Tetrahedron: Asymmetry 25 (2014) 936–943

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Desymmetrization of *meso*-methylenecyclopropanes by a palladium-catalyzed asymmetric ring-opening bis(alkoxycarbonylation) reaction

Tetrahedron

Yasushi Yonezawa, Tomoki Furuya, Takahiro Aratani, Shuhei Fijinami, Katsuhiko Inomata, Yutaka Ukaji*

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

ARTICLE INFO

Article history: Received 5 March 2014 Accepted 14 May 2014 Available online 23 June 2014

ABSTRACT

Desymmetrization of various *meso*-methylenecyclopropanes was accomplished by a palladium-catalyzed asymmetric ring-opening bis(alkoxycarbonylation) reaction employing a chiral bioxazoline ligand. The reaction proceeded smoothly in the presence of copper(I) triflate under carbon monoxide and oxygen at ambient pressure to give the corresponding optically active α -methyleneglutarates with up to 60% ee. Desymmetrization of protected *meso*-(3-methylenecyclopropane-1,2-diyl)dimethanols was also carried out to give enantioenriched highly oxygen-functionalized α -methyleneglutarates.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Desymmetrization of *meso*-compounds has become a common strategy in asymmetric synthesis since it allows the formation of multiple stereogenic centers in one symmetry-breaking operation. Among the desymmetrization techniques, methods which involve the formation of new C—C bonds are relatively useful for the synthesis of optically active natural products or biologically active substances.^{1,2}

Carbonylation is an important reaction in organic synthesis as it provides an efficient means of making a variety of useful homologated carbonyl compounds.³ We have developed selective mono- and bis(alkoxycarbonylation) reactions of terminal olefins catalyzed by palladium in the presence of copper salts under a mixture of carbon monoxide and oxygen at ambient pressure.⁴ We have also taken an interest in utilizing cyclopropanes as three carbon units for the preparation of glutarates via the direct introduction of two carbonyl groups and have developed the ring-opening reaction of methylenecyclopropanes to afford the corresponding α -methyleneglutarates.⁵ In order to prepare optically active glutaric acid derivatives, the asymmetric ring-opening bis(alkoxycarbonylation) reaction of methylenecyclopropanes could be effective.^{6–8} Herein we report the desymmetrization of *meso*-methylenecyclopropanes by a palladium-catalyzed ring-opening bis(alkoxycarbonylation) reaction in the presence of a chiral bioxazoline ligand.⁹

2. Results and discussion

We initially performed the asymmetric bis(alkoxycarbonylation) reaction of 7-methylenebicyclo[4.1.0]heptane 1 in the presence of 0.02 equiv of PdCl₂ and 0.5 equiv of CuOTf(C_6H_6)_{0.5} under carbon monoxide and oxygen (ca. 1:1 v/v) at ambient pressure in MeOH/THF using (S,S)-isopropyl-substituted bioxazoline **3A** as a chiral ligand.⁹⁻¹¹ The reaction proceeded very slowly to give methyl (1R,2S)-2-(3-methoxy-3-oxoprop-1-en-2-yl)cyclohexanecarboxylate 2 in 58% yield. The enantiomeric excess of the obtained α -methyleneglutarate **2** was determined to be 37% ee by HPLC analysis (Table 1, entry 1). The effect of various substituents at the 4- and 4'-positions of the bioxazoline ligand 3 was subsequently investigated. As shown in Table 1, the use of the isobutyl-substituted ligand 3B resulted in enhanced stereoselectivity (entry 2), while desymmetrization using the benzyl-substituted bioxazoline ligand **3C** proceeded with a further improved enantioselectivity of 60% ee (entry 3).¹² The use of the 1- and 2-naphthylmethyl substituted ligands 3D and 3E, however, did not improve the selectivity (entries 5 and 6), while the bulky tert-butyl-substituted ligand **3F** was less effective (entry 7). In addition, the phenylsubstituted ligand **3G** resulted in a reverse stereodifferentiation (entry 8), while the other types of oxazoline ligands 4-6 gave poor enantiomeric excesses (entries 9-11). When the amount of $CuOTf(C_6H_6)_{0.5}$ was reduced, the chemical yield and enantiomeric excesses were slightly decreased (entry 4).

^{*} Corresponding author. Tel.: +81 762645700; fax: +81 762645742. *E-mail address:* ukaji@staff.kanazawa-u.ac.jp (Y. Ukaji).

Table 1Optimization of the reaction

Entry	Ligand	<i>t</i> (h)	Yield (%)	ee ^a (%)
1	3A	41	58	37
2	3B	49	65	51
3	3C	60	53	60
4 ^b	3C	59	50	56
5	3D	37	54	50
6	3E	37	57	43°
7	3F	47	47	8
8	3G	72	62	-45^{d}
9	4	44	56	7
10	5	41	60	7
11	6	43	59	6

 $^{\rm a}\,$ Enantioselectivities were determined by HPLC analysis (DAICEL CHIRALPAK IA). $^{\rm b}\,$ The amount of CuOTf(C6H6)0.5 was 0.01 equiv.

^c This reaction was carried out by using (*R*,*R*)-**3E** as the ligand to give mainly (15,2*R*)-**2**.

^d This reaction was carried out by using (R,R)-**3G** as the ligand to give mainly (1R,2S)-**2**.

The asymmetric ring-opening reactions of the methylene cyclopropanes **7** and **9**, with a fused 5- or 8-membered ring, were next investigated using the benzyl-substituted bioxazoline ligand **3C**. The ring-opening reaction did not proceed at rt and, when the reaction temperature was increased to 60 °C, a complex mixture of products resulted (Eqs. 1 and 2). In the case of **9**, the desired ring-opening product **10** was obtained in only 5% yield with 45% ee.

Next, in order to synthesize optically active oxygen-functionalized glutarate derivatives.¹³ meso-methylene cyclopropanes **11** with alkoxymethyl groups at the 1- and 2-positions were used as substrates. The desymmetrization reaction of the (benzyloxy)methyl-substituted methylene cyclopropane 11a using the bioxazoline ligand (S,S)-3C proceeded to afford the ring-opened product 12a in 70% yield, although unfortunately the enantiomeric excess was poor (Table 2, entry 1). Employing the 1-naphthylmethyl-substituted ligand **3D** gave very little improvement in the stereoselectivity of the reaction (entry 2), while the use of the phenyl-substituted bioxazoline ligand 3G resulted in a reversal of the stereoselection in addition to continued low enantioselectivity (entry 3). When a sterically bulky triphenylmethyl group was introduced in place of the benzyl group on 11a, desymmetrization proceeded more efficiently to give the oxygen-functionalized α -methyleneglutarate **12b** with 42% ee (entry 4). The triphenylsilyl ether **11c** gave slightly improved enatioselectivity (entry 5) and when the tert-butyldiphenylsily ether **11d** was subjected to desymmetrization, the corresponding product 12d was obtained with a selectivity of 51% ee (entries 6 and 7). When using phenyl bioxazoline ligand 3G, a reversal of enantioselection was again observed (entry 8).

Table 2 Scope of the substrates									
$PdCl_2$ (0.02 equiv) CuOTf(C ₆ H ₆) _{0.5} (0.5 equiv)									
$\frac{H}{R'O} + \frac{R'O}{R} + R'$						CO ₂ Me			
R'0	Н	CO/ MeC	′O ₂ (ca. 1/1) 0H/THF (1/1)		R'O	CO ₂ Me			
1	1		rt, <i>t</i> h		12				
Entry	R′		R 3	<i>t</i> (h)	Yield (%)	ee (%)			
1	PhCH ₂	а	PhCH ₂ 3C	43	70	18 ^a			
2	-		1-NapCH ₂ 3D	24	47	22 ^a			
3			Ph 3G	36	69	-28 ^{a,b}			
4	Ph₃C	b	PhCH ₂ 3C	67	65	42 ^a			
5	Ph₃Si	с	PhCH ₂ 3C	72	48	48 ^c			
6	t-BuPh₂Si	d	PhCH ₂ 3C	49	67	51 ^a			
7			1-NapCH ₂ 3D	30	82	51 ^a			
8			Ph 3G	71	76	–24 ^{a,b}			
^a Enantioselectivitiy was determined by HPLC analysis (DAICEL CHIRALPAK IA).									

^a Enantioselectivitiy was determined by HPLC analysis (DAICEL CHIRALPAK IA). ^b This reaction was carried out by using (*R*,*R*)-**3G** as a ligand to give mainly the same enantiomer as that when using (*S*,*S*)-**3C**.

^c Enantioselectivitiy was determined by HPLC analysis (DAICEL CHIRALPAK IC).

In order to establish the absolute configuration of **2**, the compound was converted into **14** as follows. Enantiomerically enriched **2** (60% ee) obtained by using (*S*,*S*)-benzyl-substituted bioxazoline ligand (*S*,*S*)-**3C** was reduced into the corresponding diol **13** with LiAlH₄. The diol was subsequently transformed into the biscamphanic ester **14** by treatment with (1*S*)-camphanic chloride

Scheme 1. Conversion of 2 into 14.

and Et₃N in the presence of a catalytic amount of 4-(*N*,*N*-dimethylamino)pyridine (DMAP) (Scheme 1). Recrystallization gave the diastereomerically pure compound **14** and the absolute stereochemistry at each of its two stereogenic centers was determined (Fig. 1) by X-ray crystallographic analysis. In this manner, the absolute configuration of **2** obtained by using the (4*S*,4′*S*)-benzylsubstituted bioxazoline ligand (*S*,*S*)-**3C** was determined to be (1*R*,2*S*). This assignment also demonstrated that the relative stereochemistry of the two substituents on the cyclohexane ring of **2** was *cis*. The absolute configuration of **10** was also tentatively assigned as

Figure 1. X-ray crystal structure of compound 14.

(1*R*,2*S*). In the case of products **12** shown in Table 2, the stereochemistries of the molecules were assumed to correspond to the same configurational arrangements as the substituents of **2** as depicted in Table 2, in which case the manner of the chiral induction is similar to that which occurs in the bis(alkoxycarbonylation) reaction of **1** using (*S*,*S*)-**3C**.

Although the precise mechanism of the present reaction is still unknown, one possible transition state during the desymmetrization of meso-methylenecyclopropane using the benzyl-substituted ligand (S,S)-3C is shown in Schemes 2 and 3, based on the absolute stereochemistry assigned above. The copper salt might work not only as an oxidant, but also as a co-catalyst to generate Pd-CO₂Me species **C** as previously proposed,^{9b} that is, CuOTf reacts with CO and MeOH successively to give the CuCO₂Me species, from which the CO₂Me group was transferred into palladium chloride to generate complex **C** with the chiral ligand **3C**. Furthermore, CuOTf also reacts with **C** to afford a cationic palladium intermediate **D**, in which the olefin strongly coordinates to the palladium metal (Scheme 2). The following carbopalladation proceeds from the anti direction relative to the R substituents, to give a terminal palladium intermediate E regioselectively avoiding steric congestion with the olefin component (Scheme 3).¹⁴ Desymmetrization then occurs due to differentiation of the ring cleavage reaction via either path (a) or (b). In the transition state T_{cis} , the steric hindrance between R and the palladium complex moiety prevents the ciselimination pathway from proceeding. During *trans*-elimination, there is steric congestion between the benzyl group of the bioxazoline ligand **3C** and the cyclopropane moiety in the transition state $\mathbf{T}_{\mathbf{b}}$ and therefore the predominant enantiomer in the final product may arise from cleavage reaction (a) via transition state T_a by a *trans*-β-carbon elimination pathway.¹⁵ Subsequent to this, a second alkoxycarbonylation can take place with retention of the carbon center to afford enantiomer **A**, which corresponds to product (1R,2S)-2 obtained from the reaction of the cyclohexane-fused methylenecyclopropane 1. The cause of the observed reversal of enatiodifferentiation with the use of the phenyl-substituted ligand **3G** is still not well understood.

Scheme 2. A proposed pathway toward the generation of a Pd-CO₂Me species.

Scheme 3. Proposed transition states.

3. Conclusion

In conclusion, we have realized the desymmetrization of *meso*-methylenecyclopropanes by a palladium-catalyzed asymmetric ring-opening bis(alkoxycarbonylation) reaction to afford optically active α -methyleneglutarates with up to 60% ee. This asymmetric carbonylation method provides a useful starting point for the synthesis of optically active oxygen-functionalized substrates.

4. Experimental

4.1. General method

¹H NMR spectroscopy was performed in CDCl₃ using a JEOL ECS 400 NMR (400 MHz) spectrometer. Chemical shifts (δ) were determined relative to TMS (δ = 0 ppm) as an internal standard. ¹³C NMR spectroscopy was performed in CDCl₃ on a JEOL ECS 400 NMR (100 MHz) spectrometer and chemical shifts (δ) were determined relative to $CDCl_3$ (δ = 77.0 ppm) as an internal standard. IR spectra were acquired on a JASCO FT/IR-230 spectrometer. Melting points were determined on a micro-melting apparatus (Yanagimoto-Seisakusho) and are uncorrected. Optical rotations were recorded on a JASCO DIP-370 spectrometer. HPLC was performed using a chiral column with JASCO PU980 plus JASCO UV970. X-ray crystallography was carried out using Mo-Ka radiation. Elemental analysis was performed on a Yanaco CHN Corder MT-5 elemental analyzer. Mass spectra were obtained using JMS-700 and JMS-T100TD mass spectrometers. All solvents were distilled prior to use and stored over drying agents. Merck silica gel 60 PF254 (Art. 7749), Cica silica gel 60 N spherical neutral (37563-84), and JAIGL-SIL (s-043-15) were used for thin-layer chromatography (TLC), flash column chromatography, and recycle HPLC, respectively. Methylenecyclopropanes **1**,¹⁶ **7**,¹⁶ **9**,¹⁶ and **11a**¹⁷ were prepared by literature procedures. Oxygen-functionalized methylenecyclopropanes **11b**, **11c**, and **11d** were prepared from 3-(methylenecyclopropane-1,2-diyl)dimethanol by the following procedures.

4.2. 1,2-Bis((trityloxy)methyl)-3-methylenecyclopropane 11b

A DMF (3 mL) solution of 3-(methylenecyclopropane-1,2diyl)dimethanol¹⁸ (572 mg, 5 mmol) was added to a mixture of trityl chloride (3.07 g, 11 mmol) and 4-(dimethylamino)pyridine (1.83 g, 15 mmol) in DMF (9 mL) at rt under a nitrogen atmosphere, and the mixture was stirred overnight at rt. Trityl chloride (1.12 g, 4 mmol) was then added to the reaction mixture, and the solution was stirred overnight at 80 °C. This mixture was subsequently poured into a mixture of ice and water, and extracted with Et₂O, after which the combined extracts were washed with H₂O and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by recrystallization from toluene to give the corresponding methylenecyclopropane **11b** (2.00 g, 62%) as a solid. Mp 158 °C (toluene). ¹H NMR (CDCl₃, 400 MHz): δ = 1.91–1.98 (m, 2H), 2.92–2.98 (m, 2H), 3.11–3.15 (m, 2H), 5.43 (t, J = 1.8 Hz, 2H), 7.17–7.21 (m, 18H), 7.31–7.37 (m, 12H); ¹³C NMR (CDCl₃, 100 MHz): δ = 19.6, 62.5, 86.4, 104.2, 126.8, 127.7, 128.6, 136.6, 144.2; IR (KBr) 3056, 3031, 2973, 2922, 2872, 1595, 1491, 1446, 1385, 1208, 1179, 1157, 1047, 1028, 891, 764, 738, 706 cm⁻¹; elemental analysis calcd (%) for C₄₄H₃₈O₂: C 88.26, H 6.40; found: C 87.96, H 6.47.

4.3. 1,2-Bis-((triphenylsilyloxy)methyl)-3-methylenecyclopropane 11c

To a suspension of NaH (60% dispersion in mineral oil, 310 mg, 7.8 mmol) in DMF (14 mL), 3-(methylenecyclopropane-1,2diyl)dimethanol (355 mg, 3.1 mmol) in DMF (3 mL) was added at 0 °C. After the evolution of hydrogen gas ceased, 4-(N,N-dimethylamino)pyridine (17 mg, 0.13 mmol) and a DMF (3 mL) solution of chlorotriphenylsilane (2.245 g, 7.6 mmol) were added, and the reaction mixture was stirred at rt for 3 d. The reaction mixture was poured into a mixture of ice and water, and the insoluble substance was filtered through a bed of Celite. The filtrate was extracted with Et₂O, and the combined extracts were washed by H₂O and brine, dried over Na₂SO₄, and condensed under reduced pressure. The residue was purified by column chromatography $(SiO_2, hexane/AcOEt = 3:1)$ to give **11c** (1.745 g, 93%) as a solid. Mp 129 °C (hexane/AcOEt). ¹H NMR (CDCl₃, 400 MHz): δ = 1.94– 1.96 (m, 2H), 3.79-3.81 (m, 4H), 5.27 (t, 2H, J = 1.84 Hz), 7.26-7.46 (m, 30H); ¹³C NMR (CDCl₃, 100 MHz): δ = 22.2, 62.3, 104.1, 127.8, 129.9, 135.2, 135.4, 136.0; IR (KBr) 3066, 3008, 2911, 2871, 1588, 1485, 1427, 1387, 1308, 1253, 1188, 1158, 1119, 997, 887, 806, 740, 713 cm⁻¹; elemental analysis calcd (%) for C₄₂₋ H₃₈O₂Si₂: C 79.95, H 6.07; found: C 79.79, H 6.10.

4.4. 1,2-Bis-((*tert*-butyldiphenylsilyloxy)methyl)-3-methylenecyclopropane 11d

To a suspension of NaH (60% dispersion in mineral oil, 430 mg, 11 mmol) in THF (6 mL), 3-(methylenecyclopropane-1,2diyl)dimethanol (410 mg, 4 mmol) in THF (3 mL) was added at 0 °C. After the evolution of hydrogen gas ceased, tetrabutylammonium iodide (66 mg, 0.2 mmol) and a THF (3 mL) solution of tertbutylchlorodiphenylsilane (2.93 g, 11 mmol) were added, and the reaction mixture was stirred at rt for 1 d. Water was then added, and the insoluble substance was filtered through a bed of Celite. The filtrate was extracted with Et₂O, and the combined extracts were washed by H₂O and brine, dried over Na₂SO₄, and condensed under reduced pressure. The residue was purified by column chromatography (SiO₂, hexane/AcOEt = 5:1) to give **11d** (1.89 g, 89%) as an oil. ¹H NMR (CDCl₃, 400 MHz): δ = 1.01 (s, 18H), 1.90–1.95 (m, 2H), 3.68 (ddd, J = 11.0, 6.9, 2.3 Hz, 2H), 3.73 (ddd, J = 11.0, 7.3, 2.3 Hz, 2H), 5.35 (dd, J = 2.3, 1.8 Hz, 2H), 7.30-7.36 (m, 8H), 7.36-7.43 (m, 4H), 7.61–7.67 (m, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ = 19.1, 22.1, 26.8, 62.6, 103.8, 127.6, 129.49, 129.52, 133.7, 133.8, 135.5, 135.6, 136.6; IR (neat) 3070, 2958, 2930, 2857, 1589, 1472, 1427, 1389, 1112, 1074, 823, 739, 702 cm⁻¹; HRMS (EI): *m*/*z* calcd for C₃₈H₄₆O₂Si₂: 590.30364 [*M*]⁺; found: 590.30370.

Ligands (*S*,*S*)-**3D** and (*R*,*R*)-**3E** were prepared by literature procedures^{10a,19} described for the synthesis of other bioxazoline ligands starting from (*S*)-2-amino-3-(1-naphthalenyl)-1-propanol and (*R*)-2-amino-3-(2-naphthaleny)-1-propanol,²⁰ respectively.

4.5. (*S*,*S*)-4,4'-Bis(1-naphthalenylmethyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole 3D

Mp 149 °C (hexane/AcOEt); $[\alpha]_D^{25} = -5$ (*c* 0.9, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): $\delta = 3.00$ (dd, J = 14.2, 10.1 Hz, 2H), 3.88 (dd, J = 14.2, 4.1 Hz, 2H), 4.289 (d, 2H, J = 8.2 Hz), 4.294 (d, 2H, J = 9.2 Hz), 4.77–4.85 (m, 2H), 7.34 (d, J = 6.9 Hz, 2H), 7.41 (dd, J = 8.2, 6.9 Hz, 2H), 7.48–7.57 (m, 4H), 7.76 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 8.2 Hz, 2H), 8.09 (d, J = 8.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 38.5$, 67.2, 73.1, 123.4, 125.4, 125.8, 126.3, 126.8, 127.7, 128.9, 131.7, 133.1, 133.9, 155.2; IR (KBr) 3045, 2953, 2885, 1613, 1508, 1472, 1395, 1308, 1228, 1131, 1093, 1075,

953, 795, 776, 740 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₈H₂₄N₂₋O₂Na: 443.1736 [*M*+Na]⁺; found: 443.1739.

4.6. (*R*,*R*)-4,4'-Bis(2-naphthalenylmethyl)-4,4',5,5'-tetrahydro-2,2'-bioxazole 3E

Mp 173 °C (hexane/AcOEt); $[\alpha]_D^{25} = -26$ (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.85$ (dd, *J* = 13.8, 9.2, Hz, 2H), 3.42 (dd, *J* = 13.8, 4.6, Hz, 2H), 4.21 (t, *J* = 8.2 Hz, 2H), 4.37 (dd, *J* = 10.1, 8.2 Hz, 2H), 4.67-4.75 (m, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.42-7.48 (m, 4H), 7.63 (s, 2H), 7.77-7.81 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 41.2$, 68.1, 72.7, 125.6, 126.2, 127.3, 127.5, 127.6, 128.4, 132.3, 133.5, 134.6, 155.1; IR (KBr) 3055, 2897, 1613, 1508, 1479, 1363, 1135, 1084, 1054, 944, 901, 861, 822, 758, 735 cm⁻¹; HRMS (ESI-TOF): *m/z* calcd for C₂₈H₂₄N₂O₂Na: 443.1736 [*M*+Na]⁺; found: 443.1734.

4.7. A representative procedure for the asymmetric bis(alkoxycarbonylation) reaction of 1 (Table 1, entry 3)

Under an argon atmosphere, CuOTf(C_6H_6)_{0.5} (253 mg, 1.0 mmol) was placed in a flask, and an MeOH (12 mL) solution of 7-methylenebicyclo[4.1.0]heptane **1** (217 mg, 2.0 mmol) and a THF (12 mL) solution of (*S*,*S*)-**3C** (26 mg, 0.08 mmol) were added. To the mixture, PdCl₂ (7.1 mg, 0.04 mmol) was added. The argon atmosphere was replaced with CO/O₂ (ca. 1:1, v/v), and the reaction mixture was stirred for 60 h at rt. A saturated aq solution of NaHCO₃ was then added to the reaction mixture at rt, and the insoluble substance was filtered off. After the filtrate was extracted with AcOEt, the combined extracts were washed with water and brine, dried over Na₂SO₄, and condensed in vacuo. The residue was purified by TLC on SiO₂ (hexane/AcOEt = 7:1, v/v) to give **2** (237 mg, 53%) with a selectivity of 60% ee.

In a similar manner, glutaric acid dimethyl esters **10**, and **12**, were prepared from the corresponding methylenecyclopropanes **9**, and **11**, respectively.

4.8. (1*R*,2*S*)-Methyl 2-(3-methoxy-3-oxo-1-propen-2-yl)cyclohexanecarboxylate 2

Compound **2** (237 mg, 53%) was obtained as an oil. $[\alpha]_D^{25} = -49$ (*c* 0.6, EtOH). The ee was determined to be 60% by HPLC (DAICEL CHIRALPAK IA×2, hexane/AcOEt = 50:1, 0.5 mL/min, 220 nm, major 54 min and minor 50 min); ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.29-1.43$ (m, 1H), 1.49-1.61 (m, 2H), 1.59-1.73 (m, 2H), 1.81-1.90 (m, 1H), 1.91-2.04 (m, 2H), 2.75-2.84 (m, 1H), 3.04-3.09 (m, 1H), 3.55 (s, 3H), 3.77 (s, 3H), 5.58 (s, 1H), 6.23 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) $\delta = 21.6$, 25.68, 25.72, 28.3, 39.4, 42.6, 50.7, 51.8, 124.8, 142.7, 167.5, 174.4; IR (neat) 2949, 2859, 1735, 1720, 1628, 1437, 1281, 1247, 1194, 1165, 1143, 1030, 995, 949, 937, 819 cm⁻¹; HRMS (EI): *m/z* calcd for C₁₂H₁₈O₄: 226.12051 [*M*]⁺; found: 226.12062.

4.9. (1*R*,2*S*)-Methyl 2-(3-methoxy-3-oxo-1-propen-2-yl)cyclooctanecarboxylate 10

9-Methylenebicyclo[6.1.0]nonane **9** (68 mg, 0.50 mmol) was subjected to carbonylation using PdCl₂ (1.8 mg, 0.01 mmol), CuOTf(C₆H₆)_{0.5} (63 mg, 0.25 mmol), and ligand (*S*,*S*)-**3C** (7 mg, 0.02 mmol) in MeOH/THF (3 mL/3 mL) at 60 °C for 47 h. Compound **10** (6 mg, 5%) was obtained as an oil. $[\alpha]_D^{25} = -11$ (*c* 0.1, EtOH). The ee was determined to be 45% by HPLC (DAICEL CHIRALPAK IA×2, hexane/EtOH = 400:1, 0.5 mL/min, 220 nm, major 42 min and minor 38 min); ¹H NMR (CDCl₃, 400 MHz): δ = 1.51–1.71 (m, 7H),

1.71–1.84 (m, 2H), 1.84–1.93 (m, 2H), 1.93–2.05 (m, 1H), 2.82–2.90 (m, 1H), 3.32 (ddd, *J* = 11.5, 3.6, 3.2 Hz, 1H), 3.57 (s, 3H), 3.76 (s, 3H), 5.57 (s, 1H), 6.25 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ = 25.5, 26.4, 26.7, 26.9, 28.2, 29.4, 37.4, 46.0, 51.1, 52.0, 124.8, 143.7, 167.8, 175.5; IR (neat) 2922, 2851, 1725, 1685, 1627, 1436, 1268, 1192, 1168 cm⁻¹; HRMS (EI): *m/z* calcd for C₁₄H₂₂O₄: 254.15181 [*M*]⁺; found: 254.15194.

4.10. (2*S*,3*S*)-Dimethyl 2,3-bis((benzyloxy)methyl)-4-methylenepentanedioate 12a

1,2-Bis((benzyloxy)methyl)-3-methylenecyclopropane 11a (148 mg, 0.50 mmol) was subjected to carbonylation using PdCl₂ (1.8 mg, 0.01 mmol), $CuOTf(C_6H_6)_{0.5}$ (65 mg, 0.26 mmol), and ligand (R,R)-3G (6 mg, 0.02 mmol) in MeOH/THF (3 mL/3 mL) at rt for 36 h. Compound 12a (142 mg, 69%) was obtained as an oil. $[\alpha]_{D}^{25}$ = +6 (c 1.3, EtOH). The ee was determined to be 28% by HPLC (DAICEL CHIRALPAK IA×2, hexane/EtOH = 100:1, 0.5 mL/min, 254 nm, major 82 min and minor 88 min); ¹H NMR (CDCl₃, 400 MHz): $\delta = 3.14$ (ddd, I = 10.1, 8.7, 4.6 Hz, 1H), 3.28 (dt, *I* = 10.1, 6.4 Hz, 1H), 3.49 (dd, *I* = 9.6, 4.6 Hz, 1H), 3.52–3.64 (m, 3H), 3.62 (s, 3H), 3.69 (s, 3H), 4.41 (d, J = 12.4 Hz, 2H), 4.45 (d, J = 12.4 Hz, 1H), 4.47 (d, J = 12.4 Hz, 1H), 5.68 (s, 1H), 6.29 (s, 1H), 7.22–7.35 (m, 10H); ¹³C NMR (CDCl₃, 100 MHz) δ = 41.7, 47.1, 51.7, 51.9, 70.0, 71.1, 72.8, 72.9, 127.46, 127.49, 127.52 127.6, 127.8, 128.3, 129.6, 137.9, 138.1, 138.4, 166.8, 174.0; IR (neat) 2951, 2863, 1738, 1719, 1626, 1454, 1436, 1363, 1270, 1197, 1156, 1100, 1028, 739, 699 cm⁻¹; HRMS (EI): m/z calcd for C₂₄H₂₈O₆: 412.18859 [*M*]⁺; found: 412.18843.

4.11. (3*S*,4*S*)-Dimethyl 2-methylene-3,4-bis((trityloxy)methyl)pentanedioate 12b

1,2-Bis((trityloxy)methyl)-3-methylenecyclopropane 11b (299 mg, 0.50 mmol) was subjected to carbonylation using PdCl₂ $(1.8 \text{ mg}, 0.01 \text{ mmol}), \text{ CuOTf}(C_6H_6)_{0.5}$ (65 mg, 0.25 mmol), and ligand (S,S)-3C (7 mg, 0.02 mmol) in MeOH/THF (3 mL/3 mL) at rt for 67 h. Compound 12b (234 mg, 65%) was obtained as a solid. $[\alpha]_{D}^{25}$ = +5 (c 0.5, EtOH). The ee was determined to be 42% by HPLC (DAICEL CHIRALPAK IA, hexane/EtOH = 50:1, 0.5 mL/min, 254 nm, major 28 min and minor 31 min); mp 146 °C (recrystallized from CHCl₃/Hexane); ¹H NMR (CDCl₃, 400 MHz): δ 2.98–3.06 (m, 1H), 3.06-3.12 (m, 2H), 3.12-3.26 (m, 3H), 3.55 (s, 3H), 3.57 (s, 3H), 5.35 (s, 1H), 6.09 (s, 1H), 7.18-7.25 (m, 18H), 7.30-7.35 (m, 12H); ¹³C NMR (CDCl₃, 100 MHz): δ = 41.4, 46.8, 51.4, 51.6, 63.3, 64.1, 86.5, 126.8, 126.9, 127.55, 127.59, 128.5, 128.6, 143.7, 166.6, 173.9; IR (KBr) 3056, 3022, 2949, 2877, 1741, 1725, 1626, 1597, 1491, 1448, 1325, 1224, 1193, 1153, 1078, 764, 747, 706 cm⁻¹; HRMS (ESI-TOF): *m*/*z* calcd for C₄₈H₄₄O₆Na: 739.3036 [*M*+Na]⁺; found: 739.3038.

4.12. (3*S*,4*S*)-Dimethyl 2-methylene-3,4-bis((triphenylsilyloxy)methyl)pentanedioate 12c

1,2-Bis((triphenylsilyloxy)methyl)-3-methylenecyclopropane **11c** (252 mg, 0.4 mmol) was subjected to carbonylation using PdCl₂ (1.4 mg, 0.008 mmol), CuOTf(C₆H₆)_{0.5} (60 mg, 0.2 mmol), and ligand (*S*,*S*)-**3C** (5.1 mg, 0.016 mmol) in MeOH/THF (2 mL/2 mL) at rt for 72 h. **12c** (145 mg, 48%) was obtained as a solid. [α]_D²⁵ = +6 (*c* 1.5, CHCl₃). The ee was determined to be 48% by HPLC (DAICEL CHIR-ALPAK IC, hexane/EtOH = 100:1, 0.5 mL/min, 254 nm, major 13.5 min and minor 15.4 min); mp 124 °C (AcOEt/hexane); ¹H NMR (CDCl₃, 400 MHz): δ = 3.07 (ddd, *J* = 10.6, 8.7, 4.6 Hz, 1H), 3.17–3.22 (m, 1H), 3.43 (s, 3H), 3.53 (s, 3H), 3.75–3.82 (m, 3H), 3.91 (dd, J = 10.1, 8.7 Hz, 1H), 5.39 (s, 1H), 6.13 (s, 1H), 7.33–7.45 (m, 18H), 7.52–7.56 (m, 10H), 7.63–7.65 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 42.7$, 48.8, 51.4, 51.7, 63.9, 64.4, 127.8, 128.0, 129.96, 130.01, 133.7, 135.3, 135.4, 137.9, 166.8, 173.9; IR (KBr) 3068, 2946, 2867, 1740, 1721, 1703, 1622, 1588, 1485, 1428, 1382, 1333, 1255, 1119, 996, 835, 741, 714 cm⁻¹; elemental analysis calcd (%) for C₄₆H₄₄O₆Si₂: C, 73.76; H, 5.92; found: C, 73.57; H, 6.03.

4.13. (25,35)-Dimethyl 2,3-bis((*tert*-butyldiphenylsilyloxy)methyl)-4-methylenepentanedioate 12d

1,2-Bis((tert-butyldiphenylsilyloxy)methyl)-3-methylenecyclopropane **11d** (296 mg, 0.50 mmol) was subjected to carbonylation using $PdCl_2$ (1.9 mg, 0.01 mmol), $CuOTf(C_6H_6)_{0.5}$ (61 mg, 0.24 mmol), and ligand (S,S)-3D (9 mg, 0.02 mmol) in MeOH/THF (3 mL/3 mL) at rt for 30 h. Compound 12d (289 mg, 82%) was obtained as an oil. $[\alpha]_D^{25} = +3$ (*c* 1.9, EtOH). The ee was determined to be 51% by HPLC (DAICEL CHIRALPAK IA×2, hexane/ EtOH = 100:1, 0.5 mL/min, 254 nm, major 17 min and minor 19 min); ¹H NMR (CDCl₃, 400 MHz): δ = 0.99 (s, 18H), 3.08 (ddd, *J* = 11.0, 8.7, 4.1 Hz, 1H), 3.16 (ddd, *J* = 11.0, 6.4, 4.1 Hz, 1H), 3.59 (dd, J = 10.5, 4.1 Hz, 1H), 3.65 (dd, J = 10.0, 4.1 Hz, 1H), 3.68 (dd, *J* = 10.5, 6.4 Hz, 1H), 3.61 (s, 3H), 3.62 (s, 3H), 3.82 (dd, *J* = 10.0, 8.7 Hz, 1H), 5.39 (s, 1H), 6.18 (s, 1H), 7.31-7.44 (m, 12H), 7.54-7.64 (m, 8H); ¹³C NMR (CDCl₃, 100 MHz): δ = 19.0, 19.1, 26.5, 26.6, 42.5, 48.4, 51.4, 51.7, 63.9, 64.2, 127.5, 127.6, 129.49, 129.55, 129.64, 133.1, 133.2, 135.39, 135.45, 135.50, 138.0, 166.7, 174.1; IR (neat) 3071, 3049, 2931, 2857, 1736, 1720, 1624, 1472, 1428, 1252, 1194, 1154, 1111, 822, 741, 702 cm⁻¹; HRMS (EI): *m*/*z* calcd for C₄₂H₅₂O₆Si₂: 708.33025 [*M*]⁺; found: 708.33076.

4.14. Methyl 7-(2-methoxy-2-oxoethyl)bicyclo[4.1.0]heptane-7carboxylate 15¹¹

7-Methylenebicyclo[4.1.0]heptane **1** (106 mg, 0.98 mmol) was subjected to carbonylation using PdCl₂ (3.6 mg, 0.02 mmol), and CuOTf(C₆H₆)_{0.5} (127 mg, 0.50 mmol) in MeOH/THF (6 mL/6 mL) at rt for 36 h. Compound **2** (87 mg, 39%) and compound **15** (44 mg, 20%) were obtained. Compound **15**: an oil; ¹H NMR (CDCl₃, 400 MHz): δ = 1.16–1.51 (m, 6H), 1.71–1.78 (m, 2H), 1.90–2.05 (m, 2H), 2.67 (s, 2H), 3.62 (s, 3H), 3.71 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 18.6, 21.5, 22.7, 27.5, 30.6, 51.7, 51.9, 172.5, 175.4; IR (neat) 2969, 2931, 2857, 1758, 1723, 1672, 1435, 1411, 1359, 1309, 1276, 1200, 1172, 1131, 1068, 1043, 1012, 930, 879, 848, 780, 697 cm⁻¹; HRMS (EI): *m/z* calcd for C₁₂H₁₈O₄: 226.12051 [*M*]⁺; found: 226.12040.

4.15. (1*S*,4*R*)-2-((1*S*,2*R*)-2-((((1*S*,4*R*)-4,7,7-Trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carbonyl)oxy)methyl)cyclohexyl)allyl 4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylate 14

To a suspension of LiAlH₄ (65 mg, 1.75 mmol) in Et₂O (5 mL) was added dropwise an Et₂O (3 mL) solution of **2** (113 mg, 0.50 mmol, 60% ee) at 0 °C under an N₂ atmosphere. The resulting mixture was gradually warmed to rt and stirred overnight at rt, and then treated with a saturated aq Na₂SO₄ solution (0.5 mL). The insoluble substance was filtered through a bed of Celite, followed by washing with AcOEt, and the filtrate was concentrated in vacuo. Separation of the residue by column chromatography (hexane/AcOEt = 1:1, v/ v) afforded the corresponding diol **13** (51 mg, 65%) as an oil. A CH₂-Cl₂ (3 mL) solution of (*S*)-camphanic chloride (171 mg, 0.79 mmol) was added to a mixture of diol **13** (51 mg, 0.33 mmol), triethylamine (0.12 mL, 0.86 mmol), and 4-(dimethylamino)pyridine (5 mg, 0.03 mmol) in CH₂Cl₂ (3 mL) at rt under a nitrogen atmosphere and the mixture was stirred overnight at rt. The reaction was quenched by the addition of an aqueous solution of 1 M HCl aq (1.5 mL), and the mixture was subsequently extracted with AcOEt. The combined extracts were washed by H₂O and brine, dried over Na₂SO₄, and condensed under reduced pressure. The residue was purified by TLC on SiO_2 (hexane/AcOEt = 3:2) to give the corresponding ester (131 mg, 75%) as a mixture of diastereomers as a solid. Recrystallization (Et₂O/hexane) gave more diastereomerically pure ester (66 mg). The substrate obtained was further separated by recycle HPLC (hexane/AcOEt = 3:1) to give almost diastereomerically pure product (20 mg). Diastereomerically pure 14 was obtained by recrystallization from Et₂O. $[\alpha]_D^{25} = -11$ (*c* 0.1, EtOH); mp 135 °C (Et₂O). ¹H NMR (CDCl₃, 400 MHz): δ = 0.94 (s, 3H), 0.98 (s, 3H), 1.05 (s, 3H), 1.07 (s, 3H), 1.11 (s, 3H), 1.12 (s, 3H), 1.21-1.73 (m, 8H), 1.80-2.09 (m, 6H), 2.26-2.36 (m, 2H), 2.36-2.49 (m, 2H), 4.15 (dd, *J* = 11.0, 4.6 Hz, 1H), 4.24 (dd, *J* = 11.0, 9.2 Hz, 1H), 4.70 (d, / = 13.3 Hz, 1H), 4.84 (d, / = 13.3 Hz, 1H), 4.97 (s, 1H), 5.20 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ = 9.7, 16.7, 20.5, 25.2, 25.9, 27.6, 28.9, 30.5, 30.6, 34.3, 41.1, 54.1, 54.2, 54.7, 54.8, 63.66, 63.74, 67.2, 91.08, 91.13, 113.7, 144.9, 167.2, 167.6, 178.17, 178.25; IR (KBr) 2968, 2933, 2857, 1795, 1751, 1718, 1649, 1453, 1399, 1359, 1348, 1332, 1314, 1271, 1227, 1166, 1106, 1064, 995, 928, 913 cm⁻¹; HRMS (ESI-TOF): m/z calcd for $C_{30}H_{42}O_8Na$: 553.2777 [*M*+Na]⁺; found: 553.2779. Crystal data: C₃₀H₄₂O₈, *FW*. 530.66, monoclinic, P2₁, a = 11.049(2),b = 10.876(2), $V = 1375.7(5) \text{ Å}^3$, c = 12.586(2) Å, $\beta = 114.556(4)^{\circ}$, Z = 2. $D_{\text{calcd}} = 1.281 \text{ g/cm}^3$. $R = 0.057 (R_w = 0.069)$ for 5515 reflections with $I > 3.00\sigma$ (I) and 344 variable parameters. CCDC-985876 14 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

The present work was financially supported in part by a Grantin-Aid for Scientific Research on Priority Areas 'Advanced Molecular Transformations of Carbon Resources' from The Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS).

References

- (a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. **1994**, 27, 9–17; (b) Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron **1997**, 53, 7371–7395; (c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 **1999**, 1765–1784; (d) Atodiresei, I.; Schiffers, I.; Bolm, C. Chem. Rev. **2007**, 107, 5683–5712; (e) Sajisha, V. S.; Anas, S.; John, J.; Radhakrishnan, K. V. Synlett **2009**, 2885–2895; (f) Müller, C. E.; Schreiner, P. R. Angew. Chem., Int. Ed. **2011**, 50, 6012–6042; (g) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. **2011**, 111, PR110–PR180; (h) Díaz de Villegas, M. D.; Gálvez, J. A.; Etayo, P.; Badorrey, R.; López-Ram-de-Víu, P. Chem. Soc. Rev. **2011**, 40, 5564–5587; (i) Enríquez-García, A.; Kündig, E. P. Chem. Soc. Rev. **2012**, 41, 7803–7831; (j) Rodriguez-Docampo, Z.; Connon, S. J. ChemCatChem **2012**, 4, 151–168; (k) Díaz-de-Villegas, M. D.; Gálvez, J. A.; Badorrey, R.; López-Ram-de-Víu, M. P. Chem. Eur. J. **2012**, 18, 13920–13935.
- For recent examples of catalytic asymmetric desymmetrization and related reactions, see: (a) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006, 8, 3379–3381; (b) Ohmura, T.; Taniguchi, H.; Kondo, Y.; Suginome, M. Org. Lett. 2007, 129, 3518–3519; (c) Ohmura, T.; Taniguchi, H.; Suginome, M. Org. Lett. 2009, 11, 2880–2883; (d) Shintani, R.; Moriya, K.; Hayashi, T. J. Am. Chem. Soc. 2011, 133, 16440–16443; (e) Shintani, R.; Moriya, K.; Hayashi, T. Org. Lett. 2012, 14, 2902–2905; (f) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092–11095; (g) Obame, G.; Brémond, P.; Pannecouque, C.; Audran, G. Synthesis 2013, 45, 2612–2618.
- (a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation; Plenum Press: New York, 1991; (b)Catalytic Carbonylation Reactions; Beller, M., Ed.; Springer: Berlin, 2006; (c) Brennführer, A.; Neumann, H.; Beller, M. ChemCatChem 2009, 1, 28–41.
- (a) Inomata, K.; Toda, S.; Kinoshita, H. Chem. Lett. 1990, 1567–1570; (b) Toda, S.; Miyamoto, M.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1991, 64, 3600–

3606; (c) Mizutani, T.; Ukaji, Y.; Inomata, K. *Bull. Chem. Soc. Jpn.* **2003**, *76*, 1251–1256.

- 5. Aratani, T.; Ukaji, Y.; Inomata, K. Chem. Lett. 2009, 38, 46-47.
- 6. For examples of catalytic asymmetric desymmetrizations of *meso*methylenecyclopropanes; see Refs. 2b,f,g,7b.
- 7. The palladium-catalyzed ring-opening copolymerization of methylenecyclopropanes with CO was recently reported: (a) Kim, S.; Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2002, 124, 762–763; (b) Takeuchi, D.; Yasuda, A.; Okada, T.; Kuwabara, J.; Osakada, K.; Tomooka, K. Helv. Chim. Acta 2006, 89, 1574–1588; (c) Takeuchi, D.; Okada, T.; Kuwabara, J.; Osakada, K. Macromol. Chem. Phys. 2006, 207, 1546–1555.
- 8. For reviews on asymmetric carbonylations, see: (a) Nozaki, K. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 215-221; (b) Godard, C.; Muñoz, B. K.; Ruiz, A.; Claver, C. Dalton Trans. 2008, 853-860; (c) Gual, A.; Godard, C.; Castillón, S.; Claver, C. Tetrahedron: Asymmetry 2010, 21, 1135-1146; (d) Godard, C.; Ruiz, A.; Diéguez, M.; Pàmies, O.; Claver, C. Asymmetric Carbonylations. In Catalytic Asymmetric Synthesis; Ojima, I., Ed., 3rd ed.; John Wiley & Sons: New Jersey, 2010; pp 799-838; (e) Nozaki, K. Optically Active Polyketones. In Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis; Itsuno, S., Ed.; John Wiley & Sons: Hoboken, 2011; pp 407-422; (f) Perandones, B. F.; Godard, C.; Claver, C. Top. Curr. Chem. 2013, 342, 79–116; Recent examples of asymmetric carbonylations; (g) Tsujihara, T.; Shinohara, T.; Takenaka, K.; Takizawa, S.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Org. Chem. 2009, 74, 9274-9279; (h) Bajracharya, G. B.; Koranne, P. S.; Tsujihara, T.; Takizawa, S.; Onitsuka, K.; Sasai, H. Synlett 2009, 310-314; (i) Konrad, T. M.; Fuentes, J. A.; Slawin, A. M. Z.; Clarke, M. L. Angew. Chem., Int. Ed. 2010, 49, 9197–9200; (j) Nakamura, A.; Kageyama, T.; Goto, H.; Carrow, B. P.; Ito, S.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 12366-12369; (k) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429-3433; (1) Konrad, T. M.; Durrani, J. T.; Cobley, C. J.; Clarke, M. L. Chem. Commun. 2013, 3306-3308; (m) Wong, G. W.; Landis, C. R. Angew. Chem., Int. Ed. 2013, 52, 1564-1567; (n) Wang, Y.; Zhang, W.; Ma, S. J. Am. Chem. Soc. 2013, 135, 11517-11520; (o) Kusakabe, T.; Takahashi, T.; Shen, R.; Ikeda, A.; Dhage, Y. D.; Kanno, Y.; Inouye, Y.; Sasai, H.; Mochida, T.; Kato, K. Angew. Chem., Int. Ed. 2013, 52, 7845-7849. and references cited therein.
- We have already reported on an asymmetric bis(alkoxycarbonylation) reaction of terminal and internal alkenes using chiral bioxazoline ligands, see: (a) Ukaji, Y.; Miyamoto, M.; Mikuni, M.; Takeuchi, S.; Inomata, K. Bull. Chem. Soc. Jpn. 1996, 69, 735–742; (b) Takeuchi, S.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2001, 74, 955–958; (c) Aratani, T.; Tahara, K.; Takeuchi, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2007, 36, 1328–1329; (d) Aratani, T.; Tahara, K.; Takeuchi, S.; Kitamura, S.; Murai, M.; Fujinami, S.; Inomata, K.; Ukaji, Y. Bull. Chem. Soc. Jpn. 2012, 85, 1225–1232.
- For recent reports of palladium catalyzed asymmetric reactions using bioxazoline ligands, see (a) Denmark, S. E.; Stavenger, R. A.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. 1997, 62, 3375–3389; (b) Gsponer, A.; Milani, B.; Consiglio, G. Helv. Chim. Acta 2002, 85, 4074–4078; (c) Perch, N. S.; Kisanga, P.; Widenhoefer, R. A. Organometallics 2000, 19, 2541–2545; (d) Carfagna, C.; Gatti, G.; Mosca, L.; Paoli, P.; Guerri, A. Chem. Eur. J. 2005, 11, 3268–3278; (e) Kawamura, Y.; Kawano, Y.; Matsuda, T.; Ishitobi, Y.; Hosokawa, T. J. Org. Chem. 2009, 74, 3048–3053.
- It was found that the bis(alkoxycarbonylation) reaction of 1 without chiral ligand 3C afforded not only 2 (39%), but also a considerable amount of succinate 15 (20%) (see Section 4).

- 12. In this reaction, **15**¹¹ was not isolated after the purification procedure.
- Examples of biologically active oxygen-functionalized α-alkylidene-β,γ-oxygen-functionalized glutarates: (a) Velten, R.; Klostermeyer, D.; Steffan, B.; Steglich, W.; Kuschel, A.; Anke, T. *J. Antibiot.* **1994**, 47, 1017–1024; (b) McPhail, K.; Davies-Coleman, M. T. *Tetrahedron* **1997**, 53, 4655–4660; (c) Chai, X.-Y.; Sun, J.-F.; Tang, L.-Y.; Yang, X.-W.; Li, Y.-Q.; Huang, H.; Zhou, X.-F.; Yang, B.; Liu, Y. *Chem. Pharm. Bull.* **2010**, 58, 1391–1394; (d) Tan, J.-J.; Tan, J.-M.; Tan, C.-H.; Qu, S.-J.; Zhu, D.-Y. *Nat. Prod. Res.* **2012**, *26*, 1213–1217; (e) Valente, S.; Xu, Z.; Bana, E.; Zwergel, C.; Mai, A.; Jacob, C.; Meiser, P.; Bagrel, D.; Silva, A. M. S.; Kirsch, G. *Eur. J. Org. Chem.* **2013**, 2869–2877.
- 14. In the bis(alkoxycarbonylation) reaction in the absence of bioxazoline ligand **3C**, carbopalladation by chiral ligand-free palladium catalyst might proceed in a non-regioselective manner to give both the terminal intermediate **F** and the internal palladium intermediate **G** which produced succinate **15**¹¹ by the

second alkoxycarbonylation. To the contrary, the palladium coordinated by bioxazoline ligand **3C** might be bulky enough to afford the terminal palladium intermediate **E**, regioselectively.

- 15. At present, an alternative pathway via cleavage of the proximal cyclopropane C—C bond through oxidative addition to a methylenecyclopropane²¹ cannot be ruled out.
- 16. Arora, S.; Binger, P. Synthesis 1974, 6, 801–803.
- 17. Ogata, K.; Shimada, D.; Fukuzawa, S.-I. Chem. Eur. J. 2012, 18, 6142–6146.
- 18. Taniguchi, H.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 11298-11299.
- (a) Müller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232–240; (b) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195–15201.
- Blay, G.; Incerti, C.; Muñoz, M. C.; Pedro, J. R. Eur. J. Org. Chem. 2013, 1696– 1705.
- (a) Suginome, M.; Matsuda, T.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 11015–11016;
 (b) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111–129.