Note

Synthesis of 3,4-dihydro-3,3-dimethyl-1(2H)-acridinone

Roberto Martínez,^(1,*) Georgina Espinosa-Pérez,⁽¹⁾ and Marco Brito-Arias⁽¹⁾

Received September 28, 1994; accepted November 29, 1994

The acridinone derivative 3,4-dihydro-3,3-dimethyl-1(2H)-acridinone (4) has been prepared in a two step fashion and the molecular structure confirmed by X-ray diffraction. Compound 4 crystallizes in the space group P2₁/n with a = 6.022(2), b = 21.111(2), c = 9.604(2) Å, $\beta = 99.97(2)^{\circ}$, and Z = 4. The single crystal analysis showed the acridinone tricyclic ring is virtually planar except in the gem-dimethyl position of C(3) which presented a half-chair conformation.

KEY WORDS: Acridinone, alzheimer, dimedone.

Introduction

Acridinone derivatives have been proposed as potential antimalarial,² anti-AIDS,³ antitumor,⁴ and particularly in the case of some aminotetrahydroacridines derivatives such as Tacrine, Velnacrine, and Suronacrine, considered as promising anti-Alzheimer drugs.⁵ In the search for more effective anti-Alzheimer drugs we have prepared 3,4-dihydro-3,3-dimethyl-1(2H)-acridinone **4** in a two-step reaction and its single crystal structure elucidated by X-ray diffraction analysis.

Experimental

The intermediate 3 was prepared by refluxing equimolar amounts of 2-nitrobenzaldehyde 1, dimedone 2, and KOH in ethanol over 3 h. Sodium dithionite promoted reduction of the resulting nitro derivative 3 and further cyclization furnished acridinone 4 (Scheme 1). This reaction was carried out refluxing 3 with 12 eq. of sodium dithionite in ethanol over 5 h. Also the reduction step of 3 was carried out under a hydrogen atmosphere with Pd/C as a catalyst at 60 psi of pressure to give compound 4 in similar yields (15%). Preparation of a closely related acridinone derivative of 4 has been previously described using a secondary amine, dimedone,

Scheme 1. Reactions and conditions: (i) KOH/EtOH-H₂O, reflux, 3 h. (ii) Na₂S₂O₄/EtOH-H₂O, reflux, 5 h.

formaldehyde and perchloric acid to give the corresponding water soluble quaternary salts of the N-alquilsubstituted acridinones.⁶

⁽¹⁾Department of Organic Chemistry, Instituto de Quimica, Universidad Nacional Autonoma de México, Circuito Exterior Ciudad Universitaria, Coyoacán 04510 Mexico, D.F. México.

^{*}To whom correspondence should be addressed.

 Table 1. Summary of crystal and intensity collection data for compound 4

Compound	C ₁₅ H ₁₅ NO
Color/shape	colorless/irregular
Formula weight	225.3
Space group	P21/n
Temp., °C	20
Cell constants ^a	
$a(\dot{\mathbf{A}})$	6.022(2)
b(Å)	21.111(2)
c(Å)	9.604(2)
β(°)	99.97(2)
V (ų)	1202.5(5)
Ζ	4
ρ calc (mgcm ⁻³)	1.244
μ calc, mm ⁻¹	0.611
Diffractometer/scan	Siemens P4-PC/20/0
Radiation	$CuK\alpha(\lambda = 1.54178 \text{ Å})$
Crystal dimensions (mm)	$0.34 \times 0.36 \times 0.24$
Unique reflections	1613
2θ range, deg.	10 to 110
hkl range	$\pm 6, \pm 22, \pm 10$
Reflections observed $[F > 3\sigma(F)]^{b}$	1419
Solution and Refinement	SHELXTL PLUS (PC version)
Solution	Direct methods
Refinement method	Full-matrix least-squares
Number of parameters refinement	155
Weighting scheme	$[\sigma^2(F) + 0.0008F^2]^{-1}$
Goodness-of-fit	1.28
$R = \Sigma Fo - Fc / \Sigma Fo $	4.76%
Rw	5.22%
Largest feature final diff. map	0.19 e/ Å ³

^{*a*}Least-squares refinement of 38 centered reflections (8.36 < 2θ < 39.855).

^bCorrections: Lorentz-polarization.

Results and discussion

The spectroscopic characterization of compound 4 was performed by IR, ¹H NMR, ¹³C NMR and mass spectroscopy. The IR spectrum exhibits a characteristic absorption band at 1688 cm⁻¹ for the ketone group present in the aliphatic ring. The mass spectrum gave a molecular ion at m/z 225 in agreement with the formula weight of compound 4 and a base peak at m/z 169. The proton resonance displayed signals at δ 1.2 for methyls, δ 2.7, 3.2 for methylene groups and at δ 7.5–8.0 for the aromatic protons. The ¹³C NMR (DEPT) showed one signal at δ 28 ppm for two methyl groups, two signals at δ 47 and δ 52 for the methylene groups of the fused aliphatic ring and five aromatic carbons at δ 126–136. The final elucidation of the molecular structure was achieved by X-ray diffraction analysis of a single crystal (Tables 1-4). The single crystal analysis showed the acridinone tricyclic ring is virtually planar except in the

Table 2. Bond lengths (Å) for compound 4

O(1)-C(1)	1.213(2)	C(1) - C(2)	1.488(3)
C(1) - C(11)	1.497(3)	C(2) - C(3)	1.535(3)
C(3)-C(4)	1.530(3)	C(3) - C(15)	1.521(4)
C(3)-C(16)	1.525(4)	C(4) - C(12)	1.502(3)
C(5)-C(6)	1.363(3)	C(5)-C(13)	1.416(3)
C(6)-C(7)	1.407(3)	C(7) - C(8)	1.357(3)
C(8)-C(14)	1.414(3)	C(9) - C(11)	1.367(3)
C(9)-C(14)	1.404(3)	N(10) - C(12)	1.324(2)
N(10)-C(13)	1.371(3)	C(11) - C(12)	1.423(3)
C(13)-C(14)	1.413(3)		

Table 3. Bond angles (°) for compound 4

O(1) - C(1) - C(2)	122.2(2)	O(1) - C(1) - C(11)	121.0(2)
C(2) - C(1) - C(11)	116.8(2)	C(1) - C(2) - C(3)	114.1(2)
C(2) - C(3) - C(4)	107.8(2)	C(2) - C(3) - C(15)	110.0(2)
C(4) = C(3) = C(15)	109.8(2)	C(2) = C(3) = C(16)	110.3(2)
C(4) = C(3) = C(16)	110.0(2)	C(15) - C(3) - C(16)	108.9(2)
C(3) - C(4) - C(12)	113.9(2)	C(6) = C(5) = C(13)	119.3(2)
C(5) = C(6) = C(7)	121.6(2)	C(6) - C(7) - C(8)	120.1(2)
C(7) - C(8) - C(14)	120.3(2)	C(11) - C(9) - C(14)	119.9(2)
C(12) = N(10) = C(13)	118.3(2)	C(1) = C(11) = C(9)	120.5(2)
C(1) - C(11) - C(12)	120.1(2)	C(9) - C(11) - C(12)	119.3(2)
C(4) = C(12) = N(10)	117.0(2)	C(4) - C(12) - C(11)	120.7(2)
N(10) - C(12) - C(11)	122.3(2)	C(5) = C(13) = N(10)	118.0(2)
C(5) - C(13) - C(14)	119.3(2)	N(10) - C(13) - C(14)	122.7(2)
C(8) - C(14) - C(9)	123.2(2)	C(8) = C(14) = C(13)	119.4(2)
C(9) = C(14) = C(13)	117.3(2)		

Table 4. Atomic coordinates ($\times10^4)$ and temperature factors $({\rm \AA}^2\,\times\,10^3)$ for 4

	x	у	z	$U(eq)^a$
O(1)	-5398(3)	5910(1)	1152(2)	70(1)
C(1)	-3899(3)	6000(1)	2152(2)	48(1)
C(2)	- 3957(3)	6535(1)	3154(3)	53(1)
C(3)	-1641(3)	6828(1)	3707(2)	47(1)
C(4)	-100(3)	6302(1)	4417(2)	48(1)
C(5)	3879(3)	4462(1)	3255(3)	51(1)
C(6)	4018(4)	3924(1)	2488(3)	58(1)
C(7)	2234(4)	3729(1)	1430(3)	62(1)
C(8)	322(4)	4080(1)	1145(3)	57(1)
C(9)	-1795(3)	5038(1)	1641(2)	48(1)
N(10)	1806(3)	5372(1)	3769(2)	44(1)
C(11)	-1888(3)	5572(1)	2431(2)	43(1)
C(12)	-36(3)	5724(1)	3512(2)	42(1)
C(13)	1896(3)	4834(1)	2980(2)	43(1)
C(14)	114(3)	4645(1)	1903(2)	46(1)
C(15)	- 1865(5)	7346(1)	4775(3)	70(1)
C(16)	-653(4)	7114(1)	2490(3)	60(1)

"Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

Fig. 1. Crystal structure of compound 4.

gemdimethyl position of C(3) which presented a halfchair conformation (Fig. 1). To our knowledge this is the first report of X-ray diffraction analysis of an acridinone derivative and only for the anti-Alzheimer drugs Tacrine, Velnacrine, and Suronacrine have powder diffraction analyses been reported.⁸ The described structures were in good agreement with the structure of 4; however, bond lengths and angles could not be compared since these data were not provided in reference 8.

Acknowledgments

We wish to thank to DGAPA-UNAM for financial support project IN-300293. We are also grateful to R. Patiño, I. Chavez, A. Gutierrez, F.J. Perez and L. Velasco for their assistance in obtaining the IR, NMR, and MS data.

References

- 1. Contribution No. 1254 from Instituto de Quimica, UNAM.
- Kesten, S.J.; Degnan, M.J.; Hung, J.; McNamara, D.J.; Ortwine, D.F.; Uhlendorf, S.E.; Werbel, L.M. J. Med. Chem. 1992, 35, 3429.
- 3. Shutske, G.M. Chem. Abstr. 1993, 118, 45771.
- 4. Cholody, W.M.; Konopa, J.; Antonini, I.; and Martelli, S. J. Heterocyclic Chem. 1991, 28, 209.
- Shutske, G.M.; Pierrat, F.A.; Kapples, K.J.; Comfeldt, M.L.; Szewczak, M.R.; Huger, F.P.; Bores, G.M.; Haroutunian V. and Davis, K.L. J. Med. Chem. 1989, 32, 1805.
- 6. Kornilov, M.Y.; Turov, A.V.; Mel'nik, M.V.; Gutsulyak, B.M. Zh. Org. Khim. 1979, 15, 2226.
- Sheldrick, G.M. SHELXTL-PLUS PC User's Manual; Siemens Analytical X-ray Instruments: Madison, WI., 1990.
- 8. Bandoli, G.; Nicolini, M.; Ongaro, A. Powder Diffr. 1991, 6, 196.