

Available online at www.sciencedirect.com

ScienceDirect

Mendeleev Commun., 2016, 26, 491-493

Mendeleev Communications

lodide $[(\eta^5-indenyl)Irl_2]_n$: an effective precursor to (indenyl)iridium sandwich complexes

Alexander A. Chamkin, Anastasiia M. Finogenova, Yulia V. Nelyubina, Julia Laskova, Alexander R. Kudinov* and Dmitry A. Loginov*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 499 135 5085; e-mail: arkudinov@ineos.ac.ru, dloginov@ineos.ac.ru

DOI: 10.1016/j.mencom.2016.11.010

The reactions of $[(\eta^5\text{-indenyl})\text{IrI}_2]_n$ with CpTl or arenes in the presence of AgBF₄ afford $[(\eta^5\text{-indenyl})\text{IrCp}]^+$ or $[(\eta^5\text{-indenyl})\text{Ir}(\operatorname{arene})]^{2+}$ cations (arene = benzene, mesitylene, durene or hexamethylbenzene); the structures of $(\eta^5\text{-indenyl})\text{-}$ $\text{Ir}(\text{C}_2\text{H}_4)_2$ and $[(\eta^5\text{-indenyl})\text{IrCp}]\text{PF}_6$ were characterized by X-ray diffraction analysis.

In the last decade, the halide cyclopentadienyl rhodium and iridium complexes $[(C_5R_5)MX_2]_2$ proved to be effective catalysts for the C–H activation of aromatic compounds.¹ Moreover, they are widely used as the synthons of $(C_5R_5)M$ fragments in organometallic synthesis.² For example, we prepared a number of arene, triple-decker and metallacarborane complexes using the reactions of $[(C_5R_5)M]^{2+}$ cationic species (generated by a reaction of $[(C_5R_5)MX_2]_2$ with silver salts) with arenes, sandwich compounds and carborane ligands.³ The related indenyl complexes attract considerable attention due to their higher chemical reactivity (indenyl effect). The enhanced reactivity is caused by the easy slippage of an indenyl ligand from η^5 to η^3 coordination mode. Here, we report the synthesis of the iodide $[(\eta^5-indenyl)IrI_2]_n$ and demonstrate its applicability to the preparation of sandwich compounds containing the $(\eta^5-indenyl)Ir$

The iodide $[(\eta^5\text{-indenyl})\text{IrI}_2]_n \mathbf{1}^{\dagger}$ was synthesized by the Bergman method⁴ based on a reaction of iodine with the bis(ethylene) derivative $(\eta^5\text{-indenyl})\text{Ir}(\text{C}_2\text{H}_4)_2$ (Scheme 1). The latter was prepared without purification from the cyclooctene complex $[(\text{C}_8\text{H}_{14})_2\text{IrCl}]_2,^{5,\ddagger}$ ethylene and indenyllithium.§ In the ¹H NMR

Ir

 I_2/n

shown that the cyclooctadiene complex CpIr(cod) reacts with halogens giving cationic complexes [CpIr(cod)X]X containing a coordinated cyclooctadiene ligand.⁶ However, a similar reaction of $(\eta^5$ -indenyl)Ir(cod) with I₂ leads to an unidentified mixture of products, the formation of which is probably caused by the partial elimination of cyclooctadiene.

Iodide **1** proved to be an effective synthon of the $(\eta^5$ -indenyl)Ir species. For example, the reaction of **1** with CpTl affords the mixed ligand sandwich cation $[(\eta^5$ -indenyl)IrCp]⁺ **2**[¶] (Scheme 2).^{††}

Ethylene was passed through a solution of [(C₈H₁₄)₂IrCl]₂ (700 mg, 0.78 mmol) in THF (10 ml) for 20 min. A solution of indenyllithium (0.25 M, 7.6 ml, 1.9 mmol) was added to the dark red reaction mixture with stirring under argon. The resulting greenish solution was kept with stirring for two days. The solvent was removed in vacuo and the residue was chromatographed on SiO_2 (20 cm \times 1 cm) by elution with light petroleum and then diethyl ether. The light yellow band was collected and evaporated *in vacuo* to give $[(\eta^5 - indenyl)Ir(C_2H_4)_2]$ as a pale brown oily solid. A solution of I2 (400 mg, 1.57 mmol) in Et2O (8 ml) was added to $[(\eta^5-indenyl)Ir(C_2H_4)_2]$ in the same solvent (4 ml) in air, and the reaction mixture was stirred for 1 h. The dark brown precipitate was centrifuged off, washed three times with Et₂O, one time with CH₂Cl₂ and then was washed with Et2O until discoloration of the solvent. The residue was dried in vacuo. Yield, 400 mg (46%) as a dark purple presumably polymeric substance. ¹H NMR (DMSO-*d*₆) δ: 7.56–7.60 (m, 4 H, indenyl), 6.52 (m, 2 H, indenyl), 6.27 (m, 1 H, indenyl). Found (%): C, 19.34; H, 1.31. Calc. for C₉H₇I₂Ir (%): C, 19.26; H, 1.26.

[‡] The cyclooctene complex $[(C_8H_{14})_2IrCl]_2$ was prepared by a well-known procedure⁵ with the use of K_2IrCl_6 instead of $(NH_4)_3IrCl_6$. A degassed mixture of H_2O (30 ml) and PrⁱOH (10 ml) was stirred while *cis*-cyclooctene (4 ml, 31 mmol) and K_2IrCl_6 (2.2 g, 4.54 mmol) were added under

argon. The reaction mixture was refluxed with vigorous stirring for 4 h. The upper water-alcohol layer was decanted and cold EtOH (7 ml) was added to the orange oily residue. The resulting mixture was kept at 0 °C for ~16 h. The precipitate formed was filtered off, washed with cold EtOH and dried *in vacuo*. Yield, 1.31 g (65%) as an orange solid.

 $^{^{\$}}$ A solution of BuLi (2.5 M, 2.8 ml, 7 mmol) in hexanes was added to a solution of indene (1 g, 8.6 mmol) in THF (25 ml) with stirring under argon. The mixture was stirred for ~1 h. The solution obtained (2.5 M of indenyllithium in hexanes–THF) was used without further isolation.

[¶] Dry MeCN (2 ml) was added to a mixture of **1** (60 mg, 0.107 mmol) and CpTl (38 mg, 0.14 mmol) under argon. The solution was stirred for 3 h and then filtered; the solvent was removed *in vacuo*. The residue was treated with a saturated aqueous solution of KPF₆. The aqueous layer was decanted and the solid residue was twice washed with water. After drying over P₂O₅, product [**2**]PF₆ was obtained as a white solid, yield 35 mg (63%). ¹H NMR (acetone- d_6) δ : 7.66 (m, 2H, indenyl), 7.39 (m, 2H, indenyl), 6.7 (d, 2H, indenyl, *J* 2.8 Hz), 6.0 (t, 1H, indenyl, *J* 2.8 Hz), 5.83 (s, 5H, Cp). Found (%): C, 32.37; H, 2.29. Calc. for C₁₄H₁₂F₆IrP (%): C, 32.50; H, 2.34.

We found that iodide abstraction from 1 by AgBF₄ in nitromethane in the presence of benzene and its derivatives resulted in dicationic arene complexes $[(\eta^5\text{-indenyl})\text{Ir}(arene)]^{2+}$ 3a–d (Scheme 3).^{‡‡} Note that the intermediate solvates $[(\eta^5\text{-indenyl})\text{-}$ Ir(MeNO₂)₃]²⁺ are unstable in nitromethane solution. Thus, a control experiment with their preliminary generation and subsequent interaction with benzene did not give target complex 3a. The thermal instability of the solvate complexes did not allow us to prepare polymethylated complexes 3c,d in analytically pure forms owing to their low formation rates.

Scheme 3

The salts [2]PF₆ and [3a–d](BF₄)₂ are air-stable solids. Moreover, the benzene derivative [3a](BF₄)₂ is stable in dry acetonitrile solution for at least two days, similar to [CpIr(C₆H₆)](BF₄)₂.^{3(b)} In the ¹H NMR spectrum of [3a](BF₄)₂, the signal of the protons of a coordinated benzene ligand is very close ($\Delta \delta = 0.04$ ppm) to that for free benzene. This is a consequence of a high positive charge, whose effect compensates the opposite effect of coordination to the transition metal atom.

The structures of $(\eta^5$ -indenyl)Ir(C₂H₄)₂^{§§,7} and [2]PF₆ were determined by X-ray diffraction analysis (Figures 1 and 2).[¶] The indenyl ligand in both complexes is η^5 -coordinated to the iridium

For $[3a](BF_4)_2$: yield 24 mg (40%) as a golden brown solid. ¹H NMR (CD₃NO₂) δ : 7.92 (m, 2H, indenyl), 7.85 (m, 2H, indenyl), 7.41 (s, 6H, C₆H₆), 7.36 (d, 2H, indenyl, *J* 2.5 Hz), 6.7 (t, 1H, indenyl, *J* 2.5 Hz). Found (%): C, 32.04; H, 2.33. Calc. for C₁₅H₁₃B₂F₈Ir (%): C, 32.22; H, 2.34.

For $[3b](BF_4)_2$: yield 47 mg (73%) as an orange solid. ¹H NMR (CD₃NO₂) δ : 8.00 (m, 2 H, indenyl), 7.78 (m, 2 H, indenyl), 7.16 (d, 2 H, indenyl, *J* 2.9 Hz), 7.12 (s, 3 H, C₆H₃Me₃), 6.66 (t, 1 H, indenyl, *J* 2.9 Hz), 2.57 (s, 9 H, C₆H₃Me₃). Found (%): C, 35.97; H, 3.15. Calc. for C₁₈H₁₉B₂F₈Ir (%): C, 35.96; H, 3.19.

For [**3c**](BF₄)₂: yield 14 mg (22%) as a cream solid. ¹H NMR (CD₃NO₂) δ : 8.07 (m, 2 H, indenyl), 7.65 (m, 2 H, indenyl), 7.30 (s, 2 H, C₆H₂Me₄), 7.15 (d, 2 H, indenyl, *J* 2.5 Hz), 6.49 (t, 1H, indenyl, *J* 2.5 Hz), 2.35 (s, 12 H, C₆H₂Me₄).

For $[3d](BF_4)_2$: yield 4 mg (6%) as a cream solid. ¹H NMR (CD₃NO₂) δ : 8.09 (m, 2H, indenyl), 7.65 (m, 2H, indenyl), 6.91 (d, 2H, indenyl, *J* 2.5 Hz), 6.47 (t, 1H, indenyl, *J* 2.5 Hz), 2.46 (s, 18H, C₆Me₆).

^{§§} The structure of (η^5 -indenyl)Ir(C₂H₄)₂ was studied earlier by Merola.⁷ In this study, a crystal had the same crystallographic parameters. The crystallographic cell contains two independent molecules; data for only one of them will be used in the discussion.

Figure 1 One of the two independent molecules of the complex $(\eta^5-indeny)$ -Ir(C₂H₄)₂ with atoms shown as thermal ellipsoids at a 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Ir(1)–C(1) 2.355(5), Ir(1)–C(2) 2.199(5), Ir(1)–C(3) 2.210(5), Ir(1)–C(4) 2.212(6), Ir(1)–C(5) 2.374(5), Ir(1)–C(10) 2.131(6), Ir(1)–C(11) 2.108(6), Ir(1)–C(12) 2.130(6), Ir(1)–C(13) 2.132(6), C(1)–C(2) 1.450(8), C(2)–C(3) 1.431(8), C(3)–C(4) 1.424(8), C(4)–C(5) 1.448(7), C(1)–C(5) 1.438(7), C(10)–C(11) 1.423(9), C(12)–C(13) 1.439(8).

Figure 2 Cation 2 with atoms shown as thermal ellipsoids at a 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Ir(1)–C(1) 2.254(13), Ir(1)–C(2) 2.162(14), Ir(1)–C(3) 2.178(15), Ir(1)–C(4) 2.168(15), Ir(1)–C(5) 2.223(12), Ir(1)–C(10) 2.161(15), Ir(1)–C(11) 2.174(14), Ir(1)–C(12) 2.157(15), Ir(1)–C(13) 2.181(14), Ir(1)–C(14) 2.172(14), C(1)–C(2) 1.445(19), C(2)–C(3) 1.39(3), C(3)–C(4) 1.42(3), C(4)–C(5) 1.463(3), C(1)–C(5) 1.448(19), C(10)–C(11) 1.43(2), C(11)–C(12) 1.41(3), C(12)–C(13) 1.42(2), C(13)–C(14) 1.37(2), C(10)–C(14) 1.41(2).

atom with moderate slippage; the hinge angles^{†††,8} are 7.7–8.0° and 7.3°, respectively. The slip parameter^{‡‡‡} is another characteristic used to describe the slip–fold distortion in the indenyl complexes.¹ Note that this parameter considerably increased on going from cation **2** (0.074 Å) to a bis(ethylene) derivative (0.163 Å). This is in accordance with a general tendency to the more favorable formation of 16VE complexes for Ir¹ than for Ir^{III}. For other Ir¹ complexes, (η⁵-indenyl)Ir(cod)⁹ and (η⁵-indenyl)-Ir(η⁴-HC₄Tol₄Ph),¹⁰ the slip parameter also achieves high values (0.149 and 0.155 Å, respectively).

The C–C bond lengths of coordinated ethylene in $(\eta^5$ -indenyl)-Ir(C₂H₄)₂ [1.423(9)–1.439(8) Å, av. 1.43 Å] are close to those in cyclopentadienyl analogues $(\eta$ -C₅H₄R)Ir(C₂H₄)₂ (1.40–1.44 Å)¹¹

Crystal data for $(\eta^{5}\text{-indenyl})Ir(C_{2}H_{4})_{2}$: $C_{13}H_{15}Ir$, monoclinic, space group $P2_{1}/c$, a = 7.7314(3), b = 10.7823(4) and c = 25.7026(10) Å, $\beta = 98.4434(8)^{\circ}$, V = 2119.40(14) Å³, Z = 8, $d_{calc} = 2.278$ g cm⁻³, $\mu = 12.554$ mm⁻¹, F(000) = 1360, $R_{1} = 0.0352$ [from 5586 unique reflections with $I > 2\sigma(I)$] and $wR_{2} = 0.0888$ (from all 6184 unique reflections).

Crystal data for [2]PF₆: C₁₄H₁₂F₆IrP, monoclinic, space group $P_{2_1/n}$, a = 9.0455(11), b = 13.9932(17) and c = 11.2372(13) Å, $\beta = 92.647(2)^\circ$, V = 1420.8(3) Å³, Z = 4, $d_{calc} = 2.419$ g cm⁻³, $\mu = 9.568$ mm⁻¹, F(000) = 968, $R_1 = 0.0648$ [from 3478 unique reflections with $I > 2\sigma(I)$] and $wR_2 = 0.1841$ (from all 4149 unique reflections).

CCDC 1477235 and 1477236 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* http://www.ccdc.cam.ac.uk. ^{†††} The hinge angle is defined as an angle between the planes defined by C(2)C(3)C(4) and C(2)C(1)C(5)C(4).

^{‡‡‡‡} The slip parameter is defined as difference between the average distances from the metal to bridgehead carbons and from the metal to adjacent carbon atoms.

^{††} Anions are omitted in the schemes for clarity.

^{‡‡} Dry MeNO₂ (1 ml) was added to a mixture of **1** (60 mg, 0.107 mmol), AgBF₄·C₄H₈O₂ (61 mg, 0.214 mmol) and arene (0.5 ml of benzene or mesitylene; 60 mg, 0.43 mmol of durene; 70 mg, 0.43 mmol of hexamethylbenzene) with stirring under argon. The reaction mixture was kept for 1 h with stirring; then, the solvent was removed *in vacuo* and the oily residue was dissolved in MeNO₂ (0.5 ml). After the solution was filtered, the product was reprecipitated from MeNO₂ by diethyl ether, centrifuged off and washed with diethyl ether three times.

[¶] Crystals of $(\eta^5$ -indenyl)Ir(C₂H₄)₂ were grown by the slow evaporation of light petroleum solution. Crystals of [**2**]PF₆ were grown up by slow diffusion in two-layer system, diethyl ether and a solution of the complex in acetone.

and longer than that in free ethylene $(1.333 \text{ Å}).^{12}$ The $\text{Ir}...\text{C}_9\text{H}_7$ distance in **2** (1.828 Å) is longer than the $\text{Ir}...\text{C}_5\text{Me}_5$ distances in iridocenium cations [CpIrCp*]⁺ (av. 1.798 Å)¹³ and [IrCp₂*]⁺ (av. 1.819 Å),¹⁴ suggesting the weaker bonding of iridium with an indenyl ligand than with Cp.

Recently, we have found that the cyclopentadienyl complexes $[CpMI_2]_2$ (M = Rh, Ir) effectively catalyze the oxidative coupling of benzoic acid with diphenylacetylene to give 1,2,3,4-tetraphenyl-naphthalene.¹⁵ Taking into account that indenyl complexes often exhibit higher catalytic activity as compared to that of cyclopentadienyl analogues,¹⁶ we tried to use complex **1** as a catalyst in this reaction. Unfortunately, this complex was found catalytically inactive. For example, the reaction in the presence of 2 mol% of the catalyst afforded 1,2,3,4-tetraphenylnaphthalene in only 12% yield.^{§§§} At the same time, the use of an equimolar quantity of **1** increased the yield up to 98%. This behaviour can be explained by the low stability of the (η^5 -indenyl)Ir species, which were proposed as catalytic intermediates, under reaction conditions (refluxing in *o*-xylene).

In summary, we have demonstrated that iodide **1** can be used as a synthon of the (indenyl)iridium fragment (η^5 -indenyl)Ir for the preparation of its cyclopentadienyl and arene derivatives.

This work was supported by the Russian Science Foundation (project no. 16-33-60140 mol_a_dk).

References

- (a) G. Song, F. Wang and X. Li, *Chem. Soc. Rev.*, 2012, **41**, 3651;
 (b) F. W. Patureau, J. Wencel-Delord and F. Glorius, *Aldrichimica Acta*, 2012, **45**, 31; (c) J. Mo, L. Wang, Y. Liu and X. Cui, *Synthesis*, 2015, **47**, 439; (d) F. Hu, Y. Xia, C. Ma, Y. Zhang and J. Wang, *Chem. Commun.*, 2015, **51**, 7986; (e) T. Uto, M. Shimizu, K. Ueura, H. Tsurugi, T. Satoh and M. Miura, *J. Org. Chem.*, 2008, **73**, 298.
- 2 (a) C. White, S. J. Thompson and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1977, 1654; (b) P. Espinet, P. M. Bailey, R. F. Downey and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1980, 1048; (c) S. L. Grundy

^{§§§} A mixture of benzoic acid, diphenylacetylene, Ag_2CO_3 , **1** and *o*-xylene was refluxed with stirring under argon for about 6 h. The solvent was removed *in vacuo* and the residue was chromatographated on SiO₂ (15 cm × 1 cm) by elution with light petroleum first and then diethyl ether. The yellow band was collected and evaporated *in vacuo* to give 1,2,3,4-tetraphenylnaphthalene as a yellow oil.

Catalytic experiment: benzoic acid (31 mg, 0.25 mmol), diphenylacetylene (89 mg, 0.5 mmol), Ag_2CO_3 (138 mg, 0.5 mmol), **1** (2.8 mg, 0.005 mmol) and *o*-xylene (2 ml) were used. Yield, 12 mg (12%). ¹H NMR (CDCl₃) δ : 7.63–7.65 (m, 2 H), 7.38–7.40 (m, 2 H), 7.17–7.32 (m, 10 H), 6.82–6.86 (m, 10 H) [*cf.* ref. 1(*e*)].

Equimolar experiment: benzoic acid (7.5 mg, 0.06 mmol), diphenyl-acetylene (21 mg, 0.12 mmol), Ag_2CO_3 (33 mg, 0.12 mmol), **1** (34 mg, 0.06 mmol) and *o*-xylene (1.5 ml) were used. Yield, 26 mg (98%).

and P. M. Maitlis, *J. Organomet. Chem.*, 1984, **272**, 265; (*d*) X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy, K. Nestor, M. Thornton-Pett, S. Heřmánek, T. Jelinek and B. Štibr, *J. Chem. Soc., Dalton Trans.*, 1990, 681; (*e*) G. E. Herberich, U. Englert, F. Marken and P. Hofmann, *Organometallics*, 1993, **12**, 4039.

- 3 (a) A. R. Kudinov, D. A. Loginov, Z. A. Starikova and P. V. Petrovskii, J. Organomet. Chem., 2002, 649, 136; (b) D. A. Loginov, M. M. Vinogradov, Z. A. Starikova, P. V. Petrovskii and A. R. Kudinov, Russ. Chem. Bull., Int. Ed., 2004, 53, 1949 (Izv. Akad. Nauk, Ser. Khim., 2004, 1871); (c) D. A. Loginov, D. V. Muratov, P. V. Petrovskii, Z. A. Starikova, M. Corsini, F. Laschi, F. de Biani Fabrizi, P. Zanello and A. R. Kudinov, Eur. J. Inorg. Chem., 2005, 1737; (d) D. A. Loginov, D. V. Muratov, Z. A. Starikova, P. V. Petrovskii and A. R. Kudinov, Russ. Chem. Bull., Int. Ed., 2006, 55, 1581 (Izv. Akad. Nauk, Ser. Khim., 2006, 1525); (e) D. A. Loginov, D. V. Muratov, Z. A. Starikova, P. V. Petrovskii and A. R. Kudinov, J. Organomet. Chem., 2006, 691, 3646; (f) D. A. Loginov, Z. A. Starikova, M. Corsini, P. Zanello and A. R. Kudinov, J. Organomet. Chem., 2013, 747, 69.
- 4 T. Foo and R. G. Bergman, Organometallics, 1992, 11, 1801.
- 5 A. van der Ent and A. L. Onderdelinden, *Inorg. Synth.*, 1973, 14, 92.
- 6 D. A. Loginov, A. M. Miloserdov, Z. A. Starikova, P. V. Petrovskii and A. R. Kudinov, *Mendeleev Commun.*, 2012, 22, 192.
- 7 J. S. Merola, Acta Crystallogr., 2013, E69, m547.
- (a) J. W. Faller, R. H. Crabtree and A. Habib, *Organometallics*, 1985,
 4, 929; (b) S. A. Westcott, A. K. Kakkar, G. Stringer, N. J. Taylor and T. B. Marder, *J. Organomet. Chem.*, 1990, **394**, 777.
- 9 P. Cecchetto, A. Ceccon, A. Gambaro, S. Santi, P. Ganis, R. Gobetto, G. Valle and A. Venzo, *Organometallics*, 1998, **17**, 752.
- 10 M. C. Comstock and J. R. Shapley, Organometallics, 1997, 16, 4816.
- (a) G. Kohl, R. Rudolph, H. Pritzkow and M. Enders, *Organometallics*, 2005, 24, 4774; (b) F. Bertini, L. Calucci, F. Cicogna, B. Gaddi, G. Ingrosso, M. Marcaccio, F. Marchetti, D. Paolucci, F. Paolucci and C. Pinzino, *J. Organomet. Chem.*, 2006, 691, 2987; (c) R. M. Chin, D. Maurer, M. Parr, N. Allworth, R. Schwenker, D. Sullivan, S. Enabnit and W. Brennessel, *Inorg. Chim. Acta*, 2009, 362, 389.
- 12 D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd edn., CRC Press, Boca Raton, 2003.
- 13 P. L. Holland, R. A. Andersen and R. G. Bergman, Organometallics, 1998, 17, 433.
- 14 Yu. T. Struchkov, M. Yu. Antipin, K. A. Lyssenko, O. V. Gusev, T. A. Peganova and N. A. Ustynyuk, J. Organomet. Chem., 1997, 536, 281.
- (a) D. A. Loginov, A. O. Belova and A. R. Kudinov, *Russ. Chem. Bull.*, *Int. Ed.*, 2014, **63**, 983 (*Izv. Akad. Nauk, Ser. Khim.*, 2014, 983);
 (b) D. A. Loginov, A. O. Belova, A. V. Vologzhanina and A. R. Kudinov, *J. Organomet. Chem.*, 2015, **793**, 232.
- 16 (a) J. A. Brinkman, T. T. Nguyen and J. R. Sowa, Jr., Org. Lett., 2000, 2, 981; (b) P. Alvarez, J. Gimeno, E. Lastra, S. Garcia-Granda, J. F. Van der Maelen and M. Bassetti, Organometallics, 2001, 20, 3762; (c) C. N. Garon, D. I. McIsaac, C. M. Vogels, A. Decken, I. D. Williams, C. Kleeberg, T. B. Marder and S. A. Westcott, Dalton Trans., 2009, 1624; (d) P. V. Ivchenko, I. E. Nifant'ev, O. V. Smetannikov, A. A. Ivanyuk and A. V. Churakov, Mendeleev Commun., 2015, 25, 435.

Received: 25th May 2016; Com. 16/4944