Recyclization of 2,6-Diamino-4-aryl(cyclohexyl)-3,5-dicyano-4H-thio(seleno)pyrans

V. D. Dyachenko*, A. N. Chernega**, and S. G. Garasevich***

* Shevchenko National Pedagogical University, Lugansk, Ukraine

** Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine *** Shevchenko National University, Kiev, Ukraine

Received September 21, 2004

Abstract — Recyclization of 2,6-diamino-4-aryl(cyclohexyl)-3,5-dicyano-4*H*-thio(seleno)pyrans in the presence of an equimolar amount of an α -bromo carbonyl compound, ethyl iodide, 1,2-dibromoethane, or 3-chlorophenyl isocyanate yields, respectively, 3-aryl(cyclohexyl)-2-[thiazol(selenazol)-2-yl]acrylonitriles, 6-amino-4-phenyl-2-ethylsulfanyl-1,4-dihydropyridine-3,5-dicarbonitrile, 5-amino-7-phenyl-2,3,4,7-tetrahydro-thiazolo[3,2-*a*]pyridine-6,8-dicarbonitrile, or *N*,*N*'-bis(3-chlorophenyl)urea.

It was shown previously [1–3] that recyclization of 2,6-diamino-4-alkyl(aryl, heteryl)-3,5-dicyano-4*H*thio(seleno)pyrans in refluxing ethanol in the presence of *N*-methylmorpholine yields *N*-methylmorpholinium 6-amino-4-alkyl(aryl, heteryl)-3,5-dicyano-2-thio(seleno)lates. With hydrazine or aniline used as the base in the reaction, 2,6-dihydrazino-4-phenyl-3,5-dicyanopyridine or 6-amino-2-phenylamino-4-phenyl-3,5-dicyanopyridine, respectively, is formed [4]. At the same time, with pyridinium ylides or aliphatic ketones used as CH acids in this recyclization, 3-(1-pyridinio)-5-cyano-3,4-*trans*-1,2,3,4-tetrahydro-6-pyridinethiolate [5] or 5,6-dialkyl-4-aryl-3-cyanopyridine-2(1*H*)thiones [6], respectively, are formed as a result of interchange of the methylene components.

Here we report on the recyclization of 2,6-diamino-4-aryl(cyclohexyl)-3,5-dicyano-4*H*-thio(seleno)pyrans Ia-Ii in the presence of an equimolar amount of an α-bromo carbonyl compound IIa-IIm, ethyl iodide, 1,2-dibromoethane, or 3-chlorophenyl isocyanate. The reactions of Ia-Ii with α -bromo ketones IIa-IIm in refluxing ethanol yield substituted acrylonitriles IIIa-**IIIz** and **III** α . This reaction pathway involves opening of the thio(seleno)pyran ring with the formation of unstable thio(seleno)amides of aryl(cycloalkyl)methylenecyanoacetic acid A and malonodinitrile. This is followed by the Hantzsch reaction yielding 2-aryl(cyclohexyl)-2-[thiazol(selenazol)-2-yl]acrylonitriles **IIIa–IIIz** and **III** α , which are potentially bioactive compounds [7, 8]. Recyclization of thiopyran Ih with an equimolar amount of ethyl iodide yields 6-amino-4phenyl-2-ethylsulfanyl-1,4-dihydropyridine-3,5-dicarbonitrile IV. The scheme of its formation apparently involves regioselective S-alkylation of **A** with ethyl iodide to the corresponding 1,4-dihydropyridine **IV**.

Replacement of ethyl iodide in this reaction by 1,2-dibromoethane led to the formation of 5-amino-7-phenyl-2,3,4,7-tetrahydrothiazolo[3,2-a]pyridine-6,8-dicarbonitrile **V**. Thus, in this case the reaction goes beyond formation of sulfide **D** and involves subsequent chemoselective intramolecular alkylation of the nitrogen atom of the dihydropyridine ring with the bromoethyl group, yielding heterocyclic system **V**.

The spectral characteristics confirm the structures of **III–V**. In particular, their IR spectra contain characteristic absorption bands of stretching vibrations of a conjugated cyano group (see Experimental, Tables 1, 2). The ¹H NMR spectra of dihydropyridines **IV** and **V** contain, along with the proton signals of the substituents in the expected regions, a singlet of the C⁴H proton of the dihydropyridine ring at δ 4.24 and 4.27 ppm, respectively (see Experimental), in agreement with data from [9–11].

The reaction of thiopyran **Ia** with 3-chlorophenyl isocyanate in refluxing toluene yielded N,N'-bis(3-chlorophenyl)urea **VI**. Apparently, its formation became possible owing to the presence of 2-chloroaniline **E** in the reaction mixture. Compound **E**, in turn, could be formed by decomposition of hypothetical unstable 3-chlorophenylthiocarbamic acid **F** formed by the reaction of 3-chlorophenyl isocyanate with H₂S released in the course of transformation of **A** into arylmethylenemalonodinitrile **G**. Note that the addition of H₂S to the nitrile group is reversible [12].

I, X = S (a–f, h–j), Se (g); R = 4-EtC₆H₄ (a), 3-PhOC₆H₄ (b), 4-NO-3-MeOC₆H₃ (c), 4-PhC₆H₄ (d), cyclohexyl (e), 1-naphthyl (f), Ph (g, h), 4-ClC₆H₄ (i), 2,4-(EtO)₂C₆H₃ (k). II, R' = 4-PhC₆H₄ (a), 3-coumarinyl (b), Ph (c), 4-FC₆H₄ (d), cyclopropyl (e), 4-BuC₆H₄ (f), 4-MeOC₆H₄ (g), 4-MeC₆H₄ (h), 4-ClC₆H₄ (i), 2-HOC₆H₄ (j), 8-bromocoumarin-3-yl (k), 6-methyl-3-cyano-2-ethylsulfanylpyridin-5-yl (l), 4-cyclohexylphenyl (m). III, X = S (a–h, j–z, α), Se (i); R = 4-EtC₆H₄ (a), 1-naphthyl (b–e), 2,4-(EtO)₂C₆H₃ (f, g), 3-PhOC₆H₄ (h, q–u), Ph (i–l), 4-NO-3-MeOC₆H₃ (m–p), 4-ClC₆H₄ (v, x, y), cyclohexyl (w, z), 4-PhC₆H₄ (α); R' = 3-coumarinyl (a, p, s), 4-PhC₆H₄ (b, f, h, l, n), Ph (c, o, t), 4-FC₆H₄ (d), cyclopropyl (e), 4-BuC₆H₄ (g, m, x), 4-MeOC₆H₄ (i, k, u, α), 4-MeC₆H₄ (j), 4-cyclohexylphenyl (q), 4-ClC₆H₄ (r, z), 6-methyl-2-ethylsulfanyl-3-cyanopyridin-5-yl (v), 8-bromocoumarin-3-yl (w), 2-HOC₆H₄ (y).

The structure of **VI** was unambiguously confirmed by single crystal X-ray diffraction. The general view of the molecule of **VI** and its main geometric parameters are shown in Fig. 1. The main bond lengths (Å) and bond angles (deg) are as follows: N^1-C^1 1.348(3), N^1-C^2 1.412(3), O^1-C^1 1.238(5), C^1-N^1 1.348(3), $C^1N^1C^2$ 123.9(2), $O^1C^1N^1$ 122.3(2), $O^1C^1N^1$ 122.3(2), $N^1C^1N^1$ 115.4(3). The central group $C^2N^1C^1O^1N^1C^2$ is approximatley planar: The deviations of atoms from the least-squares plane do not exceed 0.054 Å, and the torsion angles $C^2N^1C^1O^1$ and $C^2N^1C^1N^1$ are -6.8° and 173.2°, respectively. The benzene rings C^{2-7} and $C^{2-7'}$ are turned relative to this plane by 51.4°, forming with each other a dihedral angle of 85.6°. The N^1 atom has a trigonal planar configuration: the sum of the bond angles at this atom is 359.9°. The very efficient $n(N^1)\pi(C^1=O^1)$ conjugation causes shortening of the N¹-C¹ bond to 1.348(3) Å (typical N_{sp}2-C_{sp}2 bond length is 1.43–1.45 Å [13, 14]). Note that the bond lengths and bond angles in **VI** are relatively close to those found in the previously studied diaryl derivatives of urea [15]. The molecules of **VI** in the crystal are linked in infinite chains (Fig. 2) through bifurcate hydrogen bonds N¹-H¹...O¹ of medium strength [16] [N¹...O¹ 2.856(3), H¹...O¹ 2.12(4), N¹-H¹ 0.80(4) Å, $\angle N^1H^1O^1$ 154(3)°].

Urea is one of a few presently known organic crystals with large birefringence and high nonlinear coefficients in combination with good transparence (down to 200 nm) and radiation resistance, which makes it

Comp. no.	Yield, %	mp, °C	Found, %			Formula	Calculated, %		
			С	Н	Ν	Formula	С	Н	N
IIIa	85	170–172	71.75	4.12	7.06	$C_{23}H_{16}N_2O_2S$	71.86	4.20	7.29
IIIb	81	195–197	80.95	4.14	6.59	$C_{28}H_{18}N_2S$	81.13	4.38	6.76
IIIc	76	129-131	77.95	3.99	8.13	$C_{22}H_{14}N_{2}S$	78.08	4.17	8.28
IIId	79	143-145	73.97	3.50	7.71	$C_{22}H_{13}FN_2S$	74.14	3.68	7.86
IIIe	82	100-102	75.32	4.50	9.09	$C_{19}H_{14}N_2S$	75.47	4.67	9.26
IIIf	90	174–176	74.22	5.16	6.07	$C_{28}H_{24}N_2O_2S$	74.31	5.35	6.19
IIIg	72	94–95	72.02	6.44	6.31	$C_{26}H_{28}N_2O_2S$	72.19	6.52	6.48
IIIh	79	132-133	78.81	4.13	6.02	$C_{30}H_{20}N_{2}OS$	78.92	4.42	6.14
IIIi	77	120-121	64.30	3.71	7.52	$C_{19}H_{14}N_2OSe$	62.47	3.86	7.67
IIIj	72	144–145	75.29	4.58	9.14	$C_{19}H_{14}N_{2}S$	75.47	4.67	9.26
IIIk	88	122-123	71.52	4.35	8.68	$C_{19}H_{14}N_{2}OS$	71.68	4.43	8.80
IIII	68	188–190	78.85	4.19	7.48	$C_{24}H_{16}N_2S$	79.09	4.43	7.69
IIIm	84	100-101	70.61	5.49	7.12	$C_{23}H_{22}N_2O_2S$	70.74	5.68	7.17
IIIn	70	185–186	72.95	4.30	6.77	$C_{25}H_{18}N_2O_2S$	73.15	4.42	6.82
IIIo	81	149-150	68.13	4.05	8.19	$C_{19}H_{14}N_2O_2S$	68.25	4.22	8.38
IIIp	92	178 - 180	65.48	3.39	7.15	$C_{22}H_{14}N_2O_4S$	65.66	3.51	6.96
IIIq	94	150-151	77.72	5.48	5.89	$C_{30}H_{26}N_2OS$	77.89	5.67	6.06
IIIr	84	157-158	69.22	3.49	6.60	$C_{24}H_{15}CIN_2OS$	69.48	3.64	6.75
IIIs	91	161–163	72.18	3.48	6.14	$C_{27}H_{16}N_2O_3S$	72.31	3.60	6.25
IIIt	75	108-109	75.60	4.12	7.23	$C_{24}H_{16}N_2OS$	75.77	4.24	7.36
IIIu	80	118–119	72.98	4.37	6.71	$C_{25}H_{18}N_2O_2S$	73.15	4.42	6.82
IIIv	84	200-202	59.51	3.42	13.09	$C_{21}H_{15}CIN_4S_2$	59.64	3.58	13.25
IIIw	70	193–195	57.99	3.75	6.21	$C_{21}H_{17}BrN_2O_2S$	57.15	3.88	6.35
IIIx	84	88-89	69.64	4.88	7.19	C ₂₂ H ₁₉ ClN ₂ S	69.74	5.05	7.39
IIIy	88	179–180	63.69	3.12	8.05	$C_{18}H_{11}CIN_2OS$	63.81	3.27	8.27
IIIz	80	98-100	65.60	5.02	8.43	$C_{18}H_{17}CIN_2S$	65.74	5.21	8.52
ΠΙ α	77	160–162	75.94	4.49	6.97	$C_{25}H_{18}N_2OS$	76.12	4.60	7.10

Table 1. Yields, constants, and elemental analyses of substituted acrylonitriles IIIa-IIIz and III α

^a Fluorescence is observed under UV irradiation.

Table 2. IR and ${}^{1}H$ NMR spectra of substituted acrylonitriles IIIa-IIIz and III α

		¹ H NMR spectrum, δ, ppm (<i>J</i> , Hz)			
Comp. no.	IR spectrum, ^a cm ⁻¹ ,	C ³ H (s), C ⁵ H (s) of thiazole	other signals		
IIIa	2218, 1738 (C=O)	8.49, 8.31	1.32 t (3H, Me, <i>J</i> 6.24), 2.73 q (2H, CH ₂), 7.39 m (4H, H arom.), 7.62 m (1H, H arom.), 7.78 d (1H, H arom., <i>J</i> 6.81), 7.97 d (2H, H arom., <i>J</i> 7.14), 8.88 s (1H, C ⁴ H of coumarin)		
IIIb	2217	9.05, 8.40	7.36–7.88 m (12H, H arom.), 8.01–8.29 m (4H, H arom.)		
IIIc	2214	9.07, 8.39	7.41-7.82 m (7H, H arom.), 8.06-8.29 m (5H, H arom.)		
IIId	2219	9.01, 8.30	7.19–7.40 m (2H, H arom.), 7.51–7.78 m (4H, H arom.), 7.99–8.23 m (5H, H arom.)		
IIIe	2218	8.86, 7.52	7.61–7.80 m (3H, H arom.), 8.02–8.17 m (4H, H arom.), 0.82–1.13 m (4H, 2CH ₂), 2.10–2.33 m (1H, C ¹ H of cyclopropane)		

Table 2. (Contd.)

		¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)				
Comp. no.	IR spectrum, ^a cm ⁻¹	C ³ H (s), C ⁵ H (s) of thiazole	other signals			
IIIf	2215	8.45, 8.21	1.12–1.52 m (6H, 2Me), 4.02–4.35 m (4H, 2CH ₂), 6.67 d (2H, H arom., <i>J</i> 8.34),			
IIIg	2205	8.40, 8.06	7.46 m (3H, H arom.), 7.75 m (5H, H arom.), 8.11 d (2H, H arom., J 7.06) 0.89 t (3H, Me, J 7.11), 1.12–1.73 m (10H, 2Me and 2CH ₂), 2.59 t (2H, CH ₂ , J 7.54), 4.14 m (4H, 2CH ₂), 6.63 s (1H, C ₆ H ₃), 6.78 d (1H, C ₆ H ₃ , J 8.05), 7.26 d (2H, C ₆ H ₄ , J 8.79), 7.88 d (2H, C ₆ H ₄), 8.13 d (1H, C ₆ H ₂)			
IIIh	2220	8.39, 8.31	7.02–7.28 m (5H, H arom.), 7.39–7.64 m (5H, H arom.), 7.72–7.89 m (6H, H arom.), 8.13 d (2H, H arom., J 8.41)			
IIIi	2217	8.59, 8.33	3.81 s (3H, Me), 7.05 d and 7.50 d (2H each, C_6H_4 , <i>J</i> 8.84), 7.58 m (3H, Ph), 8.07 m (2H, Ph)			
IIIj	2219	8.32, 8.15	2.38 s (3H, Me), 7.30 d and 7.93 d (2H each, C_6H_4 , <i>J</i> 7.72), 7.59 m (3H, Ph), 8.02 m (2H, Ph)			
IIIk	2222	8.26, 7.98	3.83 s (3H, Me), 6.94 d and 7.92 d (2H each, C_6H_4 , <i>J</i> 8.84), 7.52 m (3H, Ph), 7.99 m (2H, Ph)			
IIII IIIm	2214 2208, 3612 (OH)	8.31, 8.12 8.16, 8.11	7.35–7.71 m (7H, H arom.), 8.01–8.08 m (7H, H arom.) 0.91 t (3H, Me, J 6.25), 1.14–1.78 m (4H, 2CH ₂), 2.61 t (2H, CH ₂ , J 6.18), 3.87 s (3H, MeO), 6.96 d and 7.62 d (1H each, C ₆ H ₃ , J 7.11), 7.29 d and 7.92 d (2H each, C ₆ H ₄ , J 7.05), 7.48 s (1H, C ₆ H ₃), 10.22 br.s (1H, OH)			
IIIn	2216, 3622 (OH)	8.25, 7.89	3.88 s (3H, Me), 6.98 d and 7.76 d (1H each, C_6H_3 , <i>J</i> 7.07), 7.39–7.65 m (9H, H arom.), 8.11 s (1H, C_6H_3), 10.22 br.s (1H, OH)			
IIIo	2214, 3610 (OH)	8.19, 8.08	3.86 s (3H, Me), 6.96 d (1H, C ₆ H ₃ , <i>J</i> 7.04), 7.35–7.81 m (5H, H arom.), 8.01 d (2H, Ph, <i>J</i> 7.13), 10.21 br.s (1H, OH)			
IIIp	2220, 3598 (OH), 1718 (C=O)	8.45, 8.21	3.92 s (3H, Me), 6.94 d and 7.86 d (1H each, C_6H_3 , J 7.12), 7.36–7.68 m (4H, H arom.), 6.74 s (1H, C_6H_3), 8.87 s (1H, C^4H of coumarin), 9.92 br.s (1H, OH)			
IIIq	2215	8.25, 7.98	1.21–1.59 m (6H, 3CH ₂), 1.63–1.98 m (5H, CH ₂ CHCH ₂), 7.07 t (2H, Ph, J 7.62), 7.11 m (2H, H arom.), 7.23 d and 7.88 d (2H each, C ₆ H ₄ , J 8.10), 7.36 m (2H, H arom.), 7.51 t (1H, Ph, J 7.98), 7.63 s (1H, H arom.), 7.76 d (1H, H arom., J 6.72)			
IIIr	2219	8.27, 8.15	7.03–7.19 m (4H, H arom.), 7.35–7.48 m (4H, H arom.), 7.52 t (1H, H arom., <i>J</i> 7.90), 7.62 m (1H, H arom.), 7.76 d (1H, H arom., <i>J</i> 7.82), 8.02 d (2H, H arom. <i>J</i> 8.50)			
IIIs	2218, 1720 (C=O)	8.52, 8.34	7.08 d (2H, H arom., J 7.15), 7.18 d (2H, H arom., J 6.94), 7.41 m (4H, H arom.), 7.58 m (2H, H arom.), 7.69 s (1H, C_6H_4), 7.83 t (2H Ph, J 7.45), 8.88 s (1H, C^4 H of coumarin)			
IIIt IIIu	2214 2222	8.31, 8.25 8.34, 8.12	7.02–7.84 m (12H, H arom.), 8.03 d (2H, H arom., J 7.02) 3.81 s (3H, Me), 7.07 d and 7.97 d (2H each, C_6H_4 , J 8.85), 7.12–7.82 m (9H, H arom.)			
IIIv	2217, 2224	8.41, 8.35	1.39 t (3H, Me, J 7.23), 2.80 s (3H, Me), 3.29 q (2H, CH ₂), 7.52 d and 8.01 d (2H each, C_6H_4), 8.07 s (1H, C ⁴ H of pyridine)			
IIIw	2212,	8.04 d (J 2.24),	1.05–1.48 m (6H, 3CH ₂), 1.64–1.87 m (4H, 2CH ₂), 1.63 m (1H, C ¹ H of cyclo-			
	1728 (C=O)	8.45	hexane), 7.33 d (1H, C ⁷ H of coumarin, J 2.18), 7.38 d (1H, C ⁵ H of coumarin, J 3.62), 7.68 d. d (1H, C ⁶ H of coumarin, J 8.64 and 2.23), 8.77 s (1H, C ⁴ H of coumarin)			
IIIx	2220	8.26, 7.93	0.94 t (3H, Me, J 7.02), 1.39 m (2H, CH ₂), 1.62 m (2H, CH ₂), 2.61 t (2H, CH ₂ , J 7.12), 7.20 d and 7.88 d (2H each, C ₆ H ₄ , J 7.62), 7.52 d and 8.01 d (2H each, 4-ClC ₆ H ₄ , J 7.26)			

		¹ H NMR spectrum, δ, ppm (<i>J</i> , Hz)			
Comp. no.	IR spectrum, ^a cm ⁻¹	$C^{3}H$ (s), $C^{5}H$ (s) of thiazole	other signals		
IIIy	2218,	8.27, 8.24	6.88 m (2H, H arom.), 7.10 m (1H, H arom.), 7.54 d (2H, 4-ClC ₆ H ₄ , J 8.50), 8.07 m (2H, H arom.) 10.21 hr s (1H, OH)		
IIIz	2223	7.35 d, (J 2.19), 8.11	1.18–1.54 m (6H, 3CH ₂), 1.69–1.95 m (4H, 2CH ₂), 2.71 m (1H, C ¹ H of cyclohexane), 7.46 d and 7.99 d (2H each, C_6H_4 , J 8.49)		
Πα	2219	8.35, 8.21	3.82 s (3H, Me), 7.05 d and 7.50 d (2H each, C_6H_4 , J 8.39), 7.72–8.12 m (9H, H arom.)		

Table 2. (Contd.)

^a $v(C \equiv N)$ unless otherwise indicated.

a valuable material for nonlinear conversion of the laser radiation frequency from the IR to UV range [17]. Therefore, the known and newly synthesized urea derivatives are very interesting and promising from the viewpoint of manifestation of nonlinear optical properties (e.g., quadratic nonlinear susceptibility). Therefore, we measured for **VI** the intensity of the generation of the second harmonic in polycrystalline samples by the Kurtz–Perry method. We found that the intensity of the second harmonic generation for powders of **VI** is about 80% of that for unsubstituted urea.

Fig. 1. General view of the molecule of N,N'-bis(3-chlorophenyl)urea VI with the atom numbering. Atoms symmetry-related (twofold axis) to the basis (symmetrically independent) atoms are marked with primes.

Fig. 2. Crystal packing of VI. Dotted lines denote intermolecular hydrogen bonds; a, b, and c are unit cell parameters.

EXPERIMENTAL

The IR spectra were recorded on an IKS-29 spectrometer (mulls in mineral oil). The ¹H NMR spectra were taken on Bruker WP-100SY (100 MHz) (**Ia, Ic-Ie, IIIb–IIIi, IIIm–IIIo, IIIt, IIIu, III** α , VI), Gemini-200 (199.975 MHz) (**IIIr, IIIw, IIIx**), Bruker AC-200 (200.13 MHz) (**IIIa, IIIp, IIIs**), Bruker WM-250 (250.13 MHz) (**IIIa, IIIp, IIIs**), Bruker WM-250 (250.13 MHz) (**IIIz**), Bruker AM-300 (300.13 MHz) (**Ib**), and Bruker DR-500 (500.13 MHz) (**IIIv, IIIy, IIIy, IV, V**) spectrometers in DMSO- d_6 , internal reference TMS. The mass spectra were measured on a Kratos MS-890 spectrometer (electron impact, 70 eV) with direct sample inlet.

The melting points were determined with a Koefler unit.

The reaction progress was monitored on Silufol UV-254 plates, eluent acetone-hexane, 3:5 by volume, development with iodine vapor.

The intensity of the second harmonic generation for **VI** was measured with a pulse YAG:Nd³⁺ laser (1064 nm) in the modulated *Q*-factor mode. The recording system consisted of a monochromator with a series of photoreceivers.

X-ray diffraction study of **VI** was performed with a $0.28 \times 0.30 \times 0.59$ -mm single crystal at room temperature on an Enraf-Nonius CAD-4 automatic fourcircle diffractometer (Mo K_{α} radiation, λ 0.71069 A, scanning rate ratio $2\theta/\omega$ 1.2, θ_{max} 25°, sphere segment $0 \le h \le 11$, $0 \le k \le 17$, $0 \le l \le 5$, 696 reflections). Crystal data: rhombic system, a 9.707(1), b 14.358(2), c 4.577(2) Å; V 637.9(2) Å³, M 281.1, Z 2, ρ_{calc} 1.46 g cm⁻³, μ 4.96 cm⁻¹, F(000) 288, space group $P2_12_12$. The structure was solved by the direct method and refined by the least-squares method in the full-matrix anisotropic approximation using SHELXS and SHELXL-93 programs [18, 19]. In the refinement we used 627 reflections with $I > 2\sigma(I)$ (103) refined parameters, 6.1 reflections per parameter). All the hydrogen atoms were revealed from the differential electron density synthesis and were refined isotropically. In the refinement we used the weight scheme $\omega = 1/[\sigma^2(F_0^2) + (0.046P)^2 + 0.137]$, where $R = (F_0^2 + 2F_c^2)/3$. The final divergence factors are R(F) 0.033 and $R_W(F^2)$ 0.041, GOF 1.054. The residual electron density from the differential Fourier series was 0.13 and -0.20 e/Å^3 . We made the correction for anomalous absorption and did not make absorption corrections. The absolute configuration of VI was determined by Flack's method [20]: p = 0.3(2).

4-Aryl-2,6-diamino-3,5-dicyano-4*H*-thiopyrans Ia–If and Ih–Ij were prepared according to [1]; selenopyran **Ig** was described in [21]. Compound **If** was characterized in [2]; **Ih** and **Ii**, in [1]; and **Ij**, in [3].

2,6-Diamino-3,5-dicyano-4-(4-ethylphenyl)-4*H***-thiopyran Ia:** yield 88%, mp 181–183°C (from EtOH). IR spectrum, v, cm⁻¹: 3445, 3341, 3198 (NH₂), 2194 sh (C=N), 1645 [δ (NH₂)]. ¹H NMR spectrum, δ , ppm: 1.19 t (3H, Me, *J* 6.23 Hz), 2.58 q (2H, CH₂), 4.23 s (1H, C⁴H), 6.90 br.s (4H, 2NH₂), 7.18 s (4H, C₆H₄). Found, %: C 63.70; H 4.84; N 19.72. C₁₅H₁₄N₄S. Calculated, %: C 63.81; H 5.00; N 19.84.

2,6-Diamino-4-(3-phenoxy)-3,5-dicyano-4H-thiopyran Ib: yield 80%, mp 196–198°C (from EtOH). IR spectrum, ν , cm⁻¹: 3455, 3333, 3202 (NH₂), 2185 sh (C=N), 1648 [δ (NH₂)]. ¹H NMR spectrum, δ , ppm: 4.32 s (1H, C⁴H), 6.99 br.s (4H, 2NH₂), 7.07 s (1H, H arom.), 7.12–7.58 m (8H, H arom.). Found, %: C 65.71; H 3.90; N 16.14. C₁₉H₁₄N₄OS. Calculated, %: C 65.88; H 4.07; N 16.17.

4-(4-Hydroxy-3-methoxyphenyl)-2,6-diamino-3,5-dicyano-4H-thiopyran Ic: yield 71%, mp 140– 142°C (from EtOH). IR spectrum, ν, cm⁻¹: 3590 (OH), 3440, 3302, 3195 (NH₂), 2176 sh (C≡N), 1640 [δ(NH₂)]. ¹H NMR spectrum, δ, ppm: 3.73 s (3H, MeO), 4.16 s (1H, C⁴H), 6.48–6.95 m (7H, C₆H₃ and 2NH₂), 8.92 br.s (1H, OH). Found, %: C 55.80; H 3.89; N 18.58. C₁₄H₁₂N₄O₂S. Calculated, %: C 55.99; H 4.03; N 18.65.

2,6-Diamino-4-(biphenyl-4-yl)-3,5-dicyano-4Hthiopyran Id: yield 72%, mp 218–220°C (from EtOH). IR spectrum, v, cm⁻¹: 3450, 3312, 2197 (NH₂), 2179 sh (C=N), 1640 [δ (NH₂)]. ¹H NMR spectrum, δ , ppm: 4.35 s (1H, C⁴H), 6.47 br.s (4H, 2NH₂), 7.32–7.71 m (9H, H arom.). Found, %: C 68.92; H 4.11; N 16.78. C₁₉H₁₄N₄S. Calculated, %: C 69.07; H 4.27; N 16.96.

2,6-Diamino-3,5-dicyano-4-cyclohexyl-4*H***-thiopyran Ie** was prepared according to [22]; yield 86%, mp 215–217°C (from EtOH). IR spectrum, v, cm⁻¹: 3450, 3390, 3300 (NH₂), 2190 sh (C≡N), 1640 [δ (NH₂)]. ¹H NMR spectrum, δ , ppm: 1.10 m (5H, CH₂CHCH₂), 1.69 m (6H, 3CH₂), 2.71 d (1H, C⁴H, *J* 3.18 Hz), 6.80 br.s (4H, 2NH₂). Found, %: C 59.78; H 6.04; N 21.52. C₁₃H₁₆N₄S. Calculated, %: C 59.97; H 6.19; N 21.52.

3-Aryl-2-[4-R'-thiazol(selenazol)-2-yl]acrylonitriles IIIa–IIIz and III α . A mixture of 10 mmol of thio(seleno)pyran I and 10 mmol of α -bromo ketone II in 40 ml of absolute ethanol was refluxed for 8 h. The precipitate that formed on cooling was filtered off and washed with ethanol and hexane. The resulting compounds IIIa–IIIz and III α were recrystallized from BuOH (Tables 1, 2). Mass spectrum of IIIr, m/z

 $(I_{\rm rel}, \%)$: 417 (11) $[M + 2]^+$, 416 (33) $[M + 1]^+$, 415 (58) $[M]^+$, 414 (98) $[M - 1]^+$, 413 (100) $[M - 2]^+$, 388 (22), 321 (13), 207 (24), 168 (85), 133 (79), 89 (52), 77 (49) [Ph]^+, 51 (24), 39 (6). Mass spectrum of **IIIv**, m/z ($I_{\rm rel}, \%$): 425 (4) $[M + 2]^+$, 424 (12) $[M + 1]^+$, 423 (45) $[M]^+$, 422 (100) $[M - 1]^+$, 421 (10) $[M - 2]^+$, 407 (29), 389 (71), 206 (25), 173 (28), 146 (21), 120 (32), 82 (10), 69 (17), 51 (8), 45 (23). Mass spectrum of **IIIw**, m/z ($I_{\rm rel}, \%$): 443 (25) $[M + 2]^+$, 442 (100) $[M + 1]^+$, 441 (92) $[M]^+$, 440 (9) $[M - 1]^+$, 361 (39), 223 (18), 174 (22), 145 (57), 113 (14), 101 (22), 87 (9), 67 (28), 55 (19), 41 (68). Mass spectrum of **IIIy**, m/z ($I_{\rm rel}, \%$): 341 (13) $[M + 2]^+$, 340 (38) $[M + 1]^+$, 39 (46) $[M]^+$, 338 (100) $[M - 1]^+$, 337 (65) $[M - 2]^+$, 206 (10), 150 (14), 121 (72), 89 (24), 78 (19), 63 (9), 51 (12), 39 (7).

6-Amino-4-phenyl-2-ethylsulfanyl-1,4-dihydropyridine-3,5-dicarbonitrile IV. A mixture of 2.5 g of thiopyran **Ih** and 0.8 ml of ethyl iodide in 20 ml of absolute ethanol was refluxed for 5 h and filtered while hot; the filtrate was allowed to stand for 2 days at room temperature. The resulting precipitate was separated and washed with ethanol and hexane. Yield 1.7 g (60%), mp 151–153°C (from EtOH). IR spectrum, v, cm⁻¹: 3400, 3372, 3330 (NH₂), 2177 sh (C=N), 1638 [δ(NH₂)]. ¹H NMR spectrum, δ, ppm: 1.26 t (3H, Me, *J* 6.23 Hz), 2.98 m (2H, CH₂), 4.24 s (1H, C⁴H), 5.81 br.s (2H, 2NH₂), 7.19–7.38 m (5H, Ph), 9.04 br.s (1H, NH). Found, %: C 63.75; H 4.82; N 19.71. C₁₅H₁₄N₄S. Calculated, %: C 63.81; H 5.00; N 19.84.

5-Amino-7-phenyl-2,3,4,7-tetrahydrothiazolo-**[3,2-***a***]pyridine-6,8-dicarbonitrile V** was prepared similarly to **IV**, with ethyl iodide replaced by 0.9 ml of 1,2-dibromoethane, yield 1.5 g (53%), mp 181–183°C (from EtOH). IR spectrum, v, cm⁻¹: 4122, 3354, 3193 (NH₂), 2190 sh (C≡N), 1650 [δ(NH₂)].¹H NMR spectrum, δ, ppm: 3.43 t (2H, SCH₂, *J* 6.64 Hz), 4.14 t (2H, NCH₂), 4.27 s (1H, C⁷H), 6.28 br.s (2H, NH₂), 7.19–7.38 m (5H, Ph). Mass spectrum, *m/z* (*I*_{rel}, %): 282 (4) [*M* + 2]⁺, 281 (6) [*M* + 1]⁺, 280 (29) [*M*]⁺, 213 (16), 203 (100) [*M* − Ph]⁺, 176 (10), 140 (13), 77 (12) [Ph]⁺, 51 (9), 39 (5). Found, %: C 64.14; H 4.20; N 19.87. C₁₅H₁₂N₄S. Calculated, %: C 64.26; H 4.32; N 19.98.

N,*N*'-**Bis**(3-chlorophenyl)urea VI. A mixture of 2.5 g of thiopyran Ih and 1.2 ml of 3-chlorophenyl isocyanate in 30 ml of absolute toluene was refluxed for 2 h with protection from atmospheric moisture, filtered while hot, and allowed to stand for 24 h at 20°C. The resulting precipitate was separated and washed with toluene and hexane. Yield 1.0 g (36%), mp 238–240°C (from *i*-PrOH). IR spectrum, v, cm⁻¹: 1658 (CONH). ¹H NMR spectrum, δ, ppm: 7.05–7.72 m (6H, H arom.), 7.72 s (2H, H arom.), 8.97 br.s (2H, 2NH). Found, %: C 55.31; H 3.40; N 10.12. $C_{13}H_{10}$ · Cl_2N_2O . Calculated, %: C 55.54; H 3.59; N 9.96.

REFERENCES

- Sharanin, Yu.A., Shestopalov, A.M., Nesterov, V.N., Melenchuk, S.N., Promonenkov, V.K., Shklover, V.E., Struchkov, Yu.T., and Litvinov, V.P., *Zh. Org. Khim.*, 1989, vol. 25, no. 6, p. 1323.
- Dyachenko, V.D., Krivokolysko, S.G., Sharanin, Yu.A., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 1997, no. 7, p. 909.
- Dyachenko, V.D., Krivokolysko, S.G., Sharanin, Yu.A., and Litvinov, V.P., *Zh. Org. Khim.*, 1997, vol. 33, no. 7, p. 1084.
- Shams, H.Z., Elkholy, Y.M., Ibrahim, N.S., and Elnagdi, M.N., J. Pr. Chem., 1988, vol. 330, no. 5, p. 817.
- Shestopalov, A.M., Sharanin, Yu.A., and Litvinov, V.P., *Zh. Org. Khim.*, 1991, vol. 27, no. 6, p. 1349.
- Sharanin, Yu.A. and Shestopalov, A.M., Zh. Org. Khim., 1989, vol. 25, no. 6, p. 1331.
- 7. US Patent 5658375, 1997, *Ref. Zh. Khim.*, 1999, 30566P.
- Koketsu, M. and Ishihara, H., EPW Application 1323714, 2003, *Ref. Zh. Khim.*, 2003, 03.22-190359P.
- Dyachenko, V.D., Krivokolysko, S.G., and Sharanin, Yu.A., *Zh. Obshch. Khim.*, 1995, vol. 65, no. 6, p. 1042.
- Krauze, A. and Duburs, G., *Khim. Geterotsikl. Soedin.*, 2000, no. 6, p. 794.
- 11. Dyachenko, V.D., Krivokolysko, S.G., and Litvinov, V.P., *Zh. Org. Khim.*, 1998, vol. 34, no. 6, p. 927.
- 12. Zil'berman, E.N., *Reaktsii nitrilov* (Reactions of Nitriles), Moscow: Khimiya, 1972.
- Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Tailor, R., J. Chem. Soc., Perkin Trans. 2, 1987, no. 12, p. S1.
- 14. Burke-Laing, M. and Laing, M., Acta Crystalogr., Sect. B, 1976, vol. 32, no. 12, p. 3216.
- 15. Kuleshova, L.N. and Zorkii, P.M., *Acta Crystallogr.*, *Sect. B*, 1981, vol. 37, no. 7, p. 1363.
- Etter, M.C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M., and Panunto, T.W., *J. Am. Chem. Soc.*, 1990, vol. 112, no. 23, p. 8415.

- 17. Shemla, D. and Ziss, Zh., *Nonlinear Optical Properties* of Organic Molecules and Crystals, New York: Academic, 1987.
- 18. Sheldrick, G.M., SHELXS-86. Program for the Solution of Crystal Structures, Göttingen: Univ. of Göttingen, 1986.
- 19. Sheldrick, G.M., SHELXL-93. Program for the Refinement of Crystal Structures, Göttingen: Univ. of Göttingen, 1993.
- 20. Flack, H.D., Acta Crystallogr., Sect. A, 1983, vol. 39, no. 3, p. 876.
- 21. Dyachenko, V.D., Nesterov, V.N., Struchkov, V.E., Sharanin, Yu.A., and Shklover, V.E., *Zh. Obshch. Khim.*, 1989, vol. 59, no. 4, p. 881.
- 22. Dyachenko, V.D., Krivokolysko, S.G., Nesterov, V.N., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 1997, no. 12, p. 1655.