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Abstract: A practical and efficient synthesis of vari-
ous 1,2,5-tricarbonyl compounds is described. The
synthesis has been carried out by a conjugate addi-
tion of methyl cyanoacetate to the P-position of
a,pB-unsaturated carbonyl compounds and a subse-
quent copper(I) iodide-catalyzed aerobic oxidation.
In addition, various oa-aryl- and a-alkyl-o-keto
esters have been synthesized using a similar ap-
proach.

Keywords: aerobic oxidation; copper(l) iodide;
glyoxylate anion synthon; methyl cyanoacetate;
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The construction of a 1,4-dicarbonyl functionality is
important in organic synthesis."™ However, such a
synthesis through the bond formation either at 1,2- or
2,3-bonds required one part to have an unusual polar-
ity (umpolung synthon). Since Corey and Seebach in-
troduced the concept of umpolung extensive progress
has been achieved.”) Although numerous methods
have been developed for the preparation of 1,4-dicar-
bonyl compounds,!"! the most widely used approach is
a conjugate addition reaction of masked acyl anions
and their equivalents to o,fB-unsaturated carbonyl
compoundss. The construction of 1,4-dicarbonyl com-
pounds by 1,2-bond formation using an acyl anion
equivalent is depicted in Scheme 1.

However, the reported methods for valuable 2,5-
diketo esters (1,2,5-tricarbonyl compounds) are highly
limited.P! Reetz and co-workers have used 1,.2-dieth-
oxy-1,2-disilyloxyethylene as a glyoxylate anion syn-
thon,® while Flores-Parra and Khuong-Huu used
methyl dimethoxyacetate during their synthesis of 2,5-
diketo esters.”! An extension of the acyl anion to a
glyoxylate anion synthon could provide an efficient

Adv. Synth. Catal. 2011, 353, 3335-3339

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

R" O

R'\© o+ O umpolung
R"
1 R NAog NR
. o
acyl anion .
equivalent 1 6‘;‘:}';25?1%”53"
 extension to
' R'= COOMe
Y o R O
MeOOC. O &+ umpolung MeOOCN
s, R
@) R‘/\)J\R 0
glyoxylate anion 1,2,5-tricarbonyl
equivalent compounds

Scheme 1. Umpolung
pounds.

strategy for 1,4-dicarbonyl com-

way to 2,5-diketo esters theoretically, as shown in
Scheme 1. Very recently, a conjugate addition of a
glyoxylate anion equivalent to nitroalkenes!*!! and a
Stetter reaction of glyoxamide anion synthon to a,f3-
unsaturated carbonyl compounds® have been suc-
cessfully achieved to synthesize a-keto esters and -
keto amides. However, the Stetter reaction between
ethyl glyoxylate and an o,B-enone was not studied in
depth except for only one entry in the report of
Rovis,*! to the best of our knowledge. The reason
might be ascribed to a difficult accessibility for pure
ethyl glyoxylate.”) Ethyl glyoxylate mostly exists in its
hydrateP* or polymeric forms,* and this renders the
Stetter reaction difficult in the presence of an N-het-
erocyclic carbene catalyst.

Thus, we envisioned that a two-step synthesis of
2,5-diketo esters (1,2,5-tricarbonyl compounds) could
be carried out from a a,f-enone and ethyl cyanoace-
tate via a conjugate addition and a subsequent aero-
bic oxidation, as shown in Scheme 2. To our delight,
we found that a conjugate addition product, the a-
cyano-0-keto ester, can be converted to the 2,5-diketo
ester in high yield by copper-catalyzed aerobic oxida-
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Scheme 2. Synthetic strategy for 2,5-diketo esters.

tion. Ethyl cyanoacetate was used as an efficient ethyl
glyoxylate anion equivalent in the reaction, and we
wish to report herein the preliminary results.

Copper- or base-mediated oxidations of benzyli
or secondary nitriles® to ketones, a-cyano esters to
a-keto esters,” a-cyano amides®™ or a-amino nit-
riles’®! to a-keto amides have been reported. The ox-
idations were effected using molecular oxygen,'*” per-
acetic acid,’®™ NaOCI®™ or Oxone.’™ Although the
yields were moderate, a variety of precedent reports
implied that our synthetic approach could be realiza-
ble. With this confidence in mind, we decided to use
O, as an oxidant and examined the optimum reaction
conditions with ethyl 2-cyano-5-oxo-3,5-diphenylpen-
tanoate (1a) which was prepared from ethyl cyanoace-
tate and chalcone (LiCIO,/Et;N/room temperature,
10 min, 92% yield).”” A base-mediated aerobic oxi-
dation of 1a was not fruitful. The reaction of 1a in
DMEF in the presence of Cs,COj; under an O, balloon
atmosphere produced 4-oxo-2,4-diphenylbutyronitrile
in moderate yield (45%) instead of the desired prod-
uct, ethyl 2,5-dioxo-3,5-diphenylpentanoate (2a). The
mechanism is not clear at this stage.

Thus we examined the conversion of 1a to 2a under
various copper-catalyzed oxidation conditions, and
the results are summarized in Table 1. From the re-
sults the use of Cul (1.1 equiv.) in CH;CN at 25°C
was selected as the optimum conditions (entry 2). The
use of a catalytic amount of Cul (entry 1) or other
solvents such as DMF, toluene, CH,Cl, and aqueous
EtOH (entries 3-6) was less efficient. Among the
copper salts, Cul was the reagent of choice. With
other copper catalysts (entries 7-11) a sluggish reac-
tion was observed and/or the amounts of side prod-
ucts increased including cyanohydrin 3a and halogen-
ated compounds (see Table 1).

Then we turned our attention to a catalytic version
in combination with a suitable ligand. As shown in
Table 2, the use of DMEDA (L1), TMEDA (L2), and
ethylenediamine (L3) showed low to moderate yields
of 2a (entries 1-3). The use of 1,10-phenanthroline
(L4) gave a reasonable yield of 2a (entry 4) while 8-
quinolinol (L5) and r-proline (L6) were totally inef-
fective (entries5 and 6). Reducing the amounts of
Cul and 1,10-phenanthroline lowered the yield of 2a
(entries 7-9). Overall, the conditions using 1,10-phen-
anthroline were the best, albeit the yield of 2a was
slightly lower than that of the conditions employing
an equivalent amount of Cul (entry 2 in Table 1).

C[6a,b]
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Table 1. Copper-mediated aerobic oxidation of 1a.l?!

NC :'/\C/OﬁEt conditions OﬁEt . Ngoi/ijéL)Et
Ph Ph Ph Ph | Ph Ph
1a 2a 3a
Entry Catalyst"! Solvent Time [h] 2a [%]M
1 Cul CH,CN 40 571
2 Cul CH,CN 3 89lcl
3 Cul DMF 4 75
4 Cul toluene 4 0
5 Cul CH,Cl, 4 0
6 Cul aq. EtOH 10 66
7 CuCl CH,CN 6 33
8 CuBr CH;CN 40 390l
9 CuCN CH;CN 4 62?‘]
10 Cu(OAc), CH;CN 40 130
11 Cu(Cl, CH,;CN 5 0

=

Carried out under O, balloon atmosphere at 25°C.

1.1 equiv. of copper salt were used except for entry 1

(0.2 equiv.).

[l TIsolated yield.

[ 3a (15%).

[l Selected as conditions A.

M 1a (15%), 3a (5%) and ethyl 2-chloro-2-cyano-5-oxo-3,5-
diphenylpentanoate (27%).

el 1a (28%), 3a (5%) and ethyl 2-bromo-2-cyano-5-0x0-3,5-
diphenylpentanoate (8% ).

1 3a (17%).

0 1a (17%) and 3a (25%).

=

Table 2. Cul-catalyzed aerobic oxidation of 1a in the pres-
ence of a ligand.[

Entry Cul (equiv.) Ligand (equiv.)®™ Time [h] 2a[%]“

1 0.2 L1 (0.3) 3 58
2 0.2 L2 (0.3) 3 27
3 0.2 L3 (0.3) 3 53
4 0.2 L4 (0.3) 5 7814
5 0.2 L5 (0.3) 24 0

6 0.2 L6 (0.3) 24 0

7 0.05 L4 (0.1) 24 14
8 0.1 L4 (0.2) 24 34
9lel 0.05 L4 (0.1) 5 53

=

CH,;CN/O, balloon/25°C is common.

Ligands: L1, N,N-dimethylethylenediamine; L2,
N,N,N',N'-tetramethylethylenediamine; L3, ethylenedi-
amine; L4, 1,10-phenanthroline; L5, 8-quinolinol; L6, L-
proline.

[l TIsolated yield.

[ Selected as conditions B.

[l Carried out at 45°C.

=

In order to show the generality, we examined vari-
ous substrates under the selected optimized condi-
tions: conditions A (entry 2 in Table 1) and conditions

Adv. Synth. Catal. 2011, 353, 3335-3339


http://asc.wiley-vch.de

Advanced

. X . X Synthesis &
Construction of 1,2,5-Tricarbonyl Compounds using Methyl Cyanoacetate as a Glyoxylate Anion Synthon Catalysis
R NC. _COOR' Os_-COOR
0 X
A - G e G O ™
—Yn + - - Yn '
R COOR' Z Z
1a-1 2a -1 (%) lal 1Im-r 2m —r (%)@
ExampIeS' Examples:
Ph
i Zi >>jo
o ©\(000Et \Ej\'rcooa @rCOOMe
COOEt
COOMe Ph COOallyl 2m 76 2% (65)
2a (89/78) b (86/NT) c (81/82)
COOMe
Q COOMe COOMe CLKCOOE‘(
COOMe COOEt CONH,
d (74/62) e (90/NT) f (28/72) 2p (74)[b1 2q ( 63
O,N e Carried out under conditions A (2 h).
] Carried out at 50 °C.
<‘ @( COOEt COOMe Scheme 4. Synthesis of a-aryl-a-keto esters.
COOEt o) _ ' . '
2g (78/66) 2h (74INT) i (93/NT) vided the corresponding a-keto esters in good yields.
However, the method cannot be applied for arenes
bearing an electron-withdrawing group. Thus, our
two-step protocol can be used efficiently in such
COOMe COOEt COOMe cases
In addition, some a-alkyl-a-keto esters were also
86/NT k (NT/75)! 80/59) synthesized via a similar strategy, as summarized in

el |solated yield (conditions A/conditions B, and NT means not tried).
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Scheme 3. Synthesis of 1,2,5-tricarbonyl compounds.

B (entry 4 in Table 2). Some representative starting
materials 1a-1 were prepared from various a,f3-enones
via a conjugate addition of methyl cyanoacetate, ethyl
cyanoacetate, allyl cyanoacetate, and 2-cyanoacet-
amide according to the reported methods.”*"! The re-
sults for the synthesis of 1,2,5-tricarbonyl compounds
2a-1 are summarized in Scheme 3. Various cyclic and
acyclic 1,2,5-tricarbonyl compounds were prepared in
moderate to good yields (72-93%). Usually, condi-
tions A showed better results than conditions B; how-
ever, the yield of amide derivative 2f was quite low
under conditions A.

As a next trial, methyl (or ethyl) 2-arylcyanoace-
tates Im-r were prepared via a base-mediated SyAr
reaction or a palladium-catalyzed a-arylation from
the corresponding aryl halides according to the re-
ported methods.”™ As shown in Scheme 4, Cul-
mediated aerobic oxidation of Im-r provided the cor-
responding a-keto esters 2m-r in reasonable yields
(56-76%) under the conditions A. Usually, a Friedel-
Crafts acylation of electron-rich arenes with oxalyl
chloride and subsequent treatment with MeOH pro-
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Scheme 5. Starting materials 1s—w were prepared by
alkylation of the corresponding alkyl bromides or
chlorides (K,CO;, CH;CN, room temperature).’”’ The
Cul-mediated aerobic oxidation of these o-cyano
esters provided the corresponding alkyl-substituted o-
keto esters 2s—u in good yields (76-84%). However,
the reaction of 1v produced benzil as the major prod-

CN CN
RX + < = R= R=(
COOR' COOR' COOR'
1s - 2s — u [%]®
Examples: s-w s —ul%l
? COOEt
Ph
Ph/\)kCOOMe /\/\for
2s (76) 2t (84)
P e ™ COOEt
COOEt
Ph)w Ph)J\H\COOMe Ph/Y
o) Ph CN
2u (81) 1v (failed)[®! 1w (failed)(°

1@ Carried out under conditions A (2 h).
bl Benzil was formed in 69% yield.
[l Intractable complex mixtures with some benzaldehyde.

Scheme 5. Synthesis of a-alkyl-a-keto esters.

asc.wiley-vch.de 3337


http://asc.wiley-vch.de

COMMUNICATIONS

Se Hee Kim et al.

H

RiCN
HOG®

Meo o 02 cu(ll)

“ Rjﬁ\l M, RﬁO-OH

o CooMe HOGZ COOMe
R& cul)  cuy N i
OM(e)H R——OH
; 3 COOMe
i / _HN=C=0  HN o
R” ~coom :
© cu@@ RTO
2 COOMe
Cun(NCO)py i

Scheme 6. Plausible reaction mechanism.

uct (69%) instead of the desired product. In addition,
the reaction of 1w also failed and produced apprecia-
ble amounts of benzaldehyde. The results of 1v and
1w might be ascribed to the preferential oxidation at
the benzylic position rather than the a-position of a
cyano group.

A plausible reaction mechanism of Cu-mediated
aerobic oxidation of 1 was proposed tentatively, as
shown in Scheme 6. The key radical intermediate I
was generated by hydrogen atom abstraction from 1
with molecular oxygen, meanwhile, Cu(I) was oxi-
dized to Cu(II) and oxygen was transformed to hydro-
peroxide anion.'”! Subsequently, the intermediate I
reacted with the hydroperoxide anion to form the hy-
droperoxide II. In addition, Cu(II) was reduced to
Cu(I) which could enter to the next catalytic cycle
(vide infra). As reported in a similar case, an elimina-
tion of isocyanic acid (HNCO) from hydroperoxide II
via a dioxetane intermediate III afforded the a-keto
ester 2.'"l In one part, the hydroperoxide II was re-
duced to a cyanohydrin 3 and eventually to 2. As pro-
posed in the mechanism, a catalytic amount of Cul
could catalyze the reaction; however, Cul might be
destroyed to a certain unidentified copper salt by the
reaction with liberated HNCO.!"” Thus, an equimolar
amount of Cul was required for the efficient conver-
sion of 1 to 2. However, further studies must be per-
formed for a detailed reaction mechanism in order to
explain the results in a catalytic version (conditions
B).

In summary, an efficient synthesis of various 1,2,5-
tricarbonyl compounds has been carried out by a con-
jugate addition of methyl cyanoacetate to the B-posi-
tion of a,p-unsaturated carbonyl compounds and a
subsequent Cul-catalyzed aerobic oxidation. In addi-
tion, various a-aryl- and a-alkyl-a-keto esters have
been synthesized using a similar approach.
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Experimental Section

Typical Experimental Procedure for Cul-Mediated
Aerobic Oxidation of Ethyl 2-Cyano-5-oxo0-3,5-di-
phenylpentanoate (1a)

A mixture of 1a (321 mg, 1.0 mmol) and Cul (210 mg,
1.1 mmol) in CH;CN (3.0 mL) was stirred at 25°C for 3 h
under an O, balloon atmosphere. Then the mixture was fil-
tered through a pad of Celite and washed with CH,Cl,. The
organic solvents were removed by evaporation, and the resi-
due was purified by flash column chromatography (hexanes/
EtOAc, 10:1) to afford ethyl 2,5-dioxo-3,5-diphenylpent-
anoate (2a) as a colorless oil; yield: 276 mg (89%). IR
(film): v=1729, 1681, 1246cm™'; 'HNMR (300 MHz,
CDCly): 6=1.29 (t, J=7.2Hz, 3H), 3.43 (dd, /=183 and
3.9Hz, 1H), 4.03 (dd, J=18.3 and 10.5 Hz, 1H), 428 (q, /=
7.2 Hz, 2H), 5.15 (dd, J=10.5 and 3.6 Hz, 1H), 7.26-7.60
(m, 8H), 7.93-7.98 (m, 2H); "CNMR (75 MHz, CDCl,):
0=13.89, 43.12, 48.42, 62.49, 127.95, 128.16, 128.63, 128.87,
129.13, 133.49, 135.35, 135.93, 160.34, 192.17, 197.37; ESI-
MS: m/z =333 [M+Na]*; anal. calcd. for C,;H;30,: C 73.53,
H 5.85; found: C 73.67, H 5.98.
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