

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 5715-5717

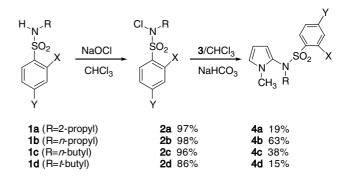
Tetrahedron Letters

Solid phase deprotection of 2-nitrobenzenesulfonamides: synthesis of simple 2-(alkylamino)-pyrroles

Michael De Rosa,^{*,†} Nicola Stepani, Todd Cole, Jaclyn Fried, Lisa Huang-Pang, Lori Peacock and Michael Pro

Department of Chemistry, The Pennsylvania State University Delaware County, 25 Yearsley Mill Road, Media, PA 19063, USA

Received 27 April 2005; revised 16 June 2005; accepted 16 June 2005 Available online 5 July 2005


Abstract—The 2-nitrobenzenesulfonamide cleavage using a solid-phase thiophenolate reagent gives simple 2-(alkylamino)-pyrroles without the presence of the competing nucleophilic substitution product. © 2005 Elsevier Ltd. All rights reserved.

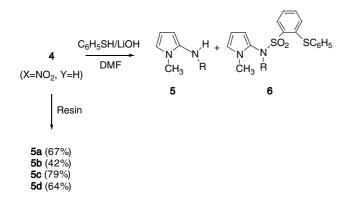
No general method exists for the preparation of simple 2-(alkylamino)-pyrroles without further substitution on the pyrrole ring.¹ Only a few scattered references to their preparation are known. Recently routes to more highly substituted derivatives have appeared.^{2,3} We have shown that it is possible to obtain previously unknown simple 2-aminopyrrole derivatives by removing the imide group from N-(1-substituted-1*H*-pyrrol-2-yl)phthalimide derivatives.⁴ An analogous strategy using 2-nitrobenzenesulfonamide derivatives can be used to prepare simple 2-(alkylamino)-pyrroles.

Fukuyama and co-workers reported that the 2-nitroand 4-nitrobenzenesulfonamide groups can be removed with either thioacetic acid or thiophenol in LiOH/ DMF to give amine derivatives.^{5,6} Previously we reported that 1-methylpyrrole (**3**) reacts with *N*-chloro-*N*-(4-substituted-phenyl)benzene sulfonamides to give a pyrrole derivative in which the benzenesulfonamide group was incorporated at C2 of the pyrrole ring.⁷ Removal of the benzenesulfonamide group using the Fukuyama method would give a 2-aminopyrrole derivative.

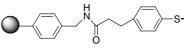
0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.06.082

To this end a model benzenesulfonamide derivative **4a** $(X = H, Y = NO_2 \text{ and } R = 2\text{-propyl})$ was prepared as indicated in the scheme below. The structure of **4** was confirmed by NMR and exact mass spectroscopy.⁸ Yields of **4** appeared to be influenced by the steric bulk of R. It should be noted that the NMR spectra of derivatives **4a–c** indicated the possibility of restricted rotation.⁹ For example, in the case of the 2-propyl derivative **4a**, two non-equivalent methyl groups were observed by proton NMR.

The benzenesulfonamide group was successfully removed with thiophenol/LiOH/DMF but not with thioacetic acid/LiOH/DMF. Proton NMR spectra of reaction mixtures indicated that conversion was not complete (benzenesulfonamide moiety still present). Yields of **5a** were not affected by either increasing the reaction time or the amounts of thiophenol and LiOH relative to the benzenesulfonamide **4a**. The desired product was unstable and decomposed during attempts to


Keywords: 2-(Alkylamino)-pyrroles; 2-Nitrobenzenesulfonamides; Solid phase deprotection.

^{*} Corresponding author. Tel.: +1 610 892 1416; fax: +1 610 892 1357; e-mail: mxd19@psu.edu


[†]On sabbatical leave September 2005–June 2006, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia.

isolate it by column chromatography. Simple 2-aminopyrroles have been isolated as their tetraphenylborate salts but the analogous salt of 5a was unstable.⁴

Wuts and Northuis reported that during the thiolate cleavage of a 4-nitrobenzenesulfonamide derivative nucleophilic displacement of the nitro group was also observed.¹⁰ This was not observed when a 2-nitro derivative was used. It was proposed that the effect was steric in nature. This suggested that nucleophilic substitution of the 4-nitro group by the thiophenolate group to give the para isomer of 6 was competing with the desired sulfonamide cleavage to give 5a. Based on this, the synthesis of 5 was attempted with the 2-nitrobenzenesulfonamide derivative 4a (X = NO₂, Y = H and R = 2-propyl) but nucleophilic displacement of the nitro group (30%) was still observed as a side reaction. An attempt was made to prepare the analogous 2.4-dinitrosulfonamide derivative of 4 $[X = Y = NO_2 \text{ and } R = 2$ propyl], but cleavage of the 2-propyl group occurred during the N-chlorination step.¹¹ The 4-fluorobenzenesulfonamide (X = H, Y = F and R = 2-propyl) and 2,4difluorobenzenesulfonamide (X = Y = F and R = 2-propyl) derivatives of 4 were prepared. Nucleophilic substitution of the fluoro group was also observed. And in the case of the 4-fluorobenzenesulfonamide derivative, nucleophilic displacement of the fluoro group was the only reaction observed. Proton NMR confirmed the structure of the *para* isomer of $6.^{12}$ Cleavage was attempted using 2,6-dimethylthiophenol/LiOH but even with this hindered thiophenolate nucleophilic substitution successfully competed with benzenesulfonamide cleavage.

Given these results a solid-phase method was developed for carrying out the cleavage of the 2-nitrobenzenesulfonamide group in **4a** ($\mathbf{R} = 2$ -propyl). It would be expected that if the thiophenolate group was attached to a solid support the nucleophilic substitution product analogous to **6** would remain bound to the resin. Filtration of the reaction mixture would then give pure product. Synthesis of pure **5a**, in solution, has been realized using a commercial resin containing a protected thiophenol group that, when unmasked, generates the thiophenolate group shown below.¹³ This method can be compared to a recent study that used a perfluorinated thiol for deprotection followed by solid phase extraction to give the amine.¹⁴

thiophenolate resin

The 2-nitrobenzenesulfonamide derivative **4a** (0.08 mmol, ca. 25 mg) was combined with two equivalents of the treated resin in 1.0 mL of DMF- d_7 , the stirred mixture was heated for 12 h at 100 °C under argon and the resin removed by filtration. Proton NMR of the DMF- d_7 solution indicated that the only product present in solution was the 2-(alkylamino)-pyrrole **5a**.¹⁵ Similar results were obtained for the other 2-(alkylamino)-pyrroles **5b–d**. Yields were obtained by proton NMR spectroscopy using 1,4-dimethoxybenzene as the internal standard.

Given the large number of possible benzenesulfonamide derivatives possible this method is a general route to 2-(alkylamino)-pyrroles. The solid-phase method described here is an alternative to the solution reaction developed by Fukuyama and co-workers. Its use would be appropriate in situations where nucleophilic substitution of the nitro group is problematic or where the use of a volatile thiol is to be avoided.

Acknowledgements

This work was supported by grants from the National Science Foundation. We thank Dr. J. Honovich (Drexel University) for mass spectra.

References and notes

- Cirrincione, G.; Almerico, A. M.; Aiello, E.; Dattolo, G. In Pyrroles, Part Two: The Synthesis, Reactivity, and Physical Properties of Substituted Pyrroles; Jones, R. A., Ed.; John Wiley & Sons: New York, 1992, Chapter 3.
- Nair, V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427–4429.
- 3. Marchand, E.; Morel, G.; Sinbandhit, S. Eur. J. Org. Chem. 1999, 1729–1738.
- De Rosa, M.; Sellitto, L.; Issac, R. P.; Ralph, J.; Timken, M. D. J. Chem. Res., Synop. 1999, 262–263.
- 5. Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353-359.
- Fukuyama, T.; Jow, C.-K.; Cheung, M. *Tetrahedron Lett.* 1995, 36, 6373–6374.
- 7. De Rosa, M.; Cabrera Nieto, G. Gazz. Chim. Ital. 1991, 121, 73–74.
- 8. Compound **4a** (R = 2-propyl): ¹H NMR (300 MHz, CDCl3): δ 7.84–7.56 (m, 4H), 6.65 (br, 1H), 6.07 (br, 1H), 5.78 (br, 1H), 4.72–4.53 (m, 1H), 3.47 (s, 3H), 1.09 (t, 6H); HRMS (M+H) expected 324.1018, experimental 324.1012.
- 9. This will be the subject of a separate publication.
- 10. Wuts, P. G. M.; Northuis, J. M. Tetrahedron Lett. 1998, 39, 3889–3890.
- Fukuyama, T.; Cheung, M.; Jow, C.-K.; Hidai, Y.; Kan, T. *Tetrahedron Lett.* **1997**, *38*, 5831–5834.
- 12. Compound **6** (R = 2-propyl, *para* isomer): ¹H NMR (300 MHz, C_2D_7NO): δ 7.91–7.05 (m, 9H), 6.64 (br,

1H), 6.01 (br, 1H), 5.60 (br, 1H), 4.60–4.38 (m, 1H), 3.58 (s, 3H), 1.02 (d, J = 3.7 Hz, 3H), 0.85 (d, J = 5.5 Hz,

- 3H).
 13. Novabiochem's 3-(4-(tritylmercapto)phenyl)propionyl AM resin 100–200 mesh and 0.88 mmol/g was activated according to the manufacturer's instructions.
- 14. Christensen, C.; Clausen, R. P.; Begtrup, M.; Kristensen, J. L. Tetrahedron Lett. 2004, 45, 7991–7993.
- 15. Compound **5a**: ¹H NMR (300 MHz, C_2D_7NO): δ 8.34– 8.25 (m, 1H), 7.94–7.86 (m, 1H), 7.79–7.70 (m, 1H), 1.35 (d, J = 5.5 Hz, 6H); peaks for N–CH₃ and isopropyl CH are covered by signal for water.