

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 6681-6694

The direct preparation of functionalised cyclopropanes from allylic alcohols or α-hydroxyketones using tandem oxidation processes

Graeme D. McAllister, Magalie F. Oswald, Richard J. Paxton, Steven A. Raw and Richard J. K. Taylor^{*}

Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

Received 29 October 2005; revised 22 December 2005; accepted 23 December 2005 Available online 6 June 2006

Abstract—New manganese dioxide-mediated tandem oxidation processes (TOPs) have been developed, which facilitate the direct conversion of allylic alcohols and α -hydroxyketones into polysubstituted functionalised cyclopropanes. In the simplest version, the oxidation of an allylic alcohol is carried out in the presence of a stabilised sulfurane, and the intermediate α , β -unsaturated carbonyl compound undergoes in situ cyclopropanation. By using a combination of stabilised phosphorane and sulfurane, the direct conversion of allylic alcohols or α -hydroxyketones into functionalised cyclopropanes is achieved, with in situ cyclopropanation being followed by Wittig olefination, or vice versa. The application of these methods to a formal synthesis of the lignan (\pm)-picropodophyllone, and to novel analogues of the insecticide allethrin II, is described.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

We have recently developed a range of manganese dioxidemediated tandem oxidation processes (TOPs) in which primary alcohols are oxidised and the intermediate aldehydes are trapped in situ to give alkenes, imines, oximes, amines, nitriles, esters, amides and heterocyclic systems via onepot procedures.¹ These TOP sequences offer a number of advantages to the organic chemist: they are operationally straightforward, the MnO₂ and its by-products being removed by a simple filtration; they result in a reduced number of operations, giving significant time–cost benefits; and they allow the use of 'difficult' carbonyl intermediates (i.e., those that are volatile, toxic or noxious) as they are prepared and elaborated in situ. The initial studies referred to above concentrated on 1,2-additions to the intermediate carbonyl compounds, as illustrated in Scheme 1 for the oxidation–Wittig reaction of allylic alcohols 1 in which the intermediate conjugated aldehydes 2 are trapped by a stabilised phosphorane 3 giving the product dienes 4. However, since the seminal research of Corey and Chaykovsky and others,² it is well known that sulfuranes undergo 1,4-addition to α , β -unsaturated carbonyl compounds to produce the corresponding cyclopropanes. Cyclopropanes are widespread in natural products

Scheme 1.

Keywords: Oxidation; One-pot transformations; Tandem reactions; TOPs; Cyclopropanes; Picropodophyllone; Allethrin analogues. * Corresponding author. Tel.: +44 (0)1904 432606; fax: +44 (0)1904 434523; e-mail: rjkt1@york.ac.uk

and biologically active analogues, and are valuable synthetic intermediates.³ We therefore decided to investigate whether a manganese dioxide-mediated TOP sequence could be carried out using stabilised sulfuranes **5** to produce a one-pot procedure for converting allylic alcohols into polysubstituted cyclopropanes **6** (Scheme 1). Herein, we describe detailed results concerning TOP sequences involving oxidation–cyclopropanation and their applications in target molecule synthesis.⁴

2. Tandem oxidation-cyclopropanation reactions

In order to determine the viability of an oxidation–cyclopropanation sequence, we first examined the reaction of 2-methyl-2-propen-1-ol **1a** with activated MnO₂ in the presence of (carbethoxymethylene)dimethylsulfurane **5a**, prepared from the commercially available sulfonium salt,^{2d} and powdered 4 Å molecular sieves in benzene at reflux (Scheme 2). We were delighted to observe the formation of the desired cyclopropanecarboxaldehyde **6a** in 37% yield, indicating that sulfurane **5a** is compatible with manganese dioxide. We quickly established that the use of dichloromethane as solvent gave the optimum yield of **6a**, 78% as a mixture of trans/cis-isomers (~2:1).

With this result in hand, we then moved on to establish the scope of the TOP–cyclopropanation methodology, with respect to the alcohol and sulfurane; the results are shown in Table 1. With 2-methyl-2-propen-1-ol **1a**, we first established that (benzoylmethylene)dimethylsulfurane **5b**, again prepared from the commercially available sulfonium salt,^{2e} was also successful, producing cyclopropane **6b** in 53% yield (entry ii). Allyl alcohol **1b** also gave the desired cyclopropane **6c** on treatment with MnO₂ and sulfurane **5a** (entry

iii), although the yield was low (36%), presumably due to the volatility of the product (bp 97 °C).^{3q} By changing to sulfurane **5b**, however, adduct **6d** was obtained in an improved yield of 77% (entry iv).

Next we explored the use of the functionalised allylic alcohol 1c (entries v and vi). This proved to be a viable substrate with both sulfuranes 5a and 5b, giving the expected cyclopropanes 6e and 6f, respectively. Cyclopropane 6e (entry v) is a particularly interesting example as it is trisubstituted, with each substituent being in a different oxidation state (i.e., alkoxy, aldehyde and carboxylate), offering the possibility of further functionalisation in a selective manner. Cyclopropane 6f (entry iv) has similar potential (i.e., alkoxy, aldehyde and ketone substituents).

We then proceeded to investigate the use of secondary alcohols with a range of 1-substituted propen-1-ols (entries vii–xi); these also gave good yields and complete transselectivity about the cyclopropane.

Divinylmethanol **1f** was studied next and, with both sulfuranes **5a** and **5b**, oxidation and double-cyclopropanation occurred, giving **6j** and **6k** in 60% and 69% yield, respectively; each product was obtained as a mixture of isomers (\sim 1:1 as determined by ¹H NMR spectroscopy), but again with transorientation about the cyclopropanes (entries x and xi).

The trends in stereochemistry seen with 1- and 2-substituted propen-1-ols are consistent with the reaction mechanism proposed by Curley and DeLuca involving equilibration of initial adducts.⁵ With 1-substituted propen-1-ols (entries vii–xi), the increased size of the substituent in the intermediate (ketone vs aldehyde) results in an equilibrium giving solely the trans-cyclopropane products. Thus (Fig. 1), the

6682

Scheme 2.

Table 1. MnO₂-mediated TOP methodology for the preparation of cyclopropanes

Entry	Alcohol	Sulfurane	Product	Ratio (trans/cis)	Isolated yield (reaction time)
i	OH 1a	Me₂S ^{⊄CO} ₂Et 5 a	EtO ₂ C CHO	~2:1	78% (3 h)
ii	OH 1a	Me ₂ S ^{COPh} 5b	PhOC w CHO 6b	~4.2:1	53% (2 h)
iii	1b	Me₂S [⊄] CO₂Et 5a	EtO ₂ C ~ CHO 6c	~3:1	36% ^a (6 h)
iv	1b	Me ₂ S ^{COPh} 5b	PhOC CHO 6d	~3:1	77% (3 h)
V	TBSO OH 1c	Me₂S ^{∕∕∼} CO₂Et 5a	EtO ₂ C TBSO	~3.6:1	74% (14 h)
vi	OH 1c	Me ₂ S ^{COPh} 5b	PhOC CHO 6f TBSO	~2:1	73% (4.5 h)
vii	OH 1d	Me₂S [∕] CO₂Et 5a	EtO ₂ C	All trans	67% (18 h)
viii	OH 1e	Me₂S [⋘] CO₂Et 5a	EtO ₂ C	All trans	100% (17 h)
ix	OH 1e	Me ₂ S ^{COPh} 5b	PhOC Ph	All trans	78% (2 h)
x	OH 1f	Me₂S [⋘] CO₂Et 5a	EtO ₂ C	All trans	60% (4 h)
xi	OH 1f	Me ₂ S ^{COPh} 5b	PhOC COPh	All trans	69% (2 h)
xii	CH ₂ 1g	Me₂S ^{∕∕∼} COPh 5b	H COPh 61	5:1 ^b	76% (16 h)
xiii	Ph OH	Me₂S ^{∕∕∼} CO₂Et 5a	Ph	_	(quant.) ^c
xiv	Pr OH 1i	Me ₂ S ^{CO} 2Et 5a	Pr	_	(quant.) ^c

^a It is probable that the low yield for this example is due in part to the volatility of **6c** (bp 97 °C).^{3q}

^b Of a possible four isomers, a mixture of just two (ca. 5:1) was isolated: the stereochemistry of these diastereoisomers has not been allocated with certainty. ^c Based on ¹H NMR analysis of the unpurified reaction mixture, which showed only the aldehyde and sulfurane **5a**.

first 'kinetic' intermediates A/B (stabilised by electrostatic interactions) collapse to the cyclopropanes via the anti-conformers C/D. A solvent of low dielectric constant, such as CH_2Cl_2 , retards this rotation and collapse due to the higher energy of the charge-separated intermediates. This allows greater equilibration of **A** and **B** and, hence, **C** and **D**, presumably driven by steric demands in the intermediates. In 2-substituted propen-1-ols, there is a balance between the aldehyde (R'=H) and R" interacting with COY, resulting in isomeric mixtures. In 1-substituted propen-1-ols (R''=H), this is now a balance between a proton and a ketone (R'=alkyl, etc.) interacting with COY, making **A** and **C** highly favoured and resulting solely in trans-cyclopropane.

The more complex (-)-trans-pinocarveol **1g** also worked well in this methodology, giving the spirocyclopropane **6l** in 76% yield (entry xii). This product was isolated as a mixture of just two of the four possible isomers (~5:1). We also

investigated the use of 3-substituted 2-propen-1-ols (entries xiii–xiv) but unfortunately no cyclopropanation was observed with **1h** and **1i**, despite complete oxidation occurring. The low reactivity of terminally substituted conjugated carbonyl compounds to stabilised sulfuranes has been well documented.²

Next, we went on to explore the use of disubstituted 2propen-1-ols 1j-m which, on oxidation, give chalcones which are known⁶ to be good substrates for cyclopropanation with stabilised sulfuranes (Scheme 3). The results are summarised in Table 2 (no all-cis isomers were observed). For these alcohols, the choice of solvent was crucial, with each example being carried out in CH₂Cl₂, THF and 1,2-dichloroethane (DCE). The optimum solvent for each reaction is indicated in Table 2.

With sulfurane **5a** and electron-rich, electron-deficient, and 'electron-neutral' alcohols, the yields are good to excellent (entries i and iii–v, 51–90%). Sulfurane **5b** was also utilised in a reaction with alcohol **1j**, again in excellent yield (entry ii). The observed erosion of the original transdouble bond stereochemistry can be understood by the equilibration of reaction intermediates, as discussed earlier (Fig. 1).

3. Tandem oxidation-cyclopropanation-Wittig reactions

We were intrigued by the possibility that the cyclopropanecarboxaldehyde products $\mathbf{6}$ could be exploited in further in situ transformations. We decided to first examine the tandem oxidation–cyclopropanation–Wittig sequence, as we have already established the compatibility of phosphoranes with MnO_2 .¹ We hoped to tune the reaction conditions so that both sulfuranes and phosphoranes could be used in situ, in the presence of MnO_2 , to allow first oxidation, followed by sulfurane-mediated cyclopropanation, and finally phosphorane-induced olefination.

We first examined the reaction of 2-methylprop-2-en-1-ol **1a** with sulfurane **5a**, phosphorane **3a** and activated MnO₂. We were delighted to observe, in the first attempt, the formation of the desired cyclopropane **10a** as a ~1.4:1 mixture of cis/ trans-isomers (about the cyclopropane) in a yield of 62% (Scheme 4). Cyclopropane **10a** was accompanied by a small amount (8%) of dienoate **11**. A brief optimisation study was then carried out, varying temperature and equivalents of ylides **3a** and **5a**. It was quickly established that use of a two-fold excess of sulfurane **5a** and carrying out the reaction at reflux gave the best yield of **10a**, 81%, with no dienoate **5a** being observed.

The optimum reaction stoichiometry indicates that the major reaction sequence involves oxidation, then cyclopropanation and then olefination. This is supported by the following observations: (i) TLC analysis indicates significant oxidation–cyclopropanation, giving cyclopropyl aldehyde **6a**, before major amounts of adduct **10a** are observed; (ii) when isolated dienoate **11** was exposed to sulfurane **5a** under similar conditions, only ~50% conversion to **10a** was observed after 16 h.

 $\begin{array}{c} OH \\ Ar^{2} \\ \hline MnO_{2}, 4A \text{ mol. sieves, solvent, reflux} \\ 1j\text{-m} \end{array} \qquad \begin{array}{c} RCO \\ Ar^{2} \\ \hline MnO_{2}, 4A \text{ mol. sieves, solvent, reflux} \\ \hline T \\ \end{array} \qquad \begin{array}{c} RCO \\ Ar^{2} \\ \hline Ar^{2} \\ \hline T \\ \end{array} \qquad \begin{array}{c} RCO \\ Ar^{2} \\ \hline Ar^{2} \\ \hline \end{array} \qquad \begin{array}{c} RCO \\ Ar^{2} \\ \end{array} \qquad \begin{array}{c} RCO \\ \end{array} \qquad \begin{array}{c} RCO \\ Ar^{2} \\ \end{array} \qquad \begin{array}{c} RCO \\ \end{array}$ \

Table 2. Disubstituted 2-propen-1-ols in MnO2-mediated TOP-cyclopropanation

Entry	Alcohol	Ylide/solvent	Product	Ratio (7:8:9)	Yield (reaction time)
i	OH 1j Ph Ph	5a THF	EtO ₂ C O Ph Ph	7a:8a:9a=5.0:1.0:3.0	70% (10 h)
ii	OH 1j	5b THF	PhOC O Ph	(7b+9b): 8b =2.6:1 ^a	75% (17 h)
iii	OH Ph 1k	5a CH ₂ Cl ₂	CI CI	7c:8c:9c=3.9:1.0:2.8	80% (19 h)
iv	OH Ph 11 MeO	5a CH ₂ Cl ₂	EtO ₂ C O Ph	7d:8d:9d=4.5:1.0:2.8	51% (17 h)
v	OH Ph 1m O ₂ N	5a CH ₂ Cl ₂	EtO ₂ C O Ph	7e:8e:9e=4.0:1.0:1.6	90% (14 h)

^a Compounds **7b** and **9b** are enantiomers.

Me₂S_>_CO₂Et 5a

Scheme 4.

Table 3. TOP-cyclopropanation-olefination methodology

Entry	Alcohol	Sulfurane/phosphorane ^a	Product		2,3-trans/cis ^b	Yield (reaction time)
i	OH ^{1a}	5a, 3a	EtO ₂ C [~] CO ₂ Me	10a	~3.5:1	81% ^c (18 h)
ii	OH 1a	5b, 3a	PhOC ~~ CO ₂ Me	10b	~3.0:1	66% (14 h)
iii	OH 1a	5a, 3b	EtO ₂ C ^{~~} CN	10c	d	88% (23 h)
iv	1b ∕∕ОН	5a, 3a	EtO ₂ C ^{~rv} CO ₂ Me	10d	~6.5:1	61% (5 h)
v	№ ОН	5b, 3a	PhOC ^{~~} CO ₂ Me	10e	~3.5:1	74% (14 h)
vi	∎ ы Сн	5a, 3c	EtO ₂ C ^{~~} CO ₂ Me	10f	~7.0:1	56% ^e (18 h)
vii	TBSO OH 1c	5a, 3a	EtO ₂ C ^{-vr} TBSO	10g	~1.8:1	64% (18 h)

^a $3\mathbf{a} = Ph_3P = CHCO_2Me$; $3\mathbf{b} = Ph_3P = CHCN$; $3\mathbf{c} = Ph_3P = C(Me)CO_2Me$.

^b Ratio determined by integration of ¹H NMR spectra.

^c With $Ph_3P = CHCO_2Bu^t$ the corresponding *tert*-butyl ester was obtained in 56% yield (trans/cis = 1.8:1).

^d Alkene also showed *E*- and *Z*-isomers. trans/*E*:cis/*E*:trans/*Z*:cis/*Z* ~8.5:4.4:3.6:1.0.

^e The use of microwave irradiation reduced the reaction time to 1 h but the yield was reduced (45%); in both cases only the *E*-product was observed.

The optimum conditions illustrated in Scheme 4 were then applied to a range of alcohols 1, sulfuranes 5 and phosphoranes 3. The results are summarised in Table 3. As can be seen, good to excellent (56–88%) yields were obtained with the three allylic alcohols 1a-c undergoing oxidation–elaboration with combinations of the sulfuranes 5a,b and the phosphoranes 3a-c, although the degree of stereocontrol in relation to the cis/trans-ratio of the 2,3-cyclopropane substituents was variable.

4. Tandem oxidation-Wittig-cyclopropanation reactions

We have previously described the manganese dioxide tandem oxidation–olefination of α -hydroxyketones **12** leading, by way of intermediate α -keto aldehydes **13**, to γ -ketocrotonates **14** in synthetically useful yields (Scheme 5).⁷

In the current study, we envisaged a complementary oxidation–olefination–cyclopropanation sequence, in which the alcohol is treated with MnO₂, phosphorane and sulfurane but, of course, in this case, olefination has to occur first, followed by in situ cyclopropanation of the intermediate γ -ketocrotonate (Scheme 6). As shown, this idea was tested out using hydroxyacetophenone **12a** and we were delighted to obtain an excellent 83% yield of the 1,2,3-trisubstituted cyclopropane **15a** from this one-pot, three-step tandem sequence.

These conditions were then applied to a variety of α -hydroxyketones 12, phosphoranes 3 and sulfuranes 5 to give substituted cyclopropanes 15b-h in good to excellent (50–81%) yields (Table 4).

To demonstrate the applicability of this technology to complex, multifunctional substrates, hydrocortisone **12f** was employed as the α -hydroxyketone, giving the desired cyclopropane **15i** in 78% yield (Scheme 7). Moreover, NMR spectroscopy indicates that just one diastereoisomer (yet to be determined) of the product **15i** greatly predominates,

Scheme 6.

Table 4. TOP-olefination-cyclopropanation methodology^a

Entry	Alcohol		Phosphorane/sulfurane ^b	Product ^c		Yield (diastereoisomer ratio)
i	O Ph OH	12a	3a, 5a	Ph CO ₂ Me CO ₂ Et	15a	83% (3.2:1)
ii	PhOH	12a	3b, 5a	Ph CN CO ₂ Et	15b	80% (3.8:1)
iii	O PhOH	12a	3d, 5a	Ph CON(Me)OMe CO ₂ Et	15c	50% (2.2:1)
iv	O Ph	12a	3e, 5b	Ph CO ₂ Et	15d	81% (1.2:1)
v	О ОН	12b	3a, 5b	CO2Me COPh	15e	70% ^d
vi	О	12c	3e, 5b	CO2Et COPh	15f	60% ^e (2.7:1)
vii	ОН 1	12d	3a, 5a	CO ₂ Me	15g	78% ^f
viii	Ph OH	12e	3a, 5a	Ph CO ₂ Me CO ₂ Et	15h	51% ^g

^a Reaction times 1.5–15 h (see Section 6 for exact time); traces of a third diastereoisomer were observed (NMR) in entries i–iii. ^b $3\mathbf{a} = Ph_3P = CHCO_2Me$; $3\mathbf{b} = Ph_3P = CHCN$; $3\mathbf{d} = Ph_3P = CHCON(Me)OMe$; $3\mathbf{e} = Ph_3P = CHCO_2Et$.

^c Isolated as a mixture of isomers about the cyclopropane.

^d The structures of individual diastereoisomers were not assigned.

^e When sulfurane **5a** was used, the corresponding cyclopropane was isolated in 54% yield.

 $^{\rm f}$ When sulfurane 5a was used, the corresponding cyclopropane was isolated in 55% yield.

^g One major diastereoisomer with only traces of minor isomers.

implying substrate-induced regio- and stereoselectivity in the in situ cyclopropanation step.

5. Applications in target molecule synthesis

In order to validate the TOP-cyclopropanation methodology, we decided to examine applications in target molecule synthesis. In the first example (Scheme 8), we prepared cyclopropane 17, which was utilised by Murphy and Wattanasin as a late-stage intermediate in their synthesis of (\pm) -picropodophyllone⁸ which, along with related lignan lactones, is of interest as a cancer chemotherapeutic agent. Allylic alcohol 16 was treated with MnO_2 and sulfurane 5a in DCE at reflux. We were delighted to find that this procedure produced cyclopropane 17 as a mixture of three diastereoisomers (ca. 3.6:2.9:1.0) in 80% combined yield. This result is noteworthy as allylic alcohol 16 is particularly electron-rich, and in our experience, this slows oxidation by MnO₂. Cyclopropane 17, also as a mixture of diastereoisomers,⁸ has been converted into (\pm) -picropodophyllone in four steps;⁸ the sequence shown in Scheme 8 therefore represents a formal synthesis of this simple natural product.

Pyrethroids have proved extremely valuable as naturally occurring, non-toxic and biodegradable insecticides and insect repellants.⁹ Allethrin 18 and allethrin II 19 are typical synthetic pyrethroids, and 18 is widely used against houseflies and mosquitoes.^{3e,10} In order to showcase the TOPcyclopropanation methodology, we prepared novel allethrin analogues as shown in Scheme 9. Cyclopentenone 20 is commercially available (Salor) and readily prepared.¹¹ Conversion into the ester 21, salt 22 and then to sulfurane 22 was straightforward (although attempts to go directly from the bromide corresponding to 21 to a sulfonium salt such as 22 by treatment with dimethyl sulfide were unsuccessful). Then, treatment of allyl alcohol 1b, sulfurane 22 and phosphorane 3c with MnO₂ gave allethrin II analogue 24 in 57% yield via the one-pot TOP sequence illustrated in Scheme 9. Examination of the ¹H and ¹³C NMR spectra of 24 indicated that only two diastereoisomers were present (ca. 3:1 as an inseparable mixture). Extensive NOE studies indicated that both diastereoisomers possessed E-configured trisubstituted alkenes. Coupling constant analysis showed that both major and minor components are transcyclopropane isomers, with no cis-isomers observed. Thus, coupling constants across the cyclopropane ring (*J* 8.5 Hz in both diastereomers) are in accordance with literature values.¹³ Also, in the ¹³C NMR spectrum, the chemical shifts of the ring carbons [δ_C 16.7 (CH₂), 22.3 (CH) and 22.4 (CH) ppm] are consistent with those of closely related *trans*-disubstituted cyclopropanes.¹⁴ Other allethrin analogues should be readily available by similar processes.

In summary, a number of different one-pot MnO_2 -mediated TOP methodologies have been developed, which allow straightforward access to a range of functionalised cyclopropanes. Applications of the methodology in target molecule synthesis have been described, and further examples are currently under investigation.

6. Experimental

6.1. General details

NMR spectra were recorded on Jeol EX-270 and ECX-400 spectrometers. Diastereomer ratios were obtained by ¹H NMR integration. Chemical shifts (δ) are given in parts per million (ppm), using the residual solvent as reference (CDCl₃ unless otherwise stated), and coupling constants are given in Hertz (Hz). IR spectra were recorded on ThermoNicolet IR100 or ATI Mattson Genesis FTIR spectrometers, as thin films between NaCl plates. Mass spectra were recorded on a Fisons analytical autospec instrument in either chemical ionisation (CI), electron ionisation (EI), or fast atom bombardment (FAB) modes. Melting points were measured on a Gallenkamp instrument in open capillary tubes, and are uncorrected. Flash chromatography was performed on Fluorochem silica gel (35–70 µm) using the eluent specified. Thin layer chromatography (TLC) was

Scheme 9.

carried out using Merck silica gel $60F_{254}$ pre-coated aluminium foil plates with a thickness of 250 µm, and visualised with UV light (254 nm), and KMnO₄/vanillin solutions. All reagents were purchased from commercial sources, and used without further purification, unless specified. Activated manganese(IV) dioxide was purchased from Aldrich (cat. no. 21,764; <5 µm, activated, 85%). Tetrahydrofuran, diethyl ether and dichloromethane were either dried using standard distillation procedures, or with an MBraun Solvent Purification System (SPS), immediately prior to use. Petrol is the fraction with boiling range 40–60 °C. Alcohol **16** was obtained from the corresponding ketone¹² by standard reduction with NaBH₄/CsBr. Sulfuranes **5a** and **5b** were prepared from the commercially available (Aldrich) sulfonium salts using published procedures.^{2d,e}

Compounds **6a**,^{3n,q} **6c**,^{3m} **6d**,³ⁱ **6g**,^{3r} **6h**,^{3p} **6i**,^{3o} **7a**,^{2g} **7b**,^{3h} **7d**^{3k} and **17**⁸ are known compounds and the data correspond with those reported in the literature.

6.2. Tandem oxidation-cyclopropanation reactions

6.2.1. 2-Benzoyl-1-methylcyclopropanecarboxaldehyde 6b: representative procedure. To a solution of 2-methyl-2-propen-1-ol 1a (36 mg, 0.50 mmol) in dichloromethane (5 mL) was added powdered 4 Å molecular sieves (0.50 g), (benzoylmethylene)dimethylsulfurane **5b** (108 mg, 0.60 mmol) and manganese dioxide (435 mg, 5.0 mmol). The mixture was heated at reflux for 2 h, and then cooled to rt. The crude mixture was then filtered through Celite[®] and the residue washed with dichloromethane (50 mL) giving a pale vellow solution. After removal of the solvent in vacuo, the residue was purified by flash column chromatography (petrol-EtOAc, 19:1 to 4:1) to give the *title compound* **6b** (50 mg, 53%) as an inseparable mixture (~4.2:1 trans/cis) as a colourless oil, $R_f 0.31$ (petrol-EtOAc, 4:1); ν_{max} (film) 2935, 1712, 1665, 1596, 1449, 1379, 1305, 1225 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) trans: 1.26 (3H, s), 1.59 (1H, dd, J 4.9 and 8.2 Hz), 1.91 (1H, dd, J 4.9 and 7.0 Hz), 3.20 (1H, dd, J 8.2 and 7.0 Hz), 7.47 (2H, dd (app t), J 7.6 Hz), 7.58 (1H, dd (app t), J 7.6 Hz), 7.90 (2H, d, J 7.6 Hz), 9.09 (1H, s); cis: $\delta_{\rm H}$ 1.44 (3H, s), 1.54 (1H, dd, J 4.9 and 7.6 Hz), 2.39 (1H, dd, J 4.9 and 7.0 Hz), 3.01 (1H, dd, J 7.6 and 7.0 Hz), 7.47 (2H, dd (app t), J 7.6 Hz), 7.58 (1H, dd (app t), J 7.6 Hz), 7.93 (2H, d, J 7.6 Hz), 9.11 (1H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) *trans*: 10.3 (CH₃), 18.6 (CH₂), 29.9 (CH), 37.4 (C), 128.3 (CH), 128.9 (CH), 133.6 (CH), 137.8 (C), 194.9 (C), 200.0 (C); *cis*: 17.5 (CH₃), 21.2 (CH₂), 35.0 (CH), 37.8 (C), 128.4 (CH), 128.9 (CH), 133.7 (CH), 137.2 (C), 195.6 (C), 200.4 (C); *m*/*z* (CI) 189 (MH⁺); HRMS (CI) [MH⁺], found 189.0912. C₁₂H₁₃O₂ requires 189.0916 (2.1 ppm error).

6.2.2. Ethyl 2-(tert-butyldimethylsilanyloxymethyl)-2formyl-cyclopropanecarboxylate 6e. Using the above procedure for **6b** (but with sulfurane **5a** and for 14 h), the *title* compound 6e was prepared in 74% vield as an inseparable mixture (trans/cis ~3.6:1) as a colourless oil, $R_f 0.33$ (petrol-EtOAc, 12:1); v_{max} (film) 2953, 2931, 2856, 1732, 1704, 1257, 1176, 1097, 839, 779 cm⁻¹; $\delta_{\rm H}$ (270 MHz, CDCl₃) trans: $\delta_{\rm H}$ 0.02 (3H, s), 0.05 (3H, s); 0.84 (9H, s), 1.23-1.28 (3H, m), 1.45 (1H, dd, J 4.5 and 8.5 Hz), 1.53 (1H, dd, J 4.5 and 6.7 Hz), 2.31 (1H, dd, J 8.5 and 6.7 Hz), 3.86 (1H, d, J 11.1 Hz), 4.03–4.20 (2H, m), 4.32 (1H, d, J 11.1 Hz), 9.52 (1H, s); cis: $\delta_{\rm H}$ 0.02 (3H, s), 0.05 (3H, s); 0.84 (9H, s), 1.23-1.28 (3H, m), 1.63 (1H, dd, J 4.8 and 8.2 Hz), 1.91 (1H, dd, J 4.8 and 6.7 Hz), 2.33 (1H, dd, J 8.2 and 6.7 Hz), 3.93 (2H, s), 4.03-4.20 (2H, m), 9.38 (1H, s); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) trans: -5.5 (CH₃), -5.4 (CH₃), 14.3 (CH₃), 18.3 (C), 18.9 (CH), 25.8 (CH₃), 26.4 (CH), 40.6 (C), 59.4 (CH₂), 61.3 (CH₂), 170.1 (C), 200.2 (C); cis: $\delta_{\rm C}$ -5.5 (CH₃), -5.4 (CH₃), 14.3 (CH₃), 16.1 (CH₂), 18.3 (C), 25.2 (CH), 25.8 (CH₃), 40.3 (C), 59.1 (CH₂), 61.5 (CH₂), 171.0 (C), 200.4 (C); *m/z* (CI) 287 (MH⁺); HRMS (CI) [MH⁺], found: 287.1681. C₁₄H₂₇O₄Si requires 287.1679 (0.2 ppm error).

6.2.3. 2-Benzoyl-1-(*tert*-butyldimethylsilanyloxymethyl)cyclopropanecarboxaldehyde 6f. Using the above procedure for 6b (for 14 h), the *title compound* 6f was prepared in 73% yield as an inseparable mixture (trans/cis ~2:1) as a colourless oil, R_f 0.51 (petrol–EtOAc, 4:1); ν_{max} (film) 2954, 2929, 2857, 1716, 1675, 1451, 1255, 1223, 1090 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) *trans*: -0.29 (3H, s), -0.09 (3H, s), 0.62 (9H, s), 1.49 (1H, dd, J 4.1 and 7.9 Hz), 1.91 (1H, dd, J 4.1 and 6.7 Hz), 3.35 (1H, dd, J 7.9 and 6.7 Hz), 3.58 (1H, d, J 11.3 Hz), 4.35 (1H, d, J 11.3 Hz), 7.39–7.49 (2H, m), 7.50–7.62 (2H, m), 7.94 (1H,

6689

d, J 7.3 Hz), 9.76 (1H, s); *cis*: 0.11 (3H, s), 0.12 (3H, s), 0.92 (9H, s), 1.68 (1H, dd, J 4.6 and 7.6 Hz), 2.27 (1H, dd, J 4.6 and 6.7 Hz), 3.35 (1H, dd, J 7.6 and 6.7 Hz), 3.79 (1H, d, J 10.8 Hz), 4.30 (1H, d, J 10.8 Hz), 7.39–7.49 (2H, m), 7.50–7.62 (2H, m), 8.03 (1H, d, J 7.6 Hz), 9.12 (1H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) *trans*: -6.0 (CH₃), -5.8 (CH₃), 18.1 (C), 18.6 (CH₂), 25.6 (CH₃), 30.2 (CH), 43.7 (C), 59.2 (CH₂), 128.5 (CH), 128.6 (CH), 133.2 (CH), 137.7 (C), 194.9 (C), 200.7 (C); *cis*: -5.4 (CH₃), -5.3 (CH₃), 16.6 (CH₂), 18.4 (C), 25.9 (CH₃), 30.1 (CH), 42.8 (C), 60.3 (CH₂), 128.6 (CH), 128.8 (CH), 133.6 (CH), 137.3 (C), 195.9 (C), 199.4 (C); *m/z* (CI) 319 (MH⁺); HRMS (CI) [MH⁺], found: 319.1730. C₁₈H₂₇O₃Si requires 319.1729 (0.1 ppm error).

6.2.4. Diethyl 2,2'-carbonyldicyclopropanecarboxylate 6j. Using the above procedure for **6b** (but with sulfurane **5a** and for 4 h), the *title compound* **6j** was prepared in 60% yield as a wax: R_f 0.32 (petrol–EtOAc, 4:1); ν_{max} (film) 2983, 1731, 1692, 1369, 1334, 1186 cm⁻¹; $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.26 (6H, t, *J* 7.0 Hz), 1.40–1.46 (4H, m), 2.16–2.23 (2H, m), 2.58–2.65 (2H, m), 4.14 (4H, q, *J* 7.0 Hz); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 14.3 (CH₃), 17.8 (CH), 24.9 (CH), 29.9 (CH₂), 61.3 (CH₂), 171.9 (C), 204.7 (C); *m*/*z* (CI) 255 (MH⁺) 272 (MNH⁴₄); HRMS (CI) [MNH⁴₄], found: 272.1500. C₁₃H₂₂NO₅ requires 272.1498 (0.7 ppm error).

6.2.5. {2-[(2-Benzoylcyclopropyl)carbonyl]cyclopropyl}(phenyl)methan-one 6k. Using the above procedure for **6b** (also for 2 h), the *title compound* **6k** was prepared in 69% yield as a white solid, mp 148–150 °C; R_f 0.35 (petrol–EtOAc, 4:1); ν_{max} (film) 1660, 1349, 1225 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.58–1.78 (4H, m), 2.84–2.97 (2H, m), 3.23–3.38 (2H, m), 7.38–7.51 (4H, m), 7.52–7.64 (2H, m), 7.91–8.06 (4H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 20.2/20.3 (CH₂), 28.4/28.5 (CH), 32.3/32.4 (CH), 128.3/128.4 (CH), 128.7/128.8 (CH), 133.4/133.5 (CH), 136.9 (C), 196.9 (C), 205.8 (C); *m/z* (CI) 319 (MH⁺) 336 (MNH₄⁺); HRMS (CI) [MH⁺], found: 319.1330. C₂₁H₁₉O₃ requires 319.1334 (1.3 ppm error).

6.2.6. (1R,3R,6S,8S)-1-Benzoyl-7,7-dimethyl-6,8-methylene-spiro[2.5]octan-4-one and (1S,3S,6S,8S)-isomer 6l. Using the above procedure for **6b** (but for 16 h), the *title com*pound 61 was prepared in 76% yield as an inseparable mixture (trans/cis ~5:1) as a colourless oil, $R_f 0.54$ (petrol-EtOAc, 4:1); *v*_{max} (film) 2924, 1703, 1664, 1597, 1449, 1385, 1326, 1289, 1220, 1033 cm⁻¹; $\delta_{\rm C}$ (400 MHz, CDCl₃) major: 0.94 (3H, s), 1.01 (1H, d, J 10.7 Hz), 1.28 (3H, s), 1.65 (1H, dd, J 6.4 and 3.4 Hz), 1.72 (1H, dd, J 7.9 and 3.4 Hz), 1.93 (1H, t, J 6.7 Hz), 2.10–2.19 (1H, m), 2.30–2.39 (1H, m), 2.56 (1H, dd, J 19.2 and 2.5 Hz), 2.71 (1H, dt, J 19.2 and 2.5 Hz), 3.27 (1H, t, J 7.3 Hz), 7.39-7.45 (2H, m), 7.49-7.55 (2H, m), 7.91 (1H, d, J 7.6 Hz); minor: δ_H 0.56 (3H, s), 1.13 (3H, s), 1.37 (1H, d, J 10.5 Hz), 1.52-1.59 (2H, m), 1.93 (1H, obscured), 2.10-2.19 (2H, m), 2.54 (1H, dd, J 19.3 and 2.8 Hz), 2.65 (1H, dt, J 19.3 and 2.8 Hz), 3.56 (1H, t, J 7.3 Hz), 7.39–7.45 (2H, m), 7.49–7.55 (2H, m), 7.93 (1H, d, J 7.3 Hz); δ_C (100 MHz, CDCl₃) major: 21.1 (CH₃), 22.5 (CH₂), 26.2 (CH₃), 32.2 (CH), 32.6 (CH₂), 38.6 (CH), 40.3 (CH), 40.4 (C), 43.5 (CH₂), 45.3 (CH), 128.2 (CH), 128.6 (CH), 133.2 (CH), 137.9 (C), 195.8 (C), 210.5 (C); *minor*: 21.4 (CH₃), 22.1 (CH₂), 25.9 (CH₃), 32.6 (CH₂), 33.4 (CH), 38.7 (CH), 39.5 (C), 40.0 (CH), 43.4 (CH₂), 45.6 (C), 128.4 (CH), 128.6 (CH), 133.1 (CH), 137.8 (C), 195.8 (C), 210.4 (C); *m/z* (CI) 269 (MH⁺); HRMS (CI) [MH⁺], found: 269.1537. $C_{18}H_{21}O_2$ requires 269.1542 (1.7 ppm error).

6.2.7. Ethyl 2-benzoyl-3-(4-chlorophenyl)cyclopropanecarboxylate 7c. Using the above procedure for 6b (but with sulfurane 5a and for 10 h), the *title compound* 7c was prepared in 80% vield as a mixture of isomers, partially separable by chromatography (petrol-EtOAc, 10:1). The first eluting and major product 7c was obtained as a colourless oil, R_f 0.52 (petrol-EtOAc, 10:1); v_{max} (film) 2980, 1730, 1680, 1494, 1450, 1372, 1191, 1014 cm⁻¹; $\delta_{\rm H}$ (270 MHz, CDCl₃) 1.11 (3H, t, J 7.2 Hz), 2.82 (1H, dd, J 4.8 and 10.0 Hz), 3.21 (1H, dd, J 6.3 and 10.0 Hz), 3.80 (1H, dd, J 4.8 and 6.3 Hz), 4.01 (2H, q, J 7.2 Hz), 7.27 (4H, br s), 7.48-7.56 (2H, m), 7.61-7.67 (1H, m), 8.10 (2H, d, J 7.2 Hz); δ_C (67.5 MHz, CDCl₃) 14.3 (CH₃), 29.8 (CH), 32.3 (CH), 34.3 (CH), 61.3 (CH₂), 128.6 (CH), 128.7 (CH), 130.4 (CH), 132.2 (CH), 133.3 (CH), 133.4 (C), 133.8 (C), 137.0 (C), 168.8 (C), 196.5 (C); m/z (CI) 328 (MH⁺); HRMS (CI) [MH⁺], found 329.0947. C₁₉H₁₈O₃³⁵Cl requires 329.0944 (0.8 ppm error).

6.2.8. Ethyl 2-benzoyl-3-(4-nitrophenyl)cyclopropanecarboxylate 7e. Using the above procedure for 6b (but for 17 h), the *title compound* 7e was prepared in 90% yield as a mixture of isomers, partially separable by chromatography (petrol-EtOAc, 5:1). The first eluting and major product 7e was obtained as a pale yellow oil, $R_f 0.54$ (petrol-EtOAc, 5:1); ν_{max} (film) 3390, 2923, 2852, 1597, 1515, 1344, 1010 cm⁻¹; δ_{H} (270 MHz, CDCl₃) 1.12 (3H, t, *J* 7.1 Hz), 2.88 (1H, dd, J 4.8 and 10.0 Hz), 3.32 (1H, dd, J 6.3 and 9.7 Hz), 3.88 (1H, dd, J 4.8 and 6.3 Hz), 4.02 (2H, q, J 7.1 Hz), 7.45-7.58 (4H, m), 7.60-7.69 (1H, m), 8.07-8.12 (2H, m), 8.13–8.20 (2H, m); $\delta_{\rm C}$ (67.5 MHz, CDCl₃) 14.2 (CH₃), 29.9 (CH), 32.4 (CH), 33.9 (CH), 61.5 (CH₂), 123.5 (CH), 128.5 (CH), 129.0 (CH), 130.0 (CH), 134.0 (CH), 136.7 (C), 142.5 (C), 147.3 (C), 168.5 (C), 195.9 (C); m/z (CI) 240 (MH⁺) 257 (MNH₄⁺); HRMS (CI) [MNH₄⁺], found: 357.1448. C₁₉H₂₁N₂O₅ requires 357.1450 (0.2 ppm error).

6.3. Tandem oxidation-cyclopropanation-Wittig reactions

6.3.1. Ethyl 2-(2-cvanoethenyl)-2-methyl-cyclopropanecarboxylate 10c: representative procedure. To a solution of 2-methyl-2-propen-1-ol 1a (36 µL, 0.50 mmol) in CH_2Cl_2 (5.0 mL) was added powdered 4 Å molecular sieves (0.50 g), (carbethoxymethylene)dimethylsulfurane 5a (0.148 g, 1.00 mmol), (cyanomethylene)triphenylphosphorane 3b (0.181 g, 0.60 mmol) and manganese dioxide (0.435 g, 5.0 mmol). The mixture was heated at reflux for 23 h, and then cooled to rt. The crude mixture was filtered through Celite[®] and the residue washed with CH₂Cl₂. After removal of the solvent, the resulting yellow oil was purified by flash column chromatography (petrol-EtOAc, 19:1 to 4:1) to give the title compound 10c (0.079 g, 88%) as an inseparable mixture of cis/trans cyclopropane isomers and E/Z alkene isomers (trans/E:cis/E:trans/Z:cis/Z~8.5:4.4:3.6:1) as a colourless oil, R_f 0.35 (petrol-EtOAc, 4:1); ν_{max} (film) 2983,

2222, 1726, 1626, 1448, 1406, 1383, 1223, 1184, 1097, 1073, 1024, 980 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.20–1.28 (m, CO₂CH₂CH₃, all isomers), 1.30 (s, Me, trans-cyclopropanes), 1.33-1.39 (m), 1.42-1.50 (m), 1.51 (s, Me, cis-cyclopropanes), 1.56 (dd (app t), J 5.5 Hz, trans/E), 1.66–1.76 (m), 1.86–1.98 (m), 4.04–4.22 (m, CO₂CH₂CH₃, all isomers), 5.27 (d, J 11.9 Hz, trans/Z), 5.31 (d, J 16.2 Hz, trans/E), 5.33 (d, J 16.5 Hz, cis/E), 5.35 (d, J 11.6 Hz, cis/Z), 5.98 (d, J 11.9 Hz, trans/Z), 6.14 (d, J 16.2 Hz, trans/E) 6.44 (d, J 11.6 Hz, cis/Z), 6.85 (d, J 16.5 Hz, cis/E); $\delta_{\rm C}$ (100 MHz, $CDCl_3$ [though it was not possible to assign signals to a given isomer, all are cited] 13.3 (CH₃), 14.1 (CH₃), 14.2 (CH₃), 14.2 (CH₃), 14.3 (CH₃), 14.3 (CH₃), 14.3 (CH₃), 15.4 (CH₃), 21.6 (CH₂), 21.9 (CH₂), 23.6 (CH₂), 23.8 (CH₂), 27.8 (C), 27.9 (C), 28.1 (CH), 28.4 (CH), 28.6 (CH), 30.0 (C), 30.5 (CH), 31.7 (C), 61.0 (CH₂), 61.1 (CH₂), 61.4 (CH₂), 61.5 (CH₂), 97.3 (CH), 97.4 (CH), 98.1 (CH), 99.2 (CH), 116.1 (C), 117.5 (C), 117.5 (C), 117.8 (C), 153.9 (CH), 156.3 (CH), 157.3 (CH), 160.4 (CH), 170.1 (C), 170.4 (C), 170.7 (C), 170.8 (C); *m/z* (CI) 197 (MNH₄⁺); HRMS (CI) [MNH₄], found: 197.1291. C₁₀H₁₇N₂O₂ requires 197.1290 (0.6 ppm error).

6.3.2. 2-((E)-2-Methoxycarbonyl-vinyl)-2-methyl-cyclopropanecarboxylic acid ethyl ester 10a. Using the above procedure for 10c (but with phosphorane 3a for 18 h), the *title* compound 10a was prepared in 81% yield as a colourless oil as a mixture (trans/cis \sim 3.5:1), which was separated by column chromatography (petrol-EtOAc, 19:1 to 4:1): major *isomer*: $R_f 0.41$ (petrol–EtOAc, 4:1); ν_{max} (film) 2934, 1723, $1646, 1437, 1405, 1384, 1317, 1272, 1228, 1172, 1019 \text{ cm}^{-1}$ $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.22–1.26 (4H, m), 1.33 (3H, s), 1.46 (1H, dd, J 5.2 and 6.4 Hz), 1.90 (1H, dd, J 6.4 and 8.5 Hz), 3.70 (3H, s), 4.12 (2H, q, J 7.0 Hz), 5.83 (1H, d, J 15.6 Hz), 6.43 (1H, d, J 15.6 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (CH₃), 14.4 (CH₃), 21.8 (CH₂), 27.2 (C), 28.7 (CH), 51.6 (CH₃), 60.9 (CH₂), 118.4 (CH), 154.7 (CH), 167.1 (C), 170.7 (C); m/z (CI) 213 (MH⁺) 230 (MNH⁺₄); HRMS (CI) [MH⁺], found: 213.1125. C₁₁H₁₇O₄ requires 213.1127 (0.9 ppm error). Minor isomer: R_f 0.35 (petrol-EtOAc, 3:1); v_{max} (film) 2951, 1727, 1644, 1437, 1407, 1382, 1304, 1273, 1228, 1170, 1019 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.23– 1.26 (4H, m), 1.30 (3H, s), 1.60 (1H, dd, J 4.9 and 76.59 Hz), 1.92 (1H, dd, J 6.5 and 7.9 Hz), 3.71 (3H, s), 4.12 (2H, m), 5.88 (1H, d, J 15.9 Hz), 7.08 (1H, d, J 15.9 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (CH₃), 21.8 (CH₃), 23.5 (CH₂), 27.6 (C), 30.5 (CH), 51.6 (CH₃), 61.0 (CH₂), 120.0 (CH), 150.3 (CH), 167.0 (C), 171.0 (C); m/z (CI) 213 (MH⁺) 230 (MNH₄⁺); HRMS (CI) [MH⁺], found: 213.1125. C₁₁H₁₇O₄ requires 213.1127 (0.9 ppm error).

6.3.3. (*E*)-3-(2-Benzoyl-1-methyl-cyclopropyl)-acrylic acid methyl ester 10b. Using the above procedure for 10c (but with sulfurane 5b and phosphorane 3a for 14 h), the *title compound* 10b was prepared in 66% yield as a pale yellow oil as a mixture (trans/cis ~3:1), which was separated by column chromatography (petrol–EtOAc, 19:1 to 9:1): *major isomer*: R_f 0.34 (petrol–EtOAc, 9:1); ν_{max} (film) 2950, 1721, 1673, 1643, 1450, 1386, 1317, 1273, 1225, 1173, 987 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.18 (3H, s), 1.33 (1H, dd, *J* 4.8 and 8.0 Hz), 1.87 (1H, dd, *J* 4.8 and 6.5 Hz), 2.85 (1H, dd, *J* 6.5 and 8.0 Hz), 3.75 (3H, s), 5.92 (1H, d, *J* 15.6 Hz), 6.68 (1H, d, *J* 15.6 Hz), 7.41–7.57 (3H, m), 7.85–7.88 (2H, m);

δ_C (100 MHz, CDCl₃) 13.6 (CH₃), 21.3 (CH₂), 30.1 (CH), 33.5 (CH), 51.6 (CH₃), 118.6 (CH), 128.0 (CH), 128.6 (CH), 133.0 (CH), 138.1 (C), 154.6 (CH), 167.0 (C), 195.9 (C); *m*/*z* (CI) 245 (MH⁺) 262 (MNH⁺₄); HRMS (CI) [MH⁺], found: 245.1178. C₁₅H₁₇O₃ requires 245.1174 (1.4 ppm error). *Minor isomer*: $R_f 0.22$ (petrol–EtOAc, 9:1); ν_{max} (film) 2950, 1721, 1669, 1643, 1449, 1395, 1326, 1273, 1222, 1172, 992 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.25 (3H, s), 1.38 (1H, dd, J 4.5 and 7.4 Hz), 2.02 (1H, dd, J 4.5 and 6.3 Hz), 2.92 (1H, dd, J 6.3 and 7.4 Hz), 3.66 (3H, s), 5.86 (1H, d, J 15.6 Hz), 6.85 (1H, d, J 15.6 Hz), 7.92–8.12 (3H, m), 8.13–8.15 (2H, m); δ_C (125 MHz, CDCl₃) 21.9 (CH₃), 23.3 (CH₂), 30.7 (C), 35.4 (CH), 51.4 (CH₃), 120.0 (CH), 128.1 (CH), 128.5 (CH), 132.9 (CH), 138.0 (C), 149.1 (CH), 166.6 (C), 196.0 (C); *m/z* (CI) 245 (MH⁺), 262 (MNH⁺₄); HRMS (CI) [MH⁺], found: 245.1178. C₁₅H₁₇O₃ requires 245.1174 (1.4 ppm error).

6.3.4. 2-((E)-2-Methoxycarbonyl-vinyl)-cyclopropanecarboxylic acid ethyl ester 10d. Using the above procedure for 10c (but with phosphorane 3a for 5 h), the title compound 10d was prepared in 61% yield as a colourless oil as a mixture (trans/cis ~6.5:1), which was not separated: v_{max} (film) 2978, 2950, 1721, 1655, 1438, 1410, 1261, 1197, 1180, 1148, 1032 cm⁻¹; major isomer: R_f 0.36 (petrol-EtOAc, 3:1); δ_H (400 MHz, CDCl₃) 1.11 (1H, ddd, J 4.3, 5.8 and 10.4 Hz), 1.24 (3H, t, J 7.0 Hz), 1.51 (1H, app td, J 5.5 and 10.4 Hz), 1.82 (1H, ddd, J 4.3, 5.5 and 8.9 Hz), 2.12 (1 H, m), 3.69 (3 H, s), 4.12 (2 H, q, J 7.0 Hz), 5.94 (1H, d, J 15.6 Hz), 6.39 (1H, dd, J 10.1 and 15.6 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (CH₃), 16.5 (CH₂), 23.0 (CH), 24.4 (CH), 51.6 (CH₃), 61.0 (CH₂), 120.7 (CH), 149.0 (CH), 166.7 (C), 172.5 (C). Minor isomer: $R_f 0.33$ (petrol-EtOAc, 3:1); δ_H (400 MHz, CDCl₃) 1.31-1.44 (1H, m), 1.95-2.06 (1H, m), 3.68 (3H, s), 5.98 (1H, d, J 15.0 Hz), 6.91 (1H, dd, J 9.8 and 15.0 Hz) (the remaining signals were obscured by the major isomer); δ_C (100 MHz, CDCl₃) 14.3 (CH₃), 15.4 (CH₂), 22.3 (CH), 23.4 (CH), 51.5 (CH₃), 61.0 (CH₂), 120.0 (CH), 146.6 (CH), 166.5 (C), 171.2 (C); m/z (CI) 199 (MH⁺), 216 (MNH_4^+) ; HRMS (CI) $[MNH_4^+]$, found: 216.1236. C₁₀H₁₈NO₄ requires 216.1235 (0.2 ppm error).

6.3.5. (E)-3-(2-Benzoyl-cyclopropyl)-acrylic acid methyl ester 10e. Using the above procedure for 10c (but with sulfurane 5a and phosphorane 3a for 14 h), the *title compound* 10e was prepared in 74% yield as an off-white solid as a mixture (trans/cis \sim 3.5:1), which was separated by column chromatography (petrol-EtOAc, 19:1 to 9:1): major isomer: mp 85-87 °C; $R_f 0.15$ (petrol–EtOAc, 9:1); ν_{max} (film) 2960, 1710, 1661, 1580, 1450, 1434, 1399, 1261, 1211, 1152, 1023, 919 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.31 (1H, ddd, J 4.3, 5.8 and 10.0 Hz), 1.82 (1H, ddd, J 4.3, 6.0 and 9.0 Hz), 2.30 (1H, ddd, J 3.7, 6.0 and 10.0 Hz), 2.88 (1H, ddd, J 3.7, 5.8 and 9.0 Hz), 3.71 (3H, s), 5.98 (1H, d, J 15.6 Hz), 6.56 (1H, dd, J 10.0 and 15.6 Hz), 7.43-7.59 (3H, m), 7.95-7.97 (2H, m); δ_C (100 MHz, CDCl₃) 18.7 (CH₂), 26.9 (CH), 27.6 (CH), 51.5 (CH₃), 120.5 (CH), 128.0 (CH), 128.6 (CH), 133.1 (CH), 137.2 (CH), 149.2 (CH), 166.6 (C), 197.4 (C); m/z (CI) 231 (MH⁺) 248 (MNH⁺₄); HRMS (CI) [MH⁺], found: 231.1018. C₁₄H₁₅O₃ requires 231.1021 (1.2 ppm error). *Minor isomer*: mp 86–87 °C; R_f 0.10 (petrol–EtOAc, 9:1); *v*_{max} (film) 2955, 1708, 1661, 1646, 1450, 1432, 1258, 1195, 1150, 1016, 985 cm⁻¹; $\delta_{\rm H}$ (400 MHz,

CDCl₃) 1.49 (1H, app dt, *J* 4.5 and 8.2 Hz), 1.83 (1H, app dt, *J* 4.5 and 7.0 Hz), 2.30 (1H, dddd, *J* 7.0, 8.2, 10.4 and 11.0 Hz), 3.13 (1H, ddd, *J* 4.5, 7.0 and 11.0 Hz), 3.66 (3H, s), 5.98 (1H, d, *J* 15.6 Hz), 6.79 (1H, dd, *J* 10.4 and 15.6 Hz), 7.42–7.59 (3H, m), 7.95–7.99 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.6 (CH₂), 26.5 (CH), 26.6 (CH), 51.4 (CH₃), 121.9 (CH), 128.1 (CH), 128.6 (CH), 133.0 (CH), 138.0 (CH), 146.0 (CH), 166.1 (C), 196.0 (C); *m*/*z* (CI) 231 (MH⁺) 248 (MNH₄⁺); HRMS (CI) [MH⁺], found: 231.1016. C₁₄H₁₅O₃ requires 231.1021 (1.6 ppm error).

6.3.6. 2-((E)-2-Methoxycarbonyl-propenyl)-cyclopropanecarboxylic acid ethyl 10f. Using the above procedure for 10c (but with phosphorane 3c for 18 h), the title compound 10f was prepared in 56% yield as a colourless oil as an inseparable mixture (trans/cis ~7:1), R_f 0.34 (petrol-Et₂O, 3:1); *v*_{max} (film) 2950, 1719, 1710, 1648, 1437, 1412, 1349, 1311, 1263, 1252, 1200, 1180, 1104, 1037 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.05 (1H, ddd, J 4.3, 5.8 and 9.0 Hz). 1.22 (3H, d, J 7.0 Hz), 1.49 (1H, ddd, J 4.3, 5.5 and 9.4 Hz), 1.77 (1H, ddd, J 3.7, 5.5 and 9.0 Hz), 1.90 (3H, d, J 1.5 Hz), 2.15 (1H, dddd, J 3.7, 5.8, 9.4 and 11.0 Hz), 3.67 (3H, s), 4.10 (2H, J 7.0 Hz), 6.06 (1H, dd, J 1.5 and 11.0 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.6 (CH₃), 14.1 (CH₃), 16.3 (CH₂), 21.9 (CH), 22.6 (CH), 51.6 (CH₃), 60.8 (CH₂), 127.8 (C), 142.0 (CH), 168.0 (C), 172.7 (C); m/z (CI) 213 (MH⁺) 230 (MNH⁺₄); HRMS (CI) [MH⁺], found: 230.1392. C₁₁H₂₀NO₄ requires 230.1391 (0.2 ppm error).

6.3.7. Ethyl 2-(tert-butyldimethylsilanyloxymethyl)-2-(2methoxycarbonylethenyl)-cyclopropanecarboxylate 10g. Using the above procedure for 10c (but with phosphorane **3a** for 18 h), the *title compound* **10g** was prepared in 64% yield as a colourless oil as an inseparable mixture of cis/trans cyclopropane isomers (trans/E:cis/E ~1.8:1), R_f 0.40 (petrol-EtOAc, 4:1); ν_{max} (film) 2954, 2931, 2858, 1727, 1650, 1259, 1213, 1178, 1094, 838, 778 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) trans: 0.00 (3H, s, SiMe), 0.04 (3H, s, SiMe), 0.83 (9H, s, SiCMe₃), 1.21-1.26 (3H, m, CO₂CH₂CH₃), 1.26–1.30 (1H, m), 1.48–1.53 (1H, m), 1.94 (1H, dd, J 8.0 and 6.4 Hz), 3.71 (3H, s, OMe), 3.75 (1H, d, J 11.0 Hz), 4.02 (1H, d, J 11.0 Hz), 4.04-4.20 (2H, m, CO₂CH₂CH₃), 5.97 (1H, d, J 15.6 Hz), 6.63 (1H, d, J 15.6 Hz); cis: 0.04 (3H, s, SiMe), 0.05 (3H, s, SiMe), 0.85 (9H, s, SiCMe₃), 1.26–1.30 (3H, m, $CO_2CH_2CH_3$), 1.42 (1H, dd, J 4.0 and 8.2 Hz), 1.41–1.50 (1 H, m), 2.14 (1 H, dd, J 8.2 and 5.2 Hz), 3.70 (3H, s, OMe), 3.72 (1H, d, J 10.4 Hz), 3.82 (1H, d, J 10.4 Hz), 4.04–4.20 (2H, m, CO₂CH₂CH₃), 5.89 (1H, d, J 16.5 Hz), 6.63 (1 H, d, J 16.5 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) trans: -5.4 (CH₃), 14.3 (CH₃), 18.2 (C), 18.3 (CH), 25.9 (CH₃), 26.0 (CH), 33.6 (C), 51.6 (CH₃), 61.0 (CH₂), 61.6 (CH₂), 119.3 (CH), 151.2 (CH), 167.2 (C), 170.6 (C); cis: -5.4 (CH₃), -5.3 (CH₃), 14.3 (CH₃), 18.3 (C), 19.9 (CH₂), 25.8 (CH), 25.9 (CH₃), 32.3 (C), 51.6 (CH₃), 61.0 (CH₂), 63.4 (CH₂), 120.5 (CH), 147.2 (CH), 166.9 (C), 171.2 (C); m/z (CI) 343 (MH⁺); HRMS (CI) [MH⁺], found: 343.1940. C₁₇H₃₁O₅Si requires 343.1941 (0.1 ppm error).

6.3.8. 3-Benzoyl-cyclopropane-1,2-dicarboxylic acid 1-ethyl ester 2-methyl ester 15a. Using the above procedure for **10c** (but with phosphorane **3a** for 4 h), the *title compound* **15a** was prepared in 83% yield as a colourless oil as an

inseparable mixture of cyclopropane isomers (3.2:1), R_f 0.21 (petrol-EtOAc, 6:1); ν_{max} (film) 2980, 2954, 1735, 1679, 1597, 1449, 1372, 1353, 1302, 1211, 1175, 1059, 1020 cm⁻¹; major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.28 (3H, t, J 7.3 Hz), 1.30–1.32 (1H, m), 2.72 (1H, d, J 5.8 Hz), 3.75 (3H, s), 3.77-3.78 (1H, m), 4.19-4.24 (2H, m), 7.48-7.53 (3H, m), 8.09–8.12 (2H, m); *minor isomer*: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.78 (1H, dd, J 5.2 and 9.8 Hz), 3.00 (1H, app t, J 5.5 Hz), 3.28 (1H, dd, J 5.5 and 9.8 Hz), 3.58 (3H, s), 7.51-7.60 (3H, m), 7.92-7.97 (2H, m) (the remaining signals were obscured by the major isomer): $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (CH₃), 29.1 (CH), 29.9 (CH), 30.0 (CH), 52.5 (CH₃), 61.6 (CH₂), 128.4 (CH), 128.7 (CH), 133.8 (CH), 136.3 (C), 168.0 (C), 168.4 (C), 194.9 (C); *m/z* (CI) 277 (MH⁺); HRMS (CI) [MH⁺], found: 277.1077. C₁₅H₁₇O₅ requires 277.1076 (-0.5 ppm error).

6.3.9. 2-Benzoyl-3-cyano-cyclopropanecarboxylic acid ethyl ester 15b. Using the above procedure for 10c (but for 3 h), the title compound 15b was prepared in 80% yield as a yellow oil as a mixture of cyclopropane isomers (3.8:1), *m*/*z* (CI) 261 (MNH₄⁺); HRMS (CI) [MH⁺], found: 261.1240. C₁₄H₁₇N₂O₃ requires 261.1239 (-0.1 ppm error). These isomers could be partially separated by chromatography (petrol-EtOAc, 4:1) giving major isomer: $R_f 0.21$ (petrol-EtOAc, 4:1); v_{max} (film) 3062, 2984, 2247, 1734, 1678, 1597, 1450, 1372, 1346, 1295, 1201, 1186, 1014 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.33 (3H, t, J 7.0 Hz), 2.56 (1H, dd, J 5.5 and 8.9 Hz), 2.66 (1H, dd, J 5.5 and 8.9 Hz), 3.74 (1H, app t, J 5.5 Hz), 4.30 (2H, q, J 7.0 Hz), 7.51–7.55 (2H, m), 7.65–7.68 (1H, m), 8.01–8.03 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (CH₃), 28.4 (CH), 28.5 (CH), 29.3 (CH), 62.4 (CH₂), 115.8 (C), 128.6 (CH), 129.0 (CH), 134.5 (CH), 135.5 (C), 167.0 (C), 192.6 (C); minor isomer: R_f 0.18 (petrol-EtOAc, 4:1); v_{max} (film) 3050, 2983, 2246, 1729, 1672, 1596, 1449, 1368, 1350, 1296, 1199, 1180, 1011 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.32 (3H, t, J 7.3 Hz), 2.55 (1H, dd, J 5.5 and 8.8 Hz), 3.03 (1H, app t, J 5.5 Hz), 3.52 (1H, dd, J 5.5 and 8.8 Hz), 4.22-4.29 (2H, m), 7.52-7.66 (3H, m), 8.04–8.05 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 27.4 (CH), 29.2 (CH), 29.3 (CH), 62.4 (CH₂), 115.3 (C), 128.6 (CH), 129.1 (CH), 134.3 (CH), 135.9 (C), 168.7 (C), 190.9 (C).

6.3.10. 2-Benzoyl-3-(methoxy-methyl-carbamoyl)-cyclopropanecarboxylic acid ethyl ester 15c. Using the above procedure for **10c** (but with phosphorane **3d** for 4 h), the *title* compound 15c was prepared in 50% yield as a yellow oil as an inseparable mixture of cyclopropane isomers (2.2:1), R_f 0.26 (petrol–EtOAc, 3:2); ν_{max} (film) 2980, 2940, 1732, 1686, 1655, 1597, 1449, 1411, 1381, 1335, 1277, 1220, 1183, 1010 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) major isomer: 1.07 (3H, t, J 7.0 Hz), 2.79 (1H, dd, J 5.5 and 10.0 Hz), 3.03 (1H, app t, J 5.5 Hz), 3.25 (3H, s), 3.29 (1H, dd, J 5.5 and 10.0 Hz), 3.83 (3H, s), 4.02 (2H, q, J 7.0 Hz), 7.45-7.50 (3H, m), 7.95-8.00 (2H, m); minor isomer: 1.30 (3H, t, J 7.0 Hz), 3.21 (3H, s), 3.71 (3H, s), 4.22 (2H, q, J 7.0 Hz), 7.56-7.58 (3H, m), 8.06-8.11 (2H, m) (the remaining signals were obscured by the major isomer); $\delta_{\rm C}$ (100 MHz, CDCl₃) major isomer 13.9 (CH₃), 23.2 (CH), 29.9 (CH), 32.6 (CH), 32.7 (CH₃), 61.2 (CH₂), 62.1 (CH₃), 128.4 (CH), 128.7 (CH), 133.5 (CH), 136.4 (C), 168.2 (C), 169.7 (C), 192.8 (C); minor isomer 14.1 (CH₃), 25.4 (CH),

30.3 (CH), 30.4 (CH), 32.6 (CH₃), 61.5 (CH₂), 62.1 (CH₃), 128.4 (CH), 128.7 (CH), 133.3 (CH), 136.6 (C), 170.4 (C), 171.4 (C), 192.6 (C); m/z (CI) 306 (MH⁺); HRMS (CI) [MH⁺], found: 306.1342. C₁₆H₂₀NO₅ requires 306.1341 (-0.1 ppm error).

6.3.11. Ethyl 2,3-dibenzoylcyclopropanecarboxylate 15d. Using the above procedure for 10c (but with sulfurane 5b and phosphorane **3e** for 1.5 h), the *title compound* **15d** was prepared in 81% yield as a colourless oil as a mixture of cyclopropane isomers (1.2:1), which were not separated, $R_f 0.30/0.25$ (petrol-EtOAc, 4:1); ν_{max} (film) 3062, 2984, 1731, 1673, 1449, 1326, 1216, 1020, 738 cm⁻¹; $\delta_{\rm H}$ major (2,3-trans): 1.07 (3H, t, J 7.3 Hz), 2.98 (1H, dd, J 9.8 and 5.2 Hz), 3.43 (1 H, dd, J 9.8 and 5.8 Hz), 3.98-4.15 (3H, m), 7.35–7.60 (6H, m), 8.04 (2H, d, J 7.3 Hz), 8.12 (2H, d, J 7.3 Hz); minor (2,3-cis): 1.30 (3H, t, J 7.0 Hz), 3.22 (1H, t, J 5.5 Hz), 3.56 (1H, d, J 5.5 Hz), 4.23 (2H, q, J 7.0 Hz), 7.35–7.60 (6H, m), 8.04 (4H, d, J 7.3 Hz); δ_C (100 MHz, CDCl₃) major (2,3-trans): 13.9 (CH₃), 29.1 (CH), 31.6 (CH), 34.8 (CH), 61.4 (CH₂), 128.5 (CH), 128.6 (CH), 128.7 (CH), 128.8 (CH), 133.7 (CH), 133.8 (CH), 136.3 (C), 136.5 (C), 168.0 (C), 192.5 (C), 195.4 (C); minor (2,3-cis): 14.2 (CH₃), 26.6 (CH), 34.6 (CH), 61.7 (CH₂), 128.4 (CH), 128.6 (CH), 133.5 (CH), 136.5 (C), 171.1 (C), 192.4 (C); (no all-syn-isomer was detected); m/z (CI) 323 (MH⁺); HRMS (CI) [MH⁺], found: 323.1280. C₂₀H₁₉O₄ requires 323.1283 (1.2 ppm error).

6.3.12. 2-Benzoyl-3-(furan-2-carbonyl)-cyclopropanecarboxylic acid ethyl ester 15e. Using the above procedure for **10c** (but with sulfurane **5b** and phosphorane **3a** for 15 h). the title compound 15e was prepared in 70% yield as an orange oil as an inseparable mixture of cyclopropane isomers (1.2:1), $R_f 0.14$ (petrol–EtOAc, 3:1); ν_{max} (film) 2950, 1735, 1667, 1468, 1323, 1207, 1015, 731 cm⁻¹; major isomer: δ_H (400 MHz, CDCl₃) 2.92 (1H, dd, J 5.5 and 9.5 Hz), 3.44 (1H, dd, J 5.8 and 9.5 Hz), 3.69 (3H, s), 3.98 (1H, dd, J 5.5 and 5.8 Hz), 6.56–6.57 (1H, m), 7.30 (1H, d, J 3.6 Hz), 7.45-7.52 (3H, m), 7.63 (1H, br s), 8.10 (2H, d, J 8.0 Hz); minor isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.96 (1H, dd, J 5.5 and 9.5 Hz), 3.46 (1H, dd, J 5.5 and 9.5 Hz), 3.61 (3H, s), 3.86 (1H, t, J 5.5 Hz), 6.60–6.61 (1H, m), 7.43 (1H, d, J 3.4 Hz), 7.57–7.61 (3H, m), 7.69 (1H, br s), 8.02 (2H, d, J 7.9 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) (there was difficulty in assigning signals to a given isomer, but the following were observed) 28.5 (CH), 28.7 (CH), 30.6 (CH), 31.1 (CH), 32.8 (CH), 33.5 (CH), 51.9 (CH₃), 52.0 (CH₃), 112.3 (CH), 112.5 (CH), 128.3 (CH), 128.5 (CH), 128.6 (CH), 128.7 (CH), 133.6 (CH), 133.8 (CH), 136.1 (C), 136.2 (C), 147.2 (CH), 147.2 (CH), 147.7 (CH), 147.7 (CH), 152.1 (C), 152.3 (C), 168.2 (C), 168.4 (C), 181.6 (C), 183.7 (C), 192.6 (C), 195.5 (C); *m/z* (CI) 299 (MH⁺); HRMS (CI) [MH⁺], found: 299.0917. C₁₇H₁₅O₅ requires 299.0919 (0.7 ppm error).

6.3.13. 2-Acetyl-3-benzoyl-cyclopropanecarboxylic acid ethyl ester 15f. Using the above procedure for **10c** (but with sulfurane **5b** and phosphorane **3e** for 2.5 h), the *title compound* **15f** was prepared in 60% yield as an orange oil as a mixture of cyclopropane isomers (2.7:1), ν_{max} (film) 2955, 1735, 1709, 1685, 1597, 1450, 1372, 1359, 1301, 1191, 1003 cm⁻¹; *m/z* (CI) 261 (MH⁺); HRMS (CI)

[MH⁺], found: 261.1127. C₁₅H₁₇O₄ requires 261.1125 (0.7 ppm error). This mixture could be partially separated by chromatography (petrol-EtOAc, 4:1) giving major isomer: R_f 0.16 (petrol-EtOAc, 4:1); δ_H (400 MHz, CDCl₃) 1.03 (3H, t, J 7.0 Hz), 1.22-1.29 (1H, m), 2.40 (3H, s), 2.72-2.76 (1H, m), 3.21-3.28 (1H, m), 3.97 (2H, q, J 7.0 Hz), 7.39–7.55 (3H, m), 7.89–7.96 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.8 (CH₃), 31.2 (CH₃), 31.6 (CH), 31.9 (CH), 34.5 (CH), 61.2 (CH₂), 128.3 (CH), 128.6 (CH), 133.5 (CH), 136.0 (C), 167.7 (C), 192.0 (C), 204.1 (C); minor isomer: R_f 0.11 (petrol-EtOAc, 4:1); δ_H (400 MHz, CDCl₃) 2.31 (3H, s), 2.93–2.98 (1H, m), 3.33 (1H, d, J 5.5 and 10.0 Hz), 3.78 (1H, dd, J 4.3 and 5.5 Hz), 4.13-4.21 (2H, m), 7.97-8.03 (2H, m) (the remaining signals were obscured by the major isomer); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (CH₃), 29.3 (CH₃), 30.6 (CH), 34.2 (CH), 36.9 (CH), 61.5 (CH₂), 128.6 (CH), 128.7 (CH), 136.2 (CH), 136.3 (C), 1707.7 (C), 195.1 (C), 201.2 (C).

6.3.14. Cyclopropane-3-(cyclohexanecarbonyl)-1,2-dicarboxylic acid 1-ethyl ester 2-methyl ester 15g. Using the above procedure for 10c (but with phosphorane **3a** for 15 h), the *title compound* **15g** was prepared in 78% yield as essentially a single diastereomer as a clear oil; R_f 0.28 (petrol–EtOAc, 3:1); v_{max} (film) 2934, 2854, 1735, 1703, 1450, 1373, 1294, 1174 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.24 (3H, t, *J* 7.0 Hz), 1.28–1.34 (4H, m), 1.63–1.78 (4H, m), 1.93–1.95 (2H, m), 2.46 (2H, d, *J* 5.5 Hz), 2.52–2.58 (1H, m), 3.07 (1H, t, *J* 5.5 Hz), 3.70 (3H, s), 4.15 (2H, q, *J* 7.0 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.7 (CH₃), 25.2 (CH₂), 25.5 (CH₂), 27.5 (CH₂), 29.2 (CH), 29.4 (CH), 30.2 (CH), 51.5 (CH), 52.3 (CH₃), 61.4 (CH₂), 168.5 (C), 168.9 (C), 209.0 (C); *m/z* (CI) 283 (MH⁺); HRMS (CI) [MH⁺], found: 283.1546. C₁₅H₂₃O₅ requires 283.1545 (-0.4 ppm error).

6.3.15. 2-Benzoyl-3-(3-phenyl-propionyl)-cyclopropanecarboxylic acid ethyl ester 15h. Using the above procedure for 10c (but with phosphorane 3a for 15 h), the *title com*pound 15h was prepared as essentially a single diastereomer in 51% yield as a colourless oil; $R_f 0.24$ (petrol-EtOAc, 3:1); *v*_{max} (film) 2909, 1735, 1710, 1454, 1373, 1304, 1197, 912, 732 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.24 (3 H, t, J 7.0 Hz), 2.49 (2H, d, J 5.5 Hz), 2.92-2.94 (3H, m), 3.00 (2H, d, J 5.5 Hz), 3.69 (3H, s), 4.14 (2H, q, J 7.0 Hz), 7.16-7.17 (1H, m), 7.19–7.20 (2H, m), 7.26–7.27 (1H, m), 7.28–7.29 (1H, m); δ_{C} (100 MHz, CDCl₃) 13.4 (CH₃), 28.9 (CH₂), 29.1 (CH), 29.3 (CH), 31.1 (CH), 45.2 (CH₂), 52.0 (CH₃), 61.1 (CH₂), 126.2 (CH), 128.2 (CH), 128.5 (CH), 140.3 (C), 167.9 (C), 168.4 (C), 205.1 (C); *m*/*z* (CI) 305 (MH⁺); HRMS (CI) [MH⁺], found: 305.1386. C₁₇H₂₁O₅ requires 305.1389 (1.0 ppm error).

6.3.16. Diethyl 3-(11,17-dihydroxy-10,13-dimethyl-3oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthrene-17-carbonyl)-cyclopropane-1,2-dicarboxylate 15i. Using the above procedure for 10c (but with phosphorane 3e for 2.5 h), the *title compound* 15i was prepared in 78% yield as a colourless oil as an inseparable mixture (5:1) of cyclopropane isomers with one major, R_f 0.34 (petrol–EtOAc, 4:1); ν_{max} (film) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.91 (3H, s), 0.95–1.02 (1H, m), 1.17– 1.31 (7H, m), 1.32–1.55 (5H, m), 1.66–1.88 (4H, m), 1.92–2.37 (4H, m), 1.98 (3H, s), 2.37–2.51 (3H, m), 2.68–2.84 (2H, m), 3.43 (1H, dd (app t), *J* 5.5 Hz), 4.03–4.15 (5H, m), 4.41 (1H, br s), 5.62 (1H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.1 (CH₃), 14.2 (CH₃), 18.0 (CH₃), 21.0 (CH₃), 23.9 (CH₂), 29.2 (CH), 30.0 (CH), 31.4 (CH), 31.7 (CH), 32.1 (CH₂), 32.8 (CH₂), 33.1 (CH₂), 33.8 (CH₂), 34.9 (CH₂), 39.3 (C), 40.0 (CH₂), 47.6 (C), 51.8 (CH), 56.0 (CH), 61.6 (CH₂), 61.7 (CH₂), 68.3 (CH), 90.0 (C), 122.3 (CH), 167.8 (C), 168.3 (C), 172.7 (C), 199.9 (C), 207.4; *m*/z (CI) 517 (MH⁺); HRMS (CI) [MH⁺], found: 517.2794. C₂₉H₄₁O₈ requires 517.2801 (1.5 ppm error).

6.3.17. Methylsulfanyl-acetic acid 3-allyl-2-methyl-4oxo-cyclopent-2-enyl ester 21. Dicyclohexylcarbodiimide (3.31 g, 16.0 mmol) in THF (20 mL) was added to a solution of alcohol **20**¹¹ (2.03 g, 13.4 mmol), (methylthio)acetic acid (1.28 mL, 14.7 mmol), and DMAP (163 mg, 1.3 mmol) in THF (90 mL) at rt under a nitrogen atmosphere. Precipitation of DCU was observed after a few minutes. After 2 h, the reaction was filtered through Celite® washing with EtOAc, and then the filtrate concentrated in vacuo. Purification by flash column chromatography (petrol-EtOAc, 4:1) gave the title compound **21** (2.52 g, 79%) as a yellow oil; R_f 0.48 (petrol-EtOAc, 3:1); v_{max} (film) 2953, 1734, 1710, 1655, 1638, 1385, 1268, 1130, 1001 cm⁻¹; $\delta_{\rm H}$ (400 MHz, C₆D₆) 1.57 (3H, s), 1.81 (3H, s), 2.07 (1H, dd, J 1.9 and 18.5 Hz), 2.49 (1H, dd, J 6.0 and 18.5 Hz), 2.66 (2H, s), 2.80 (2H, t, J 5.6 Hz), 4.88–4.97 (2H, m), 5.34 (1H, br d, J 6.0 Hz), 5.70 (1H, ddt, J 6.3, 10.0 and 16.7 Hz); $\delta_{\rm C}$ (100 MHz, C₆D₆) 12.8 (CH₃), 15.4 (CH₃), 30.3 (CH₂), 34.6 (CH₂), 40.7 (CH₂), 73.0 (CH), 115.2 (CH₂), 127.6 (C), 133.4 (CH), 141.1 (C), 163.2 (C), 169.0 (C); *m/z* (CI) 241 (MH⁺), 258 (MNH₄⁺); HRMS (CI) [MNH₄⁺], found: 241.0894. C₁₂H₁₇O₃S requires 241.0898 (2.0 ppm error).

6.3.18. (3-Allyl-2-methyl-4-oxo-cyclopent-2-enyloxycarbonylmethyl)-dimethylsulfonium tetrafluoroborate 22. Ester 21 (661 mg, 2.75 mmol) was dissolved in iodomethane (15 mL). Silver tetrafluoroborate (574 mg, 2.95 mmol) was added in one portion and the reaction stirred in the dark for 3 h at rt, after which time stirring was stopped and the precipitate allowed to settle. The supernatant was decanted carefully and the residue dried in vacuo before being extracted with MeOH (three times). Filtration and removal of the MeOH in vacuo (water bath <35 °C) gave the *title compound* **22** (848 mg, 90%) as a yellow oil; ν_{max} (film) 3033, 2944, 1736, 1709, 1655, 1638, 1432, 1388, 1312, 1194, 1064, 922 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CD₃OD) 2.10 (3H, s), 2.44 (1H, dd, J 1.6 and 18.6 Hz), 2.91 (1H, dd, J 6.1 and 18.6 Hz), 2.99-3.02 (8H, m), 4.50 and 4.57 (2H, AB q, J 16.5 Hz), 4.98-5.04 (2H, m), 5.77 (1H, ddt, J 6.3, 10.0 and 16.7 Hz), 5.86 (1H, d, J 6.1 Hz); $\delta_{\rm C}$ (100 MHz, CD₃OD) 14.0 (CH₃), 25.7 (CH₃), 27.8 (CH₂), 41.9 (CH₂), 46.4 (CH₂), 77.6 (CH), 116.4 (CH₂), 134.7 (CH), 143.2 (C), 166.0 (C), 166.7 (C), 205.3 (C); *m/z* (FAB) 255 (M⁺), 597 (2 M⁺+BF₄⁻); HRMS (FAB) [M⁺], found: 255.1062. C₁₃H₁₉O₃S requires 255.1055 (-3.0 ppm error).

6.3.19. (Dimethyl- λ^4 -sulfanylidene)-acetic acid 3-allyl-2methyl-4-oxo-cyclopent-2-enyl ester 23. Salt 22 (836 mg, 2.44 mmol) was suspended in CHCl₃ (4 mL), and to this was added a suspension of powdered NaOH (98 mg, 2.44 mmol) in satd aq K₂CO₃ (2 mL). The biphasic solution was stirred at rt for 20 min before being filtered through Celite[®], and washed with CH₂Cl₂. The filtrate was dried (MgSO₄) and concentrated in vacuo to give the title compound **23** (617 mg, 99%) as a pale yellow oil, which was used immediately; ν_{max} (film) 2981, 2923, 1703, 1647, 1636, 1616, 1431, 1383, 1366, 1317, 1190, 1129, 1055, 1031, 996, 916 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.99 (3H, s), 2.26 (1H, dd, *J* 1.8 and 18.6 Hz), 2.73 (6H, s), 2.76 (1H, dd, *J* 6.1 and 18.6 Hz), 2.92 (2H, d, *J* 6.4 Hz), 2.95 (1H, br s), 4.93–4.99 (2H, m), 5.66–5.78 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (CH₃), 27.0 (CH₂), 30.5 (CH₃), 30.6 (CH₃), 32.8 (CH), 42.3 (CH₂), 70.2 (CH), 115.5 (CH₂), 133.9 (CH), 140.0 (C), 168.5 (C), 169.3 (C), 205.1 (C).

6.3.20. 2-((E)-2-Methoxycarbonyl-propenyl)-cyclopropanecarboxylic acid 3-allyl-2-methyl-4-oxo-cyclopent-2envl ester 24. To a solution of allyl alcohol 1b (77 µL, 1.13 mmol) in CH₂Cl₂ (7 mL) was added powdered 4 Å molecular sieves (1.13 g), dimethylsulfurane 23 (573 mg, 2.26 mmol) in CH₂Cl₂ (3 mL), (carbomethoxyethylene)triphenylphosphorane 3c (471 mg, 1.35 mmol) and manganese dioxide (981 mg, 11.3 mmol). The mixture was heated at reflux for 3 h, and then cooled to rt. The crude mixture was filtered through Celite[®] and the residue washed with CH₂Cl₂. After removal of the solvent, the resulting yellow oil was purified by flash column chromatography (petrol-Et₂O, 2:1) to give the *title compound* 24 (206 mg, 57%) as a mixture of cyclopropane isomers ($\sim 3.1:1$) as a colourless oil, $R_f 0.21$ (petrol-Et₂O, 2:1); *v*_{max} (film) 2922, 1716, 1655, 1437, 1409, 1386, 1255, 1173, 916, 734 cm⁻¹; m/z (CI) 319 (MH⁺), 336 (MNH₄⁺); HRMS (CI) [MH⁺], found 319.1545. C₁₈H₂₃O₅ requires 319.1546 (0.2 ppm error). NMR data for major isomer only: $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.12–1.15 (1H, m), 1.57 (1H, ddd, J 5.1, 10.1, 14.5 Hz), 1.83 (1H, dd, J 5.1, 8.5 Hz), 1.94 (3H, d, J 5.0Hz), 2.01 (3H, s), 2.19-2.29 (2H, m), 2.85 (1H, dd, J 6.3, 18.6 Hz), 2.97 (2H, d, J 6.3 Hz), 3.70 (3H, s), 4.98-5.01 (2H, m), 5.70-5.73 (1H, m), 5.76 (1H, tdd, J 6.3, 9.5, 13.0 Hz), 6.09 (1H, app t, J 9.0 Hz); $\delta_{\rm C}$ (125 MHz, CDCl₃) 12.7 (CH₃), 13.8 (CH₃), 16.7 (CH₂), 22.3 (CH), 22.4 (CH), 27.1 (CH₂), 41.5 (CH₂), 51.8 (CH₃), 73.4 (CH), 116.0 (CH₂), 128.4 (C), 133.4 (CH), 141.3 (CH), 141.7 (C), 165.2 (C), 168.0 (C), 172.6 (C), 203.3 (C).

Acknowledgements

We are grateful to the EPSRC for support (ROPA Fellowship, S.A.R. and studentship, R.J.P.), to the École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1 for ERASMUS exchange support (M.O.).

References and notes

- For a review of the use of MnO₂ in tandem oxidation processes see: Taylor, R. J. K.; Reid, M.; Foot, J. S.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851–869 and references therein; see also Refs. 4 and 7 and: Quesada, E.; Raw, S. A.; Reid, M.; Roman, E.; Taylor, R. J. K. Tetrahedron, in this issue, please see doi:10.1016/j.tet.2005.12.077.
- (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 867–868; (b) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 3782–3783; (c) Truce, W. E.; Badiger, V. V. J. Org.

Chem. 1964, 29, 3277–3280; (d) Payne, G. B. J. Org. Chem. 1967, 32, 3351–3355; (e) Quintana, J.; Torres, M.; Serratosa, F. Tetrahedron 1973, 29, 2065–2076; (f) Johnson, C. R.; Schroeck, C. W.; Shanklin, J. R. J. Am. Chem. Soc. 1973, 95, 7424–7431; (g) Aggarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V. H.; Fieldhouse, R.; Spey, S. E. J. Chem. Soc., Perkin Trans. 1 2000, 3267–3276.

3. (a) For reviews see: Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625-1647; Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196; Pietruszka, J. Chem. Rev. 2003, 103, 1051-1070; Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977-1050 and references therein; (b) For recent references see: Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2005, 127, 12222-12223 and references therein; (c) Ningsanont, N.; Black, D. S. C.; Chanphen, R.; Thebtaranonth, Y. J. Med. Chem. 2003, 46, 2397-2403; (d) Wipf, P.; Reeves, J. T.; Balachandran, R.; Day, B. W. J. Med. Chem. 2002, 45, 1901-1917; (e) Rugutt, J. K.; Henry, C. W.; Franzblau, S. G.; Warner, I. M. J. Agric. Food Chem. 1999, 47, 3402-3410; (f) Han, S.-Y.; Cho, S.-H.; Kim, S.-Y.; Seo, J.-T.; Moon, S.-J.; Jhon, G.-J. Bioorg. Med. Chem. Lett. 1999, 9, 59-64; (g) Barrett, A. G. M.; Doubleday, W. W.; Hamprecht, D.; Kasdorf, K.; Tustin, G. J.; White, A. J. P.; Williams, D. J. Chem. Commun. 1997, 1693-1700; (h) Matano, Y. J. Chem. Soc., Perkin Trans. 1 1994, 2703-2709; (i) Wu, P.-L.; Wang, W.-S. J. Org. Chem. 1994, 59, 622-627; (i) Bucsh, R. A.; Domagala, J. M.; Laborde, E.; Sesnie, J. C. J. Med. Chem. 1993, 36, 4139-4151; (k) Rai, K. M. L.; Anjanamurthy, C.; Radhakrishna, P. M. Synth. Commun. 1990, 20, 1273-1277; (1) Martinez, G. R.; Hirschfeld, D. R.; Maloney, P. J.; Yang, D. S.; Rosenkranz, R. P.; Walker, K. A. M. J. Med. Chem. 1989, 32, 890-897; (m) Boland, W.; Niedermeyer, U. Synthesis 1987, 28-32; (n) Curley, R. W., Jr.; DeLuca, H. F. J. Org. Chem. 1984, 49, 1941-1944; (o) Duhamel, P.; Poirier, J.-M.; Hennequin, L. Tetrahedron Lett. 1984, 25, 1471–1474; (p) Doyle, M. P.; Dorow, R. L.; Tamblyn, W. H. J. Org. Chem. 1982, 47, 4059–4068; (q) Kusuyama, Y.; Ikeda, Y. Bull. Chem. Soc. Jpn. 1977, 50, 1784–1787; (r) Hammerschmidt, F.; Zbiral, E. Liebigs Ann. Chem. 1977, 1026–1038; (s) Adams, J.; Hoffman, L., Jr.; Trost, B. M. J. Org. Chem. 1970, 35, 1600–1604.

- For preliminary communications see: (a) Oswald, M. F.; Raw, S. A.; Taylor, R. J. K. *Org. Lett.* **2004**, *6*, 3997–4000; (b) Oswald, M. F.; Raw, S. A.; Taylor, R. J. K. *Chem. Commun.* **2005**, 2253–2255.
- Curley, R. W., Jr.; DeLuca, H. F. J. Org. Chem. 1984, 49, 1944– 1946.
- Murphy, W. S.; Wattanasin, S. J. Chem. Soc., Perkin Trans. 1 1982, 1029–1035.
- 7. Runcie, K. A.; Taylor, R. J. K. Chem. Commun. 2002, 974-975.
- Murphy, W. S.; Wattanasin, S. J. Chem. Soc., Perkin Trans. 1 1982, 271–276.
- For reviews see: Jeanmart, S. Aust. J. Chem. 2003, 56, 559– 566; Crombie, L. Pestic. Sci. 1980, 11, 102–118.
- Matsui, M.; Meguro, H. Agric. Biol. Chem. 1964, 28, 27–31; Kobayashi, A.; Yamashita, K.; Ohshima, K.; Yamamoto, I. Agric. Biol. Chem. 1971, 35, 1961–1965.
- Farkas, J.; Komrsová, H.; Krupicka, J.; Novák, J. J. K. Collect. Czech. Chem. Commun. 1960, 25, 1824–1836; for improved preparation of the precursors see; Chattopadhyay, S. K.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 2000, 2429– 2454; Kato, T.; Mochizuki, M.; Okano, S.; Matsuo, N. Synth. Commun. 2003, 33, 3977–3982.
- 12. Wattanasin, S.; Murphy, W. S. Synthesis 1980, 647-650.
- Bramwell, A. F.; Crombie, L.; Hemesley, P.; Pattenden, G.; Elliott, M.; Janes, N. F. *Tetrahedron* **1969**, *25*, 1727–1741.
- (a) McDonald, W. S.; Verbicky, C. A.; Zercher, C. K. J. Org. Chem. 1997, 62, 1215–1222; (b) Fritschi, H.; Leutenegger, U.; Pfaltz, A. Helv. Chim. Acta 1988, 71, 1553–1565.