72%
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OO

Ph
H H H

CH3

Ph

9

1
3
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Run Ligand Time/h Yield of syn-8a/%

1 PPh3 75 73

2 PPh2Me 17 29

3 PCy3 10 40

4 P(p-tolyl)3 20 79

5 P(p-MeOC6H4)3 9 71

aReaction conditions: 6 (1 equiv), 7a (2 equiv), Ni(cod)2 (10mol%), ligand

(10mol%), PhB(OH)2 (5 equiv), Cs2CO3 (3 equiv), CPME, 50 �C. bThe

ratio of syn isomer to anti isomer was >50 to 1.

Table 2. Coupling reactions of 1,3-diene 6 and various ketones 7a

Ni(cod)2, P(p -tolyl)3

CsCO3, PhB(OH)2 (3)
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Yield of
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8b: 25
8c: 92
8d: 85
8e: 89
8f: 77
8g: 29
8h: 24
8i: 32
8j: 66
8k: 29
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R1 = R2 =
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n

n = 1
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aReaction conditions: diene 6 (1 equiv), ketone 7 (2 equiv), Ni(cod)2 (10mol%),

P(p-tolyl)3 (10mol%), PhB(OH)2 (5 equiv), Cs2CO3 (3 equiv), CPME, 50 �C.
bThe ratio of syn isomer to anti isomer was >50 to 1.
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90 in the same way as that of syn-8a. Reactions of 6 with ketones
bearing an ester group (8c) or a fluoro group (8d) on the aromatic
ring gave the corresponding products anti-8c and anti-8d, re-
spectively (Runs 2 and 3). Cyclohexanone (7j) was applicable
to coupling reaction using 5, giving 8j in 46% yield (Run 4).

A possible reaction mechanism is shown in Scheme 2. First,
oxidative cycloaddition of diene 6 and ketone 7 to a Ni0 complex
occurs to give a nickelacycle 10 or 12, and two diastereomers of
�-allylnickel intermediate 11 and 13 would be formed through
10 and 12, respectively.10 It was thought that the complex 11
might be more stable than 13 because 1,3-diaxial interaction be-
tween a pseudo-axially oriented larger substituent (RL) at C1 and
a hydrogen atom at C3 in 13 is greater than that between a small-
er substituent (Rs) and hydrogen atom in 11. Therefore, the equi-
librium between 11 and 13 would lie toward the intermediate 11.
In the reaction using PhB(OH)2 (3), transmetallation between 3
and 11 proceeded to give intermediate 14, and finally syn-8 was
obtained as a single diastereomer (eq 2, path A). On the other
hand, when organosilicon reagent 5was used, nucleophilic back-
side attack of the phenyl group of silicate 50 generated from 5
and Cs2CO3

9 to 11 would occur, producing anti-8 in a diastereo-
selective manner (path B).

In summary, we have demonstrated a diastereoselective
three-component coupling of 1,3-diene, ketone, and organome-
tallic reagent. The reaction using organoboronic acid provided

1,3-syn products exclusively. On the other hand, the use of a
tetraorganosilicon reagent as a coupling partner provided the
corresponding 1,3-anti isomers under similar conditions. In both
reactions, a tetrasubstituted carbon center was constructed in a
highly diastereoselective manner.
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Table 3. Coupling reactions of 1,3-diene, ketone, and silicon reagent 5a

20 mol% Ni(cod)2
20 mol% IMes·HCl
2.6 equiv Cs2CO3

5

CPME, 50 °C Ph

R1

HO R2
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PhMe2Si
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1) OsO4
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3 steps 70%
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Run Ketone 7 Time/h Yield of anti-8/%b

1 7a 13 8a (R1 = C6H5, R
2 = Me): 32

2 7c 24 8c (R1 = 4-MeO2CC6H4, R
2 = Me): 52

3 7d 48 8d (R1 = 4-FC6H4, R
2 = Me): 26

4 7j 48 8j (R1, R2 = –(CH2)5–): 46

aReaction conditions: diene 6 (1 equiv), ketone 7 (2 equiv), Ni(cod)2
(20mol%), IMes.HCl (10mol%), 5 (1.1 equiv), Cs2CO3 (2.6 equiv), CPME,

50 �C. bThe ratio of anti isomer to syn isomer was >50 to 1.
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