Tetrahedron Letters 55 (2014) 2945-2947

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Intramolecular aglycon delivery for $(1 \rightarrow 2)$ - β -mannosylation: towards the synthesis of phospholipomannan of Candida albicans

Veeranjaneyulu Gannedi^{a,b}, Asif Ali^b, Parvinder Pal Singh^b, Ram A. Vishwakarma^{a,b,*}

^a Academy of Scientific and Innovative Research, Indian Institute of Integrative Medicine, Jammu 180001, India ^b Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180 001, India

ARTICLE INFO

Article history: Received 20 December 2013 Revised 19 March 2014 Accepted 20 March 2014 Available online 28 March 2014

Keywords:

1,2-cis-β-D-mannosylation Intra-molecular aglycon delivery Phenylsulfoxide donor Phospholipo mannan Candida albicans

Candida albicans, the most widespread human pathogen responsible for cutaneous and systemic fungal infections, synthesize a unique sequence of $(1 \rightarrow 2)$ - β -oligomannans on its cell surface that act as adhesin, induce production of pro-inflammatory cytokines and antibodies. One of the key $(1 \rightarrow 2)$ - β -mannan expressed by *C*. albicans is the membrane-anchored glucosphingolipid (GSL), named phospholipomannan¹ (PLM, Fig. 1) where oligomeric $(1 \rightarrow 2)$ - β -mannan domain is linked through a unique α -1,2-mannosyl anomeric phosphodiester moiety to a mannose-inositolphosphoceramide (MIPC) glycolipid anchor, which is embedded in the cell wall of the C. albicans. The PLM of Candida albicans is highly immunogenic due to its $(1 \rightarrow 2)$ - β -mannan structural motif, which is absent in human host. When C. albicans infects and interacts with the macrophages (the first-line-of-defence cells of the human host), a large amount of soluble PLM fragments (largely $(1 \rightarrow 2)$ - β -mannans) are rapidly shed by the pathogen resulting in severe pro-inflammatory response² (TNF- α production and release) from host cells.³ Several biochemical⁴ and immunological studies⁵ have shown that PLM motif provides a scaffold for anchoring of various virulence factors to the cell surface of the pathogen, a mechanism quite similar to that used by the mammalian cells for anchoring various cell-surface proteins and glycans through the glycosylphosphatidylinositol⁶ (GPI) anchor. A comparison of the structures of PLM of C. albicans (pathogen) and GPI anchor of

ABSTRACT

A high yielding method for 1,2-*cis*-β-D-mannosylation by intra-molecular aglycon delivery (IAD) through p-methoxy benzyl ether/acetal exchange and phenylsulfoxide donor is reported, along with its application in iterative assembly of antigenic $(1 \rightarrow 2)$ - β -pentamannoside domain of phospholipomannan (PLM) of fungal pathogen Candida albicans.

© 2014 Elsevier Ltd. All rights reserved.

human cells (host) reveals remarkable biomimetic features (Fig. 1). These include: (a) $(1 \rightarrow 2)$ - β -mannan in PLM in place of $(1 \rightarrow 2)$ - α -mannan motif in GPI, (b) $(1 \rightarrow 2)$ - α -mannose linked to *myo*-inositol in place of $(1 \rightarrow 6)$ - α glucosamine-inositol motif in GPI; and c) presence of phytoceramide in PLM and glycerolipid in GPI. Perhaps, these remarkable bio-mimetic features represent mechanisms of molecular and evolutionary adaptations between the species. In continuation to our long-term interest in chemistry

Figure 1. Phospholipomannan of C. albicans and GPI anchor of H. sapiens.

^{*} Corresponding author. Tel.: +91 191 2569111; fax: +91 191 2569333. E-mail address: ram@iiim.res.in (R.A. Vishwakarma).

and biology of GPI anchors,⁷ we initiated the synthesis of PLM of *C. albicans*, which present substantial opportunities.

Arguably, one of the most challenging problems in carbohydrate chemistry is the construction of thermodynamically unstable $(1 \rightarrow 2)$ - β -mannoside bond, ubiquitous in several pathogenic microorganisms. First synthesis of β -oligomannosides was reported by Hindsgaul,^{8a} and Stork^{8b,c} followed by Ogawa and Ito⁹ using intramolecular aglycon delivery (IAD) and temporary tethering concept. Later on, a number of other leading groups designed $(1 \rightarrow 2)$ - β -glycosidations via intermolecular glycosylation using orthogonal functional groups.¹⁰

Here, we report the first application of intramolecular glycosylation approach by linkage of the accepting atom to the donor via a bifunctional group (intramolecular aglycon delivery) for the synthesis of $(1 \rightarrow 2)$ - β -mannosides. Previously, Crich¹¹ and Seeberger¹² reported the synthesis of $(1 \rightarrow 2)$ - β , $(1 \rightarrow 3)$ - β and $(1 \rightarrow 4)$ - β -mannosides using 4,6-O-benzylidene protected mannosyl-1-O-sulfoxides or thiomannosides respectively through intermolecular glycosylation. In our approach, we used mannosyl-1-O-sulfoxide donor first time in PMB mediated IAD approach which because of good leaving nature gave high yield of $(1 \rightarrow 2)$ - β -mannosides even without the 4,6-benzylidene group.

The intramolecular aglycon delivery method (IAD) has been successfully used for the synthesis of $(1 \rightarrow 3)$ - β and $(1 \rightarrow 4)$ - β mannosides, but the most challenging $(1 \rightarrow 2)$ - β -mannosides have not been successful by IAD method so far. Keeping in view the challenge, we designed a new strategy for the synthesis of $(1 \rightarrow 2)$ - β -mannosides via IAD approach where we envisioned that a *p*-methoxybenzyl group at C-2 position of mannosyl residue will participate in both ether/acetal exchange as well as in intra-molecular aglycon delivery for glycosylation. To test the hypothesis, we first synthesized and coupled 2-O-p-methoxybenzyl-3,4,6-tri-Obenzylmannosyl phenyl sulfoxide 6 as donor with suitably protected α -phenyl thiopyranosides **4** as acceptor in the presence of DDQ (1.4 equiv), under anhydrous conditions which afforded the mixed acetals 7 quite smoothly.^{9,13,14} Further the mixed acetal was used for glycosylation by performing reaction with triflic anhydride (Tf₂O, 0.95 equiv) in the presence of 2.6-di-tert-butyl-4-methylpyridine (DTBMP, 3.0 equiv) at -78 °C which gave exclusively the desired $(1 \rightarrow 2)$ - β -mannopyranoside **8** with 84% yield as revealed by spectroscopic studies (Scheme 1). The starting materials 4 and 6 were used in this glycosylation, which in turn were synthesized from corresponding orthoester donor of mannose 2 as shown in Scheme 2.^{15,16}

The stereochemistry of compound **8** was determined by ¹H NMR and further confirmed by 2D NMR spectral data analysis. The α - and β -configurations of **8** were assigned by the appearance of anomeric protons as doublets at δ 5.60, 4.58 with coupling constant values of $J_{1,2}$ 1.2 and 6.4 Hz, respectively. The HSQC and HMBC correlation of anomeric proton at δ 5.60 (d, J = 1.2 Hz) with ¹³C (δ 85.2) indicated the α -orientation whereas the other anomeric proton at δ 4.58 (d, J = 6.4 Hz) with ¹³C (δ 96.6) confirmed the β -orientation. The relative configuration of **8** was authenticated by NOESY correlation as being compatible with computer modelling in which the close contact of atoms in space calculated were consistent with NOESY correlation. In NOESY correlation H-1 exhibited

Scheme 1. Formation of $(1 \rightarrow 2) \beta$ -mannosylation by IAD.

Scheme 2. Synthesis of mannoside fragments **4** and **6**. Reagents and conditions: (i) BF₃Et₂O, PhSH; (ii) NaOMe, MeOH; 90% over 2 steps; (iii) PMBCl, NaH, DMF; (iv) *m*-CPBA, DCM, 85%.

a correlation with H-1' indicating that the two protons H-1 & H-1' were situated in a same face and assigned as α -proton with the β -linkage (Fig. 2 of ESI).

Now we extended our IAD method for the synthesis of final product **1**, the $(1 \rightarrow 2)$ - β -pentamannoside of PLM. The intermediates were prepared as shown in Schemes 2–5. For this, we started with mannose and converted it into an orthoester donor 2 (Scheme 2) using reported method.¹⁶ The orthoester was successfully converted to an acceptor 10¹⁷ as well as mannosyl TCA donor **12** (Scheme 3).¹⁸

Having the new IAD method and the key intermediates in hand, the $(1 \rightarrow 2)$ - β -mannopyranoside **8** was now successfully converted into the corresponding sulfoxide donor **14** (Scheme 4).¹⁹ The synthesis of the second key trisaccharide intermediate **16** was achieved by the coupling of mannopyranosyl donor **12** with the acceptor **10** (Scheme 5), which on further deacetylation by using sodium methoxide provided the alcohol **15**.²⁰ The α -stereochemistry of the resultant glycoside **15** was established by NMR analysis.

To construct the required trisaccharide **16**, the disaccharide **15** was coupled with donor **6** using our intra-molecular aglycon deliv-

Scheme 3. Synthesis of mannoside fragments 10 and 11. Reagents and conditions: (i) BF₃Et₂O, AllOH; (ii) NaOMe, MeOH; 90% over 2 steps; (iii) *p*-TSA, DCE; (iv) Tri chloro acetonitrile, K₂CO₃, DCM, 90% over 2 steps.

Scheme 4. Synthesis of β -dimannoside donor 14. Reagents and conditions: (i) PMBCI, NaH, DMF; (ii) *m*-CPBA, DCM, 96%, over 2 steps.

Scheme 5. Synthesis of β -trimannoside acceptor 16. Reagents and conditions: (i) TMSOTf, DCM; (ii) NaOMe, MeOH; (iii) 6, DDQ, 1.5 equiv; (iv) DTBMP, Tf₂O, DCM, -78 °C to rt.

Scheme 6. Synthesis of β-pentamannoside by 2+3 coupling. Reagents and conditions: (i) DDQ, (1.5 equiv); (ii) DTBMP, Tf₂O, DCM, -78 °C to rt.

Scheme 7. Iterative synthesis of β-pentamannoside 1. Reagents and conditions: (i) 6, DDQ, (1.5 equiv); (ii) DTBMP, Tf₂O, DCM, -78 °C to rt; (iii) BnBr, NaH, DMF; (iv) 20, Pd/C 10%, THF, MeOH, H₂, 94%.

ery (IAD) condition and the desired product obtained in 86% yield. The stereochemistry of **16** having α - and β -anomeric linkages was determined by HSOC NMR. Bundle et al. also reported the synthesis of compound **16** but by a different synthetic strategy.²¹

To further confirm the stereochemistry at the anomeric position of trisaccharide 16, disaccharide 15 was then converted to the trisaccharides **17** and **18** by $1,2-\alpha$ -glycosylation with **12** (Scheme 5b, of ESI) and then compared with trisaccharide 16 (HSQC given in ESI).

Finally, the key synthetic step to construct $(1 \rightarrow 2)$ - β -pentamannoside via 2+3 glycosylation with the mannosyl donor 14 and the acceptor trimannoside 16 was tried, which gave the desired pentamannoside 19 in only low 18% yield; not satisfactory for the total synthesis of PLM (Scheme 6).

Therefore, we modified our approach to construct the $(1 \rightarrow 2)$ - β -pentamannoside **19** by an iterative synthetic strategy, wherein the trimannoside 16 was first converted into tetra-mannoside 18b and subsequently into pentamannoside 19 using the donor 6 as shown in Scheme 7. The $(1 \rightarrow 2)$ - β -pentamannoside **19** was further converted into perbenzylated pentamannoside 20. The stereochemistry of $(1 \rightarrow 2)$ - β -pentamannoside **20** was confirmed by NMR and HSQC experiment. Finally, controlled global hydrogenolysis with Pd/C afforded the target $(1 \rightarrow 2)$ - β -pentamanan **1** in 94% isolated yield.

In summary, we have designed a high yielding method for $(1 \rightarrow 2)$ - β -mannosylation employing IAD via PMB ether/acetal intermediate and also achieved the first synthesis of $(1 \rightarrow 2)$ - β - pentamannoside domain of phospholipomannan (PLM) of Candida albicans.

Acknowledgments

The financial support from a CSIR research Grant (BSC0108) is gratefully acknowledged. V.G. is thankful to CSIR (India) for financial assistance. We wish to acknowledge S. Aravinda and Deepika Singh for NMR spectral data.

Supplementary data

Supplementary data (spectral data for all compounds 1-20) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.03.099.

References and notes

- 1. Trinel, P. A.; Maes, E.; Zanetta, J. P.; Delplace, F.; Coddeville, B.; Jouault, T.; Strecker, G.; Poulain, D. J. Biol. Chem. 2002, 277, 37260.
- 2 Jouault, T.; Bernigaud, A.; Lepage, G.; Trinel, P.; Poulain, D. Immunology 1994, 83, 268
- 3 Jouault, T.; Fradin, C.; Trinel, P. A.; Bernigaud, A.; Poulain, D. J. Infect. Dis. 1998, 178, 792.
- 4 Fradin, F.; Slomianny, M. C.; Mille, C.; Masset, A.; Robert, R.; Sendid, B.; Ernst, J. F.; Michalski, J. C.; Poulain, D. Infect. Immun. 2008, 76, 4509.
- (a) Murciano, C.; Moyes, D. L.; Runglall, M.; Islam, A.; Mille, C.; Fradin, C.; Poulain, D.; Gow, N. A. R.; Naglik, J. R. Infect. Immun. 2011, 79, 4902; (b) Johnson, M. A.; Bundle, D. R. Chem. Soc. Rev. 2013, 42, 4327.
- (a) Ferguson, M. A. J.; Homans, S. W.; Dwek, R. A.; Rademacher, T. W. Science 1988, 239, 753; (b) Homans, S. W.; Ferguson, M. A. J.; Dwek, R. A.; Rademacher, T. W.; Anand, R.; Williams, A. F. *Nature* **1988**, 333, 269; (c) McConville, M. J.; Feguson, M. A. J. *Biochem. J.* **1993**, 294, 305; (d) Ruhela, D.; Banerjee, P Vishwakarma, R. A. Curr. Sci. 2012, 102, 194; (e) Tsai, Y. H.; Liu, X.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51, 11438. and references cited therein.
- (a) Ali, A.; Gowda, D. C.; Vishwakarma, R. A. Chem. Commun. 2005, 519; (b) Vishwakarma, R. A.; Menon, A. K. Chem. Commun. 2005, 453; (c) Vishwakarma, R. A.; Vehring, S.; Mehta, A.; Sinha, A.; Pomorski, T.; Herrmann, A.; Menon, A. K. Org. Biomol. Chem. 2005, 3, 1275; (d) Ali, A.; Vishwakarma, R. A. Tetrahedron 2010, 66, 4357; (e) Ruhela, D.; Vishwakarma, R. A. J. Org. Chem. 2003, 68, 4446; (f) Chawla, M.; Vishwakarma, R. A. J. Lipid Res. 2003, 44, 594; (g) Saikam, V.; Raghupathy, R.; Yadav, M.; Gannedi, V.; Singh, P. P.; Qazi, N. A.; Sawant, S. D.; Vishwakarma, R. A. Tetrahedron Lett. 2011, 52, 4277.
- (a) Barresi, F.; Hindsgaul, O. J. Am. Chem. Soc. 1991, 113, 9376; (b) Stork, G.; Kim, 8. G. J. Am. Chem. Soc. 1992, 114, 1087; (c) Stork, G.; La Clair, J. L. J. Am. Chem. Soc. **1996**, 118, 247.
- (a) Dan, A.; Ito, Y.; Ogawa, T. J. Org. Chem. 1995, 60, 4680; (b) Ishiwata, A.; Lee, Y. J.; Ito, Y. Org. Biomol. Chem. 2010, 8, 3596; (c) Ishiwata, A.; Sakurai, A.; Nishimiya, Y.; Tsuda, S.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 19524.
- (a) Codée, J. D. C.; Hossain, L. H.; Seeberger, P. H. Org. Lett. **2005**, 7, 3251; (b) Baek, J. Y.; Choi, T. J.; Jeon, H. B.; Kim, K. S. Angew. Chem., Int. Ed. 2006, 45, 7436; (c) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198; (d) El Ashry, E. S. H.; Rashed, N.; Ibrahim, E. S. I. Curr. Org. Synth. 2005, 2, 175.
- (a) Crich, D.; Li, W.; Li, H. J. Am. Chem. Soc. 2004, 126, 15081; (b) Crich, D.; Li, H.; Yao, Q.; Wink, D. J.; Sommer, R. D.; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 5826: (c) Crich, D. Acc. Chem. Res. 2010, 43, 1144: (d) Huang, M.: Garrett, G. E.: Birlirakis, N.; Bohe, L.; Pratt, D. A.; Crich, D. Nat. Chem. 2012, 4, 663.
- Jeroen, D. C.; Krock, C. L.; Castagner, B.; Seeberger, P. H. Chem. Eur. J. 2008, 14, 12. 3987
- 13. Ito, Y.; Ogawa, T. J. Am. Chem. Soc. 1997, 119, 5562.
- Ito, Y.; Ohnishi, Y.; Ogawa; Nakahara, Y. Synlett 1998, 1102. 14.
- Franks, N. E.; Montgomery, R. Carbohydr. Res. 1968, 6, 286. 15.
- 16.
- Zhang, Y. M.; Mallet, J. M.; Sinay, P. *Carbohydr. Res.* **1992**, 236, 73. Liu, X.; Stocker, B. L.; Seeberger, P. H. *J. Am. Chem. Soc.* **2006**, 128, 3638. 17
- Mayor, G. T.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 1153. 18.
- Ito, Y.; Ogawa, T. Angew. Chem., Int. Ed. 1994, 33, 1765. 19.
- Grathwohl, M.: Schmidt, R. R. Synthesis 2001, 15, 2263. 20.
- 21. Wu, X. Y.; Bundle, D. R. J. Org. Chem. 2005, 70, 7381.