|}}

Protective Group-Free Syntheses of (\pm) -Frontalin, (\pm) -endo-Brevicomin, (\pm) -exo-Brevicomin, and (\pm) -3,4-Dehydro-exo-brevicomin: Racemic Pheromones with a 6,8-Dioxabicyclo[3.2.1]octane Ring^{*}

Kenji Mori

Photosensitive Materials Research Center, Toyo Gosei Co., Ltd., 4-2-1 Wakahagi, Inzai, Chiba 270-1609, Japan

Received January 26, 2011; Accepted February 8, 2011; Online Publication, May 20, 2011 [doi:10.1271/bbb.110071]

Protective group-free syntheses of four racemic pheromones with a 6,8-dioxabicyclo[3.2.1]octane ring were achieved in five or six steps from commercially available (\pm)-3-butyn-2-ol (6) and 2-alkenyl halides or 2-alken-1-ol by employing Lewis acid-catalyzed acetalization of δ , ε -epoxy ketones as the key reaction. (\pm)-Frontalin (1) was prepared in a 25% overall yield in five steps from methallyl chloride (5a), (\pm)-*endo*-brevicomin (2) was prepared in a 23% overall yield in five steps from (*E*)-2-pentenyl bromide (5b), and (\pm)-*exo*-brevicomin (3) and (\pm)-3,4-dehydro-*exo*-brevicomin (4) were both prepared in a 4% overall yield in six steps based on (*Z*)-2-penten-1-ol (12).

Key words: *endo*-brevicomin; *exo*-brevicomin; 3,4dehydro-*exo*-brevicomin; frontalin; pheromone

The 6,8-dioxabicyclo[3.2.1]octane ring system is one of the prevailing structural motifs among pheromones.²⁾ Frontalin (1, Fig. 1),³⁾ endo-brevicomin (2),⁴⁾ and exobrevicomin $(3)^{4}$ have been discovered as the aggregation pheromones of bark beetles, while 3,4-dehydro-exobrevicomin (4) has been identified as the sex pheromone produced by the male house mouse.⁵⁾ Frontalin (1) has recently been shown to be the sex pheromone of male Asian elephants.⁶⁾ The absolute configurations of their pheromonally active enantiomers have been determined as shown in Fig. 1 by enantioselective syntheses and subsequent bioassays.⁷⁾ Their opposite enantiomers are not inhibitory against the pheromone activities of the natural enantiomers,7) making their racemates half as active as the pheromones. Accordingly, their racemates are practically useful as attractants.

Over a hundred reports have been presented to date on the synthesis of these pheromones with the 6,8-dioxabicyclo[3.2.1]octane ring system,^{8,9)} including my first synthesis of the enantiomers of 1^{10} and that of 3.¹¹⁾ Almost all of the published syntheses have utilized the intramolecular acetalization of keto diol **A** (Fig. 2) to give acetal **B** as the final step. Keto diol **A** is usually prepared by acid-catalyzed deprotection of intermediate **C**, **D** or **E**, and spontaneous cyclization of **A** under acidic conditions gives **B**. Using the protective groups present in **C**, **D** and **E**, however, is against the recent trend to carry out syntheses under protective group-free conditions. Protective group-free synthesis is considered to be better on the basis of atom economy and is regarded as a so-called green process.

I therefore planned to employ a rearrangement reaction of epoxy ketone F to give acetal B as the final acetalization step. The reactions of epoxides with ketones are known to give acetals,12) and Wasserman and Barber were the first to employ this rearrangement for the synthesis of (\pm) -*exo*-brevicomin (3).¹³ We have used this reaction in our synthesis of (\pm) -frontalin (1).¹⁴⁾ Wasserman et al. later synthesized 3,4-dehydro-exobrevicomin (4) by this rearrangement ($\mathbf{G} \rightarrow \mathbf{4}$).^{15,16} The purpose of the present study is to prepare (\pm) -1, (\pm) -2, (\pm) -3 and (\pm) -4 by epoxy ketone rearrangement $(\mathbf{F} \rightarrow \mathbf{B})$ and to evaluate its effect on the efficiency of synthesizing these pheromones. It is of particular interest to learn whether or not the synthesis of (\pm) -4 by such rearrangement of $\mathbf{G} \rightarrow \mathbf{4}$ would be better than our previous method with pure (1R, 5S, 7R)-4 employing protective groups.^{17,18)}

Results and Discussion

Syntheses of (\pm) -frontalin (1) and (\pm) -endo-brevicomin (2)

Scheme 1 summarizes the syntheses of (\pm) -frontalin (1) and (\pm) -endo-brevicomin (2). The carbon framework of (\pm) -1 was constructed from methallyl chloride (5a) and (\pm) -3-butyn-2-ol (6) by alkylating the dianion of (\pm) -6 with 5a to give (\pm) -7a.¹⁹⁾ Oxidation of (\pm) -7a with pyridinium chlorochromate (PCC) afforded acetylenic ketone 8a. m-Chloroperbenzoic acid (MCPBA) selectively epoxidized the double bond of 8a to give epoxy ketone 9a. This in ethyl acetate was hydrogenated over palladium-charcoal in the presence of a small amount of triethylamine to give epoxy ketone 10a. Treating 10a with zinc chloride in diethyl ether finally vielded (\pm)-frontalin (1) after distillation. Its IR, ¹Hand ¹³C-NMR, and mass spectral data were identical to those of an authentic sample. The overall yield of (\pm) -1 was 25% in five steps based on 5a. This protective group-free synthesis was far more efficient than our previous synthesis of (\pm) -1 in 1975 [a 4.4% overall yield in eight steps based on 5a], and proved to be convenient for preparing gram quantities of (\pm) -1 in a short time.

Correspondence: Fax: +81-3-3813-1516; E-mail: kjk-mori@arion.ocn.ne.jp

^{*} Pheromone Synthesis, Part 246. See ref. 1 for Part 245.

house mouse

western pine beetle

Fig. 2. Synthetic Plan.

The synthesis of (\pm) -endo-brevicomin (2) started with slightly lachrymatory bromide 5b, which had been prepared in a 62% yield from commercially available (E)-2-penten-1-ol, being treated with phosphorus tribromide in diethyl ether.¹⁵⁾ The subsequent steps to (\pm) -9b were carried out in the same manner as that reported by Wasserman *et al.*¹⁵⁾ Accordingly, the dianion of (\pm) -6 was alkylated with **5b** to give (\pm) -**7b**. PCC oxidation of (\pm) -7b afforded 8b which was epoxidized with MCPBA to give (\pm) -9b. Hydrogenation of (\pm) -9b with palladium-charcoal in ethyl acetate in the presence of triethylamine furnished epoxy ketone (\pm) -10b. This was treated with zinc chloride in diethyl ether to yield (\pm) -endo-brevicomin (2). Its spectral data were identical to those of an authentic specimen. The overall yield of (\pm) -2 was 23% based on 5b in five steps. (\pm) -endo-Brevicomin (2) could thus be efficiently synthesized in a straightforward manner.

Syntheses of (\pm) -exo-brevicomin (3) and (\pm) -3,4dehydro-exo-brevicomin (4)

 (\pm) -*exo*-Brevicomin (3) was initially thought to be obtainable through a route similar to that used for the synthesis of (\pm) -*endo*-brevicomin (2). Accordingly, as

Scheme 1. Syntheses of (\pm) -Frontalin (1) and (\pm) -*endo*-Brevicomin (2).

Reagents and conditions: (a) *n*-BuLi (2 eq.), THF, HMPA; -40 °C to room temperature, overnight; (b) PCC, NaOAc, SiO₂, CH₂Cl₂; 0–5 °C, 1 h; room temperature, 2 h; (c) MCPBA, CH₂Cl₂; 0–5 °C, 1.5–2 h; (d) H₂, Pd–C, Et₃N, EtOAc; room temperature, 1–1.5 h; (e) ZnCl₂, Et₂O; 0–5 °C, 45 min–1 h.

Scheme 2. Attempted Preparation of 7c.

shown in Scheme 2, extremely lachrymatory bromide **5c**, which had been prepared from commercially available (*Z*)-2-penten-1-ol by a treatment with phosphorus tribromide, was subjected to attack by the dianion derived from (\pm) -**6** in THF/HMPA (10:1). This alkylation, however, took place with allylic rearrangement and *E*/*Z*-isomerization to give a mixture of three enyne alcohols, (\pm) -**7b**, (\pm) -**7c** and **11** (2:1:1). Desired (\pm) -**7c** was not, however, the major product. The synthetic route leading to (\pm) -**3** was therefore modified to that shown in Scheme 3.

Epoxidation of (Z)-2-penten-1-ol (12) with MCPBA furnished epoxy alcohol (\pm) -13a. As with the

Scheme 3. Syntheses of (±)-*exo*-Brevicomin (3) and (±)-3,4-Dehydro-*exo*-brevicomin (4).

Reagents and conditions: (a) MCPBA, CH₂Cl₂; 0–5 °C, 2 h; (b) Tf₂O, Et₃N, CH₂Cl₂; -70 °C, 20 min; (c) (\pm)-6, *n*-BuLi (2 eq.), THF; -30 to -20 °C; then room temperature, 1 h; (d) PCC, NaOAc, SiO₂, CH₂Cl₂; 0–5 °C, 2 h; (e) H₂, Pd–C, Et₃N, EtOAc; room temperature, 1 h; (f) ZnCl₂, Et₂O; 0–5 °C, 20–30 min; (g) H₂, Lindlar's Pd (Aldrich), quinoline, cyclohexane; 0–5 °C, 1 h.

Wasserman synthesis of (\pm) -3,4-dehydro-*exo*-brevicomin (4), (\pm) -13a was converted to corresponding triflate (\pm) -13b, this being employed for alkylation of the dianion derived from (\pm) -6. It must be added that triflate (\pm) -13b was unstable and readily polymerized when dissolved in THF containing peroxides. Dianion alkylation of (\pm) -6 with (\pm) -13b yielded 14, whose PCC oxidation gave (\pm) -9c. Hydrogenation of (\pm) -9c over palladium-charcoal furnished (\pm) -10c which was treated with zinc chloride in diethyl ether to give (\pm) -*exo*brevicomin (3). Its IR, ¹H- and ¹³C-NMR, and mass spectral data were identical to those of an authentic specimen. The overall yield of (\pm) -3 was 4% in six steps based on 12.

Wasserman's route¹⁶⁾ was employed for converting (\pm) -9c to (\pm) -3,4-dehydro-*exo*-brevicomin (4). Accordingly, (\pm) -9c was hydrogenated over Lindlar's palladium catalyst in the presence of quinoline in cyclohexane to give (*Z*)-enone (\pm) -15 which was treated with zinc chloride in diethyl ether to afford (\pm) -4. GC-MS analysis showed a significant content (24%) of (\pm) -3 resulting from over-reduction in the course of the Lindlar hydrogenation of (\pm) -9c. With the exception of signals due to contaminating (\pm) -3, synthetic (\pm) -4 showed IR, ¹H- and ¹³C-NMR, and mass spectral data identical to those of the authentic specimen. The overall yield of (\pm) -4 in six steps was 4% based on 12. The respective cyclization reactions of epoxy ketones (\pm) -10c and (\pm) -15 to pheromones (\pm) -3 and (\pm) -4

unfortuanately proceeded in rather low yields (31% and 36%), leaving a non-volatile and oily residue after distillation.

Although the present method was convenient for preparing (\pm) -4 as reported by Wasserman,^{15,16)} contamination with (\pm) -3 was almost inevitable due to our reliance on Lindlar hydrogenation for converting (\pm) -9c to (\pm) -15. Our previous synthesis of 4 with introduction of the 3,4-double bond at the final stage $(\mathbf{H} \rightarrow \mathbf{4})$ seems to have been a better method for yielding pure 4 without contamination by $\mathbf{3}$.^{17,18)}

Conclusion

Protective group-free syntheses of (\pm) -frontalin (1), (\pm) -*endo*-brevicomin (2), (\pm) -*exo*-brevicomin (3), and (\pm) -3,4-dehydro-*exo*-brevicomin (4) were accomplished. The four synthetic routes were all shorter (five or six steps) than the conventional ones, and guaranteed good overall yields in the cases of (\pm) -1 and (\pm) -2. Although short, the synthesis of (\pm) -3 as well as that of (\pm) -4 proceeded in rather poor overall yields (4%) mainly due to the instability of epoxy triflate (\pm) -13b.

Experimental

General. Refractive index data (n_D) were measured with an Atago DMT-1 refractometer, and IR spectra were measured with a Jasco FT/IR-410 spectrometer. ¹H-NMR spectra (400 MHz, TMS at $\delta = 0.00$ as an internal standard) and ¹³C-NMR spectra (100 MHz, CDCl₃ at $\delta = 77.0$ as an internal standard) were recorded by a Jeol JMN-AL 400 spectrometer. GC-MS data were recorded by an Agilent Technologies 5975 inert XL instrument, and HRMS data were measured with a Jeol JMS-SX 102A spectrometer. Column chromatography was carried out on Merck Kieselgel 60 Art 1-07734.

 (\pm) -6-Methyl-6-hepten-3-yn-2-ol (7a). A solution of n-BuLi in hexane (1.6 M, 100 mL, 160 mmol) was added dropwise to a stirred and cooled solution of (\pm) -3-butyn-2-ol (6, 5.50 g, 80 mmol) in dry THF (100 mL) and dry HMPA (10 mL) at -20 °C under Ar. The paste-like mixture was stirred for 30 min at -20 to 0° C. It was then further cooled to -40° C, and a solution of methallyl chloride (5a, 6.30 g, 10 mmol) in dry THF (15 mL) was added dropwise to the stirred mixture. Stirring was continued overnight, after which the reaction mixture had reached room temperature. The mixture was quenched with an NH₄Cl solution and then extracted with hexane. The resulting extract was successively washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was distilled to give 5.03 g (57%) of (\pm) -7a as a colorless oil, bp 70–73 °C at 5 Torr, $n_D^{25} = 1.4648$. IR ν_{max} (film) cm⁻¹: 3317 (m), 3080 (w), 2979 (s), 2931 (m), 2883 (m), 2251 (w), 1657 (m), 1153 (s), 1078 (vs), 1003 (s), 891 (vs). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.45 (3H, d, J = 6.4 Hz), 1.79 (3H, s), 2.01 (1H, br. s), 2.92 (2H, s), 4.56 (1H, br. s), 4.83 (1H, s), 4.99 (1H, s). GC-MS [HP-5MS column, 5% phenylmethylsiloxane, $30 \text{ m} \times$ 0.25 mm i.d.; He carrier gas at 60.7 kPa pressure and 70-230 °C $(+10 \circ C/min)$ temperature] t_R : 5.42 min [92%, (±)-7a], 6.53 min (3.0%), 9.22 min (1.8%). MS of (±)-7a (70 eV, EI) m/z: 124 (4) (M⁺), 123 (11), 109 (100), 91 (16), 81 (21), 79 (38), 77 (13), 65 (13), 53 (13), 45 (7), 43 (21), 41 (11), 39 (17). HRMS: calcd. for C₈H₁₂O (M⁺), 124.0888; found, 124.0884.

6-Methyl-6-hepten-3-yn-2-one (8a). A solution of 7a (4.40 g, 35.5 mmol) in dry CH₂Cl₂ (20 mL) was added dropwise over 10 min to a stirred and ice-cooled mixture of PCC (15.5 g, 72 mmol), NaOAc (0.9 g, 11 mmol) and SiO₂ (15.5 g) in dry CH₂Cl₂ (180 mL) at 5–10 °C. Stirring was continued for 1 h at 0–5 °C and then for 2 h at room temperature. The mixture was diluted with Et₂O and filtered. The SiO₂ layer was washed with Et₂O. The combined filtrate and washings were concentrated *in vacuo* to give a dark oil which was chromatographed

over SiO₂ (60 g). Elution with hexane/EtOAc (50:1–20:1) gave 3.39 g (78%) of **8a** as a yellowish oil, $n_D^{25} = 1.4668$. IR ν_{max} (film) cm⁻¹: 3087 (w), 2978 (m), 2939 (m), 2268 (w), 2212 (s), 1678 (vs), 1300 (s), 1230 (vs), 899 (s). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.81 (3H, s), 2.35 (3H, s), 3.08 (2H, s), 4.90 (1H, s), 5.50 (1H, s). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 5.38 min (88.1%, **8a**), 5.50 min (5.1%), 6.30 min (3.3%), 9.36 min (2.6%). MS of **8a** (70 eV, EI) m/z: 122 (42) (M⁺), 107 (85), 77 (100), 43 (31), 39 (19). HRMS: calcd. for C₈H₁₀O (M⁺), 122.0732; found, 122.0733.

(±)-6,7-Epoxy-6-methyl-3-heptyn-2-one (9a). MCPBA (65% purity, 6.40 g, 24 mmol) was added portionwise to a stirred and ice-cooled solution of 8a (2.80 g, 22.6 mmol) in dry CH₂Cl₂ (70 mL) at 5-10 °C. The mixture was stirred for 1.5 h at 0-5 °C and then left to stand for 40 h in a refrigerator at 5 °C. The mixture was filtered to remove solid *m*-chlorobenzoic acid, before the filter cake was washed with hexane. The combined filtrate and washings were washed with an aqueous solution of Na2CO3 containing a small amount of Na2S2O3, dried (MgSO₄), and concentrated *in vacuo* to give 2.96 g (quant.) of (\pm) -9a, $n_D^{25} = 1.4658$. IR ν_{max} (film) cm⁻¹: 3055 (w), 2989 (m), 2970 (m), 2925 (m), 2268 (m), 2214 (s), 1678 (vs), 1360 (s), 1230 (s). ¹H-NMR δ_H (CDCl₃): 1.45 (3H, s), 2.34 (3H, s), 2.60-2.81 (4H, m). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 5.35 min (2.9%), 7.43 min [86.1%, (±)-9a], 7.51 min (2.0%), 12.11 min (3.5%). MS of (±)-9a (70 eV, EI) m/z: 138 (10) (M⁺), 123 (16), 109 (30), 95 (58), 67 (46), 65 (26), 55 (22), 43 (100), 39 (24). HRMS: calcd. for C8H10O2 (M+), 138.0681; found, 138.0685.

(±)-6,7-*Epoxy*-6-methyl-2-heptanone (**10a**). 10% Pd–C (0.4 g) was added to a solution of (±)-**9a** (2.70 g, 20 mmol) and Et₃N (0.5 mL) in EtOAc (35 mL). The suspension was vigorously stirred under H₂ (balloon) for 1 h at room temperature, when the H₂ absorption ceased. The mixture was filtered through Celite, and the Celite layer was washed with Et₂O. The filtrate and washings were concentrated *in vacuo* to give 2.78 g (quant.) of (±)-**10a**, $n_D^{25} = 1.4350$. IR ν_{max} (film) cm⁻¹: 2956 (m), 1712 (s), 1363 (m), 1163 (m), 899 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.32 (3H, s), 1.50–1.58 (2H, m), 1.64–1.74 (2H, m), 2.14 (3H, s), 2.47 (2H, t-like J = 7.2 Hz), 2.58 (1H, d, J = 4.6 Hz). This compound [(±)-**10a**] decomposed under MS conditions to give (±)-**1**.

 (\pm) -Frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane, 1). A solution of (±)-10a (2.70 g, 19 mmol) in dry Et₂O (20 mL) was added dropwise to a stirred and ice-cooled suspension of ZnCl₂ (700 mg, 5.1 mmol) in dry Et₂O (10 mL) at 0–5 $^{\circ}$ C. The mixture was stirred for 45 min at 0-5 °C, diluted in an ice-water mixture, and the organic layer was separated. The aqueous layer was extracted with a small amount of Et2O. The combined Et2O solution was washed with brine, dried (MgSO₄), and concentrated under atmospheric pressure by fractional distillation through a Vigreux column. The resulting residue was distilled to give 1.51 g (56%) of (\pm) -1 as a colorless oil with a camphor-like odour, bp 74–77 °C at 52 Torr, $n_D^{25} = 1.4358$. IR ν_{max} (film) cm⁻¹: 2976 (m), 2937 (s), 2877 (m), 1454 (m), 1387 (m), 1379 (m), 1263 (m), 1240 (m), 1201 (m), 1173 (m), 1120 (s), 1065 (m), 1030 (s), 931 (m), 895 (m), 868 (m), 849 (s), 820 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.32 (3H, s), 1.43 (3H, s), 1.50-1.70 (5H, m), 1.70-1.95 (1H, m), 3.45 (1H, d-like J = 5.6 Hz), 3.91 (1H, d, J = 6.8 Hz). ¹³C-NMR $\delta_{\rm C}$ (CDCl3): 18.1, 23.1, 24.7, 34.0, 34.6, 74.2, 80.0, 108.0. GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 3.10 min (2.7%), 4.36 min [90.7%, (±)-1], 4.41 min (1.2%), 4.49 min (4.9%). MS of (\pm) -1 (70 eV, EI) m/z: 142 (25) (M⁺), 112 (27), 100 (81), 72 (100), 71 (38), 43 (98). HRMS: calcd. for $C_8H_{14}O_2$ (M⁺), 142.0994; found, 142.0991.

(\pm)-(E)-6-Nonen-3-yn-2-ol (7b). A solution of n-BuLi (1.6 M, 82 mL, 131 mmol) was added dropwise to a stirred and cooled solution of (\pm)-6 (4.40 g, 65 mmol) in dry THF (80 mL) and dry HMPA (10 mL) at -78 °C under Ar. Stirring was continued for 1 h at -78 °C to 0 °C. After further stirring for 10 min at 0-5 °C, the mixture was cooled again to -40 °C. A solution of 5b (6.75 g, 45 mmol) in dry THF (10 mL) was added dropwise to the stirred mixture, and it was left to stand overnight at room temperature. The mixture was then diluted with an ice and NH₄Cl solution, and extracted with hexane. The extract was successively washed with water and brine, dried (MgSO₄), and

concentrated *in vacuo*. The residue was distilled to give 4.27 g (68%) of (\pm) -**7b** as a colorless oil, bp 76–78 °C at 3 Torr, $n_D^{22} = 1.4708$. IR ν_{max} (film) cm⁻¹: 3357 (s), 2964 (s), 2247 (w), 1641 (w), 1155 (m), 1080 (s), 968 (s). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 0.99 (3H, t, J = 7.6 Hz), 1.45 (3H, d, J = 6.4 Hz), 1.98 (1H, br.), 2.04 (2H, m), 2.92 (2H, m), 4.50 (1H, q, J = 6.4 Hz), 5.35–5.42 (1H, m), 5.67–5.75 (1H, m). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 7.22 min [1.2%, (Z)-isomer], 7.35 min [82.9%, (\pm) -**7b**], 7.61 min (3.5%, M⁺ = 138, unidentified), 7.65 min (12.4%, M⁺ = 170, unidentified). MS of (\pm) -**7b** (70 eV, EI) m/z: 138 (2) (M⁺), 137 (3), 123 (35), 109 (37), 105 (77), 95 (100), 93 (20), 91 (37), 81 (58), 79 (57), 77 (57), 67 (52), 55 (45), 43 (69), 39 (33). HRMS: calcd. for C₉H₁₄O (M⁺), 138.1045; found, 138.1037.

(E)-6-Nonen-3-yn-2-one (8b). A solution of (±)-7b (5.07 g, 37 mmol) in dry CH2Cl2 (30 mL) was added dropwise to a stirred and ice-cooled mixture of PCC (17.2 g, 80 mmol), NaOAc (0.6 g, 7 mmol) and SiO₂ (20 g) in dry CH₂Cl₂ (200 mL) at 5-10 °C. Stirring was continued for 1 h at 0-5 °C and then for 2 h at room temperature. The mixture was diluted with Et2O and filtered, the resulting filter cake being washed with Et₂O. The combined filtrate and washings were concentrated in vacuo to give a dark oil which was chromatographed over SiO₂ (50 g). Elution with hexane/EtOAc (10:1) gave 3.87 g (77%) of **8b** as a yellowish oil, $n_D^{21} = 1.4710$. IR ν_{max} (film) cm⁻¹: 2966 (s), 2933 (m), 2210 (s), 1678 (s), 1360 (s), 1228 (s), 970 (s). $^1\mathrm{H}\text{-NMR}~\delta_\mathrm{H}$ (CDCl₃): 1.00 (3H, t, J = 7.2 Hz), 2.02–2.09 (2H, m), 2.34 (3H, s), 3.07-3.09 (2H, m), 5.33-5.41 (1H, m), 5.70-5.77 (1H, m). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 5.89 min (6.7%, M⁺ = 136, unidentified), 7.30 min [2.6%, (Z)-isomer], 7.42 min (88.1%, 8b), 7.74 min (1.7%, $M^+ = 136$, unidentified). MS of **8b** (70 eV, EI) m/z: 136 (11) (M⁺), 135 (5), 121 (100), 95 (18), 93 (42), 91 (63), 82 (21), 79 (79), 77 (93), 65 (27), 55 (25), 53 (17), 51 (20), 43 (88), 39 (26). HRMS: calcd. for $C_9H_{11}O$ (M⁺ – H), 135.0810; found, 135.0810. HRMS: calcd. for C_8H_9O (M⁺ – CH₃), 121.0653; found, 121.0652.

(±)-trans-6,7-Epoxy-3-nonyn-2-one (9b). MCPBA (65% purity, 8.10 g, 30 mmol) was added portionwise to a stirred and ice-cooled solution of **8b** (3.80 g, 28 mmol) in CH_2Cl_2 (100 mL) at 5–10 °C. The mixture was stirred for 1 h at 0-5 °C, and then left to stand for 65 h in a refrigerator at 5 °C. The mixture was filtered, and the resulting filter cake was washed with hexane. The filtrate and washings were washed with an aqueous solution of Na2CO3 containing a small amount of Na₂S₂O₃, dried (MgSO₄), and concentrated in vacuo to give 3.90 g (92%) of (±)-**9b** as a yellowish oil, $n_D^{21} = 1.4658$. IR ν_{max} (film) cm⁻¹: 2972 (s), 2937 (m), 2877 (m), 2214 (s), 1678 (vs), 1360 (s), 1228 (vs). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.01 (3H, t, J = 7.6 Hz), 1.57– 1.65 (2H, m), 2.34 (3H, s), 2.69 (2H, dq, J = 5.2, 17.6 Hz), 2.85 (1H, dt, J = 2, 5.6 Hz), 2.93 (1H, dt, J = 2, 6 Hz). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 5.89 min [5.8%, M⁺ = 136, unidentified], 8.49 min $(1.7\%, M^+ = 152, unidentified), 9.06 min [89.0\%, (\pm)-9b], 9.15 min$ [0.6%, (±)-9c], 9.21 min (2.9%, unidentified). MS of (±)-9b (70 eV, EI) m/z: 152 (9) (M⁺), 137 (14), 123 (9), 109 (48), 95 (55), 81 (38), 79 (52), 67 (13), 53 (18), 43 (100). HRMS: calcd. for C₉H₁₁O₂ (M⁺ - H), 151.0759; found, 151.0764. HRMS: calcd. for $C_8H_9O_2$ (M⁺ – CH₃), 137.0603; found, 137.0594.

(±)-trans-6,7-*Epoxy*-2-*nonanone* (10b). 10% Pd–C (0.5 g) was added to a solution of (±)-9b (3.86 g, 26 mmol) and Et₃N (0.7 mL) in EtOAc (50 mL). The suspension was vigorously stirred under H₂ (balloon) for 1.5 h at room temperature, after which the H₂ absorption ceased. The mixture was filtered through Celite, and the Celite layer was washed with Et₂O. The filtrate and washings were concentrated *in vacuo* to give 3.90 g (99%) of (±)-10b as an oil, $n_D^{21} = 1.4402$. IR ν_{max} (film) cm⁻¹: 2968 (s), 2937 (s), 1712 (vs), 1462 (m), 1367 (m), 1167 (m), 887 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 0.99 (3H, t, J = 7.6 Hz), 1.35–1.65 (5H, m), 1.70–1.77 (2H, m), 2.15 (3H, s), 2.37–2.53 (2H, m), 2.62–2.70 (1H, m). Compound (±)-10b decomposed under MS conditions to give (±)-2.

(\pm)-endo-*Brevicomin* (endo-7-*ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]-octane, 2*). A solution of (\pm)-**10b** (3.80 g, 24 mmol) in dry Et₂O (20 mL) was added dropwise to a stirred and ice-cooled suspension of

ZnCl₂ (1.10g, 8 mmol) in dry Et₂O (20 mL) at 0-5 °C. The mixture was stirred for 1 h at 0-5 °C, poured into an ice-water solution, and left until the organic layer had separated. The aqueous layer was extracted with a small amount of Et2O. The combined Et2O solution was washed with brine, dried (MgSO₄), and concentrated by fractional distillation through a Vigreux column under atmospheric pressure. The residue was distilled to give 1.84 g (48%) of (±)-2 as a colorless oil with a camphor-like odour, bp 92–96 °C at 45 Torr, $n_D^{21} = 1.4462$. IR ν_{max} (film) cm⁻¹: 2960 (s), 2877 (m), 1463 (m), 1379 (s), 1348 (w), 1307 (w), 1257 (m), 1238 (s), 1198 (m), 1173 (s), 1108 (s), 1032 (s), 1001 (s), 968 (m), 903 (m), 870 (w), 852 (s). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 0.99 (3H, dt, J = 2, 7.6 Hz), 1.43 (3H, d, J = 2 Hz), 1.53-1.70 (6H, m),1.75-1.90 (2H, m), 3.95-4.03 (1H, m), 4.19-4.25 (1H, m). ¹³C-NMR δ_{C} (CDCl₃): 11.0, 17.6, 21.9, 23.6, 25.0, 34.4, 76.5, 81.6, 106.9. GC-MS (same conditions as those for 7a) t_R : 11.9 min [3.1%, (±)-3], 12.6 min (8.1%, $M^+ = 142$, unidentified), 12.8 min [88.8%, (±)-2]. MS of (\pm) -2 (70 eV, EI) m/z: 156 (4) (M⁺), 114 (63), 98 (59), 86 (32), 81 (23), 71 (29), 68 (29), 67 (17), 57 (15), 55 (15), 43 (100), 41 (15), 39 (10). HMRS: calcd. for $C_9H_{16}O_2$ (M⁺), 156.1150; found, 156.1148.

(±)-cis-2,3-Epoxy-1-pentanol (13a). MCPBA (65% purity, 41.3 g, 156 mmol) was added portionwise over 30 min to a stirred and icecooled solution of 12 (13.4 g, 156 mmol) in CH_2Cl_2 (250 mL) at 5-10 °C. Stirring was continued for 2 h at 0-5 °C, and the mixture was then filtered and the filter cake washed with hexane. The filtrate and washings were washed with a solution of Na2CO3 containing a small amount of Na2S2O3, dried (MgSO4), and concentrated in vacuo. The resulting residue was distilled to give 8.36 g (53%) of (\pm) -13a as a colorless oil, bp 77–78 °C at 8 Torr or 68–69 °C at 5 Torr, $n_{\rm D}{}^{20} =$ 1.4359. IRv_{max} (film) cm⁻¹: 3419 (s), 2972 (s), 2937 (m), 2879 (m), 1460 (m), 1043 (s), 895 (m), 818 (m), 800 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.05 (3H, dt, J = 2, 7.6 Hz), 1.49–1.68 (2H, m), 2.52–2.85 (1H, br.), 2.99-3.05 (1H, m), 3.14-3.22 (1H, m). 3.62-3.70 (1H, m), 3.81-3.90 (1H, m). GC-MS (same conditions as those for 7a) $t_{\rm R}$: 6.85 min [0.98%, trans-isomer], 8.07 min [99.02%, (±)-13a]. MS of (±)-13a (70 eV, EI) m/z: 102 (<1) (M⁺), 59 (100), 57 (20), 55 (11), 44 (29), 43 (39), 41 (46), 39 (18), 31 (38). HRMS: calcd. for $C_5H_8O (M^+ - H_2O)$, 84.0575; found, 84.0576.

 (\pm) -cis-2,3-Epoxypentyl triflate (13b). A solution of Tf₂O (7.6 mL, 12.7 g, 45 mmol) in dry CH2Cl2 (45 mL) was added dropwise over 20 min to a stirred and cooled solution of (\pm) -13a (3.06 g, 30 mmol) and Et₃N (13.6 mL, 100 mmol) in dry CH₂Cl₂ (70 mL) at -70 °C under Ar. The mixture was stirred for 20 min at -70 °C, before being transferred to a separatory funnel, successively washed with water and an aqueous NaHCO3 solution, dried (MgSO4), and filtered through a short column of SiO2 (30 g) in CH2Cl2. The column was washed with a small amount of CH2Cl2, and the combined filtrate and washings were concentrated in vacuo to give crude (\pm) -13b as an oil (5.52 g, 79%). IRv_{max} (film) cm⁻¹: 2979 (m), 2945 (w), 2885 (w), 1415 (s), 1248 (s), 1209 (s), 1144 (s), 941 (s), 615 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.09 (3H, t, J = 7.6 Hz, 1.50–1.67 (2H, m), 3.00–3.10 (1H, m), 3.30–3.34 (1H, m), 4.47-4.56 (1H, m), 4.64-4.71 (1H, m). Triflate (±)-13b was extremely unstable and spontaneously polymerized by an exothermic reaction in the presence of air to give a dark-colored and viscous oil. Crude (\pm) -13b was immediately employed in the next step.

 (\pm) -cis-6,7-Epoxy-3-nonyn-2-ol (14). A solution of n-BuLi in hexane (1.6 M, 50 mL, 80 mmol) was added dropwise to a stirred and cooled solution of (\pm) -6 (2.80 g, 40 mmol) in dry THF (200 mL) at -70 °C to -50 °C under Ar. The resulting sticky suspension was stirred without cooling to warm the mixture to -10 °C. It was then cooled again to -30 °C to -20 °C, and a solution of (±)-13b (5.52 g, 23.6 mmol) in dry C₆H₆ (40 mL) was added dropwise over 10 min to the vigorously stirred mixture to make it homogeneous. Stirring was continued for 1 h without cooling, before the mixture was poured into a solution of ice and NH₄Cl, and extracted with Et₂O. The extract was successively washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The resulting residue (3.69 g) was chromatographed over SiO₂ (80g), elution with hexane/EtOAc (8:1 to 5:1) giving 1.71 g (41%) of (±)-**14** as a colorless oil, $n_D^{20} = 1.4694$. IR ν_{max} (film) cm⁻¹: 3417 (vs), 2976 (s), 2937 (m), 2879 (m), 2249 (w), 1454 (m), 1371 (m), 1290 (m), 1153 (s), 1078 (vs), 1003 (s), 935 (m), 893 (m), 820 (m), 793 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.08 (3H, t, J = 7.6 Hz), 1.44 (3H, d, J = 6.4 Hz), 1.49–1.66 (2H, m), 2.02 (1H, d, J = 4.8 Hz), 2.28–2.37 (1H, m), 2.56–2.64 (1H, m), 2.92–2.98 (1H, m), 3.12–3.18 (1H, m), 4.53 (1H, m). GC-MS (same conditions as those for **7a**) $t_{\rm R}$: 9.38 min [99.2%, (±)-**14**]. MS of (±)-**14** (70 eV, EI) m/z: 153 (4) (<1) (M⁺ – 1), 136 (3), 125 (4), 121 (10), 109 (37), 95 (54), 91 (21), 81 (87), 79 (37), 77 (33), 67 (49), 55 (29), 53 (34), 45 (29), 43 (100), 41 (57), 39 (40). HRMS: calcd. for C₉H₁₃O₂ (M⁺ – H), 153.0921; found, 153.0915.

 (\pm) -cis-6,7-Epoxy-3-nonyn-2-one (9c). A solution of (\pm) -14 (1.65 g, 10.7 mmol) in dry CH2Cl2 (10 mL) was added dropwise to a vigorously stirred and ice-cooled suspension of PCC (6.45 g, 40 mmol), NaOAc (1.90 g, 23 mmol) and SiO₂ (6.0 g) in dry CH₂Cl₂ (80 mL). The mixture was stirred at 0-5 °C for 2 h, diluted with Et₂O, and filtered. The filtrate was concentrated *in vacuo*, and the residue (ca, 1.6g) was chromatographed over SiO₂ (20 g). Elution with hexane/EtOAc (20:1) gave 1.12 g (69%) of (±)-9c as a yellowish oil, $n_D^{20} = 1.4702$. IR ν_{max} (film) cm⁻¹: 2972 (s), 2937 (m), 2879 (m), 2214 (s), 1678 (vs), 1360 (m), 1230 (s). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.09 (3H, t, J = 7.6 Hz), 1.49– 1.67 (2H, m), 2.34 (3H, s), 2.49 (1H, dd, J = 6.8, 17.6 Hz), 2.75 (1H, dd, J = 5.6, 17.6 Hz), 2.94–2.98 (1H, m), 3.12–3.22 (1H, m). GC-MS (same conditions as those for 7a) $t_{\rm R}$: 9.25 min [90.0%, (±)-9c], 9.32 min (3.8%, trans-isomer), 11.41 min (6.2%, unidentified). MS of (±)-9c (70 eV, EI) m/z: 152 (4) (M⁺), 137 (13), 123 (8), 109 (29), 95 (54), 81 (38), 79 (56), 67 (13), 53 (18), 43 (100), 41 (21), 39 (23). HRMS: calcd. for $C_9H_{11}O_2$ (M⁺ – H), 151.0765; found, 151.0760.

(±)-cis-6,7-*Epoxy-2-nonanone* (10c). 10% Pd–C (0.25 g) and Et₃N (0.3 mL) were added to a solution of (±)-9c (1.02 g, 6.7 mmol) in EtOAc (20 mL). The suspension was stirred under an H₂ atmosphere (balloon) for 1 h at room temperature and then filtered through Celite. The Celite layer was washed with Et₂O, and the filtrate and washings were combined and concentrated *in vacuo* to give 1.10g (quant.) of (±)-10c as a colorless oil, $n_D^{21} = 1.4442$. IR ν_{max} (film) cm⁻¹: 2970 (s), 2937 (s), 2877 (m), 1714 (vs), 1367 (m), 1242 (m), 906 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.04 (3H, t, J = 7.6 Hz), 1.40–1.65 (4H, m), 1.77 (2H, m), 2.15 (3H, s), 2.50–2.61 (1H, m), 2.84–2.94 (1H, m). Oily (±)-10c was immediately employed in the next step.

 (\pm) -exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane, 3). A solution of (\pm) -10c (1.00 g, 6.4 mmol) in dry Et₂O (10 mL) was added dropwise to a stirred and ice-cooled suspension of ZnCl₂ (1.00 g, 3.7 mmol) in dry Et₂O (30 mL) at 0-5 °C. After stirring for 30 min at 0–5 $^\circ\text{C},$ the mixture was quenched with an NH₄Cl solution and extracted with Et2O. The extract was washed with brine, dried (MgSO₄), and concentrated under atmospheric pressure by fractional distillation through a Vigreux column. The residue was distilled to give 310 mg (31%) of (\pm) -3 as a colorless oil with a camphor-like odour, bp 81–82 °C at 29 Torr, $n_D^{21} = 1.4408$. IR ν_{max} (film) cm⁻¹: 2939 (s), 2877 (m), 2848 (m), 1462 (m), 1381 (s), 1346 (w), 1333 (w), 1238 (s), 1174 (s), 1107 (m), 1032 (m), 1007 (m), 970 (m), 926 (m), 879 (m), 847 (s), 615 (w). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J = 7.6 Hz), 1.42 (3H, s), 1.45-1.61 (1H, m), 1.61-1.65 (2H, s)m), 1.75–1.85 (2H, m), 1.85–1.95 (1H, m), 3.94 (1H, t, J = 7.6 Hz), 4.14 (1H, br. s). $^{13}\text{C-NMR}~\delta_{C}$ (CDCl_3): 9.8, 17.2, 25.1, 28.0, 28.6, 34.9, 78.3, 81.2, 107.7. GC-MS (same conditions as those for 7a) $t_{\rm R}$: 11.96 min [97.2%, (±)-3], 12.83 min [1.4%, (±)-2]. MS of (±)-3 (70 eV, EI) *m/z*: 156 (12) (M⁺), 127 (11), 114 (100), 99 (15), 98 (36), 86 (31), 85 (81), 81 (17), 68 (27), 43 (100). HRMS: calcd. for C₉H₁₆O₂ (M⁺), 156.1150; found, 156.1142.

(±)-(Z)-cis-6,7-*Epoxy-3-nonen-2-one* (15). Lindlar's Pd catalyst on CaCO₃ with Pb²⁺ (Aldrich, 100 mg) and quinoline (1 drop) were added to a solution of (±)-**9c** (381 mg, 2.5 mmol) in cyclohexane (15 mL). The mixture was stirred under an H₂ atmosphere (balloon) at 0–5 °C for 1 h and was then filtered through SiO₂ (3.0 g). The SiO₂ column was washed with hexane/EtOAc (20:1), and the combined filtrate and washings were concentrated *in vacuo* to give 344 mg (89%) of crude (±)-**15**, $n_D^{21} = 1.4662$. IR ν_{max} (film) cm⁻¹: 2972 (s), 1693 (s), 1616 (m), 1415 (m), 1358 (m), 1180 (s), 968 (m), 928 (m), 808 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 1.02 (3H, t, *J* = 7.6 Hz), 1.42–1.65 (2H, m), 2.23 (3H, s), 2.69–2.73 (1H, m), 2.85–2.94 (1H, m), 3.01–3.10 (2H, m),

6.15–6.22 (1H, m), 6.29 (1H, d-like, J = 12 Hz). (±)-15 was immediately employed in the next step.

 (\pm) -3,4-Dehvdro-exo-brevicomin (exo-7-ethvl-5-methvl-6,8-dioxabicyclo[3.2.1]oct-3-ene, 4). ZnCl₂ (0.5 g, 3.7 mmol) was added to a stirred and ice-cooled solution of (\pm) -15 (340 mg, 2.2 mmol) in dry Et₂O (5 mL). The mixture was stirred at 0–5 $^{\circ}$ C for 20 min, and then quenched by adding an NH4Cl solution, before the mixture was extracted with Et2O. The Et2O solution was washed with brine, dried (MgSO₄), and concentrated under atmospheric pressure by fractional distillation through a Vigreux column. The residue was distilled to give 121 mg (36%) of (\pm)-4 contaminated with (\pm)-3 as a colorless and camphor-smelling oil, bp 88–89 °C at 38 Torr, $n_D^{20} = 1.4542$. IR ν_{max} (film) cm⁻¹: 3039 (w), 2962 (s), 1641 (w), 1462 (w), 1394 (m), 1381 (s), 1317 (w), 1254 (s), 1198 (s), 1041 (m), 1016 (s), 966 (s), 922 (m), 903 (m), 858 (s), 710 (m), 526 (w), 505 (m). ¹H-NMR $\delta_{\rm H}$ (CDCl₃): 0.94 (3H, t, J = 7.6 Hz), 1.53 (3H, s), 1.55-1.65 (2H, m), 1.82-1.90 (1H, m), 2.60-2.68 (1H, m), 3.76-3.80 (1H, m), 4.72-4.76 (1H, m), 5.66–5.73 (1H, m), 5.80–5.84 (1H, m). 13 C-NMR δ_{C} (CDCl₃): 9.8, 22.1, 27.5, 32.1, 77.1, 82.0, 102.5, 124.3, 132.0. GC-MS (same conditions as those for **7a**) t_R : 11.93 min [24.0%, (±)-3], 12.25 min $[73.1\%, (\pm)-4]$. MS of $(\pm)-4$ (70 eV, EI) m/z: 154 (8) (M⁺), 136 (5), 125 (49), 112 (21), 111 (100), 97 (29), 96 (43), 95 (79), 83 (46), 81 (43), 79 (13), 69 (20), 57 (35), 53 (17), 43 (100), 41 (24), 39 (19). HRMS: calcd. for $C_9H_{14}O_2$ (M⁺), 154.0994; found, 154.0999.

Acknowledgments

My thanks are due to Mr. M. Kimura (President, Toyo Gosei Co., Ltd.) for his support. I thank Mr. Y. Shikichi (Toyo Gosei Co., Ltd.) for NMR and GC-MS measurements. HRMS analyses were carried out by Drs. T. Nakamura and Y. Hongo (RIKEN), and the figures and schemes were prepared by Dr. T. Tashiro (RIKEN); I thank all of them.

References

- Akasaka K, Tamogami S, Beeman RW, and Mori K, *Tetrahe*dron, 67, 201–209 (2011).
- 2) Mori K, "The Chemistry and Biology of Volatiles," ed. Herrmann A, Wiley, Chichester, pp. 123–149 (2010).
- 3) Kinzer GW, Fentiman Jr AF, Page TG, Foltz RL, Vité JP, and Pitman GB, *Nature*, **221**, 447–448 (1969).
- 4) Silverstein RM, Brownlee RG, Bellas TE, Wood DL, and Browne LE, *Science*, **159**, 889–890 (1968).
- 5) Wiesler DP, Schwende FJ, Carmack M, and Novotny M, *J. Org. Chem.*, **49**, 882–884 (1984).
- Greenwood DR, Comeskey D, Hunt MB, and Rasmussen LEL, *Nature*, 438, 1097–1098 (2005).
- 7) Mori K, *Bioorg. Med. Chem.*, **15**, 7505–7523 (2007) and refs. therein.
- Mori K, "The Total Synthesis of Natural Products" Vol. 4, ed. ApSimon J, Wiley, New York, pp. 68–74 (1981).
- Mori K, "The Total Synthesis of Natural Products" Vol. 9, ed. ApSimon J, Wiley, New York, pp. 381–428 (1992).
- 10) Mori K, Tetrahedron, 31, 1381-1384 (1975).
- 11) Mori K, Tetrahedron, **30**, 4223–4227 (1974).
- Blackett BN, Coxon JM, Hartshorn MP, Lewis AJ, Little GR, and Wright GJ, *Tetrahedron*, 26, 1311–1313 (1970) and refs. therein.
- Wasserman HH and Barber EH, J. Am. Chem. Soc., 91, 3674– 3675 (1969).
- Mori K, Kobayashi S, and Matsui M, Agric. Biol. Chem., 39, 1889–1890 (1975).
- 15) Wasserman HH, Wolff S, and Oku T, *Tetrahedron Lett.*, **27**, 4909–4912 (1986).
- Wassermann HH and Oku T, *Tetrahedron Lett.*, 27, 4913–4916 (1986).
- 17) Mori K and Seu Y-B, Tetrahedron, 42, 5901–5904 (1986).
- 18) Tashiro T and Mori K, Eur. J. Org. Chem., 2167–2173 (1999).
- 19) Colonge J and Varagnat A, Bull. Soc. Chim. Fr., 561–564 (1964).