Synthesis of Imidazo[1,2-a]pyridines from Pyridines and p-Bromophenacyl Bromide O-Methyloxime V. A. Artyomov, A. M. Shestopalov, V. P. Litvinov* N. D. Zelinsky Institute of Organic Chemistry, 117913, Moscow, Russia Fax +7(095)1355328; E-mail LVP\$251@SUEARN2.bitnet Received 24 November 1995; revised 8 March 1996 p-Bromophenacyl bromide O-methyloxime reacts with pyridines in acetone to form the corresponding pyridinium salts which, when heated in methanol in the presence of Et₃N, undergo cyclization followed by elimination of MeOH to give imidazo[1,2-a]pyridines. The imidazo[1,2-a]pyridine unit is found in drugs and pesticides and shows a wide spectrum of biological activity. The most common method for the synthesis of imidazo[1,2-a]pyridines is the reaction of an α -halocarbonyl compound with an α-aminopyridine (Chichibabin reaction). These α -aminopyridines are obtained by the amination of pyridines.³ However, the direct amination of pyridines does not always result in the substituted αaminopyridines, which are not easily accessible. The methods for synthesis of imidazo[1,2-a]pyridines based on the cyclization of 2-halo-1-phenacyl pyridinium bromides by treatment with NH₃⁴ or NH₂OH⁵ were also reported. However, the yields of target products are rather low in these cases due to side reactions. Degradation of 2-hydroxyethylcobaloximes⁶ leading to imidazo[1,2-a]pyridines proceeds with yields of only about 30 %. Elaboration of a synthetic method, which leads to imidazo[1,2-a]pyridines without the use of substituted α -aminopyridines with high yields will provide an easy access to this class of compounds. We now report such a new method for the regioselective synthesis of imidazo[1,2-a]pyridines using p-bromophenacyl bromide O-methyloxime (1) and pyridines. The oxime ether 1 was prepared from p-bromophenacyl bromide and O-methylhydroxylamine hydrobromide according to Scheme 1: As was shown previously,⁷ the O-unsubstituted oxime obtained using these conditions is exclusively the Z-isomer. The Z-configuration of the oxime ether 1 was confirmed by comparison of its 1H and ^{13}C NMR spectra with the O-unsubstituted⁷ compounds. p-Bromophenacyl bromide O-methyloxime (1) reacts with pyridines $2\mathbf{a} - \mathbf{g}$ in acetone to form the pyridinium salts $3\mathbf{a} - \mathbf{g}$ (Scheme 2). The E-configuration of the oxime group in 3 was established by comparison of their spectra with those of O-unsubstituted salts.⁸ We have previously shown⁸ that such *anti*-isomers exist in the fixed configuration, which stipulates the proximity of the nucleophilic *N*-atom of the oxime group to the electron-deficient pyridinium moiety. The *Z* to *E* isome- rization of the oxime group during quaternization is most likely due to the greater stability of the *anti*-isomer. Such a configuration favors the nucleophilic attack by the *N*-oxime atom on the pyridinium ring. Indeed compounds $3\mathbf{a}-\mathbf{g}$, when heated in methanol in the presence of Et_3N , undergo cyclization and elimination of MeOH leading to imidazo[1,2-a]pyridines $4\mathbf{a}-\mathbf{g}$ (Scheme 2). The cyclization reaction proceeds regioselectively at the most electron-deficient position. In the case of β -picolinium salt $3\mathbf{c}$, nucleophilic attack is directed at position 2. This is in agreement with the estimation of the electron density made on the basis of $^{13}\mathrm{C}$ NMR spectra of the picolinium salts. The electron-withdrawing acetyl group directs the reaction towards position 6. This fact is also in agreement with the estimation of electron density. | R^1 | R ² | \mathbb{R}^3 | R ⁴ | |------------------|------------------------|---|---| | H | Н | H | Н | | Me | Н | H | Н | | H | H | H | Me | | Н | Н | Me | H | | Н | COMe | H | Н | | $-(CH = CH)_2 -$ | | H | Н | | H ` | H | -(CH = | $(CH)_2$ | | | H
Me
H
H
H | H H H Me H H H H COMe -(CH = CH) ₂ - | H H H H Me H H H H H H H H H COMe H -(CH = CH) ₂ - H | Scheme 2 928 Short Papers SYNTHESIS Yields and characterization of compounds 3a-g and 4a-g are presented in Tables 1 and 2. In summary, we have elaborated a novel yet simple method for the regioselective synthesis of imidazo[1,2-a]pyridines, which is not based on α -aminopyridines. IR Spectra were recorded on Specord-M80, ¹H NMR on Bruker WM 250 (250 MHz), ¹³C NMR on Bruker WM 300 (300 MHz) and mass spectra on Varian Mat CH-6 (70 eV) spectrometers. Elemental analyses were obtained on a Perkin-Elmer C, H, N-analyzer. ## p-Bromophenacyl Bromide O-Methyloxime (1): To a hot solution of p-bromophenacyl bromide (2.00 g, 7.2 mmol) in MeOH (30 mL) was added dropwise water until a slight turbidity was observed. Then O-methylhydroxylamine hydrobromide (2.75 g, 21.6 mmol) was added and the resulting mixture was heated to boiling and allowed to stand for 12 h at r.t. The precipitated product was filtered, washed with water (2×20 mL) and dried in the air; yield: 1.80 g (81%); mp 57–58°C. C₉H₉Br₂NO calc. C 35.21 H 2.96 N 4.56 (307.2) found 35.43 2.88 4.64 Table 1. Pyridinium Salts 3 Prepared | Prod-
uct ^a | Yield (%) | mp
(°C) ^b | IR (KBr ₃)
ν (cm ⁻¹) | 1 H NMR (DMSO- d_{6} /TMS) δ , J (Hz) | |---------------------------|-----------|-------------------------|---|---| | 3a | 64 | 187-188 | 3024, 2920 (CH), 1628 (C=N azine), 1588 (C=N oxime), 1500, 1482, 1450 | 3.98 (s, 3 H, OCH ₃), 6.03 (s, 2 H, CH ₂), 7.63, 7.67 (AA'BB', 4 H, Ar), 8.10 (dd, $J = 6$, 8, 2 H, 3- and 5-H Py), 8.59 (t, $J = 8$, 1 H, 4 H-Py), 9.00 (d, $J = 6$, 2 H, 2- and 6-H Py) | | 3b | 90 | 232-234 | 3020, 2984, 2936 (CH), 1634
(C=N azine), 1596, 1576 | 2.74 (s, 3 H, 2-CH ₃), 3.96 (s, 3 H, OCH ₃), 5.96 (s, 2 H, CH ₂), 7.54–7.66 (m, 4 H, Ar), 7.90 (dd, $J = 6$, 8, 1 H, H5), 8.00 (d, 1 H, H3), 8.45 (t, $J = 8$, 1 H, | | 3c | 90 | 200-202 | (C=N oxime), 1520
3028, 2940 (CH), 1632 (C=N
azine), 1592 (C=N oxime), | H4), 8.92 (d, <i>J</i> = 6, 1 H, H6)
2.46 (s, 3 H, 3-CH ₃), 3.99 (s, 3 H, OCH ₃), 5.95 (s, 2 H, CH ₂), 7.64, 7.66
(AA'BB', 4 H, Ar), 7.98 (dd, <i>J</i> = 6, 8, 1 H, H-5), 8.42 (d, <i>J</i> = 8, 1 H, H4), | | 3d | 75 | 206-207 | 1504, 1474, 1448
3018, 2935, 2900 (CH), 1637
(C=N azine), 1590 (C=N | 8.77 (d, J = 6, 1 H, H6), 8.87 (s, 1 H, H2)
2.56 (s, 3 H, 4-CH ₃), 3.98 (s, 3 H, OCH ₃), 5.90 (s, 2 H, CH ₂), 7.60-7.70 (m, 4 H, Ar), 7.91 (d, J = 6.5, 2 H, H3, H5), 8.77 (d, J = 6.5, 2 H, H2, H6) | | 3e | 91 | 176–177 | oxime), 1525, 1473
3060, 3007, 2984 (CH), 1698
(C=O), 1628 (C=N azine), | 2.69 (s, 3 H, COCH ₃), 3.97 (s, 3 H, OCH ₃), 6.07 (s, 2 H, CH ₂), 7.60-7.70 (AA'BB', 4H, Ar), 8.20 (dd, $J = 6$, 8, 1 H, H5), 8.99 (d, $J = 8$, 1 H, H4), | | 3f | 83 | 207-208 | 1592 (C=N oxime)
3018, 2997, 2932 (CH), 1624
(C=N azine), 1584 (C=N
oxime), 1528, 1480 | 9.03 (d, $J = 6$, 1 H, H6), 9.50 (s, 1 H, H2)
4.05 (s, 3 H, OCH ₃), 6.42 (s, 2 H, CH ₂), 7.39–7.49 (AA'BB', 4 H, Ar), 8.03 (t, $J = 7.5$, 1 H, H6), 8.13 (dd, $J = 6$, 8, 1 H, H3), 8.19 (d, $J = 7.5$, 1 H, H5), 8.29 (t, $J = 7.5$, 1 H, H7), 8.42 (d, $J = 7.5$, 1 H, H8), 9.26 (d, $J = 8$, 1 H, H4), 9.59 (d, $J = 6$, 1 H, H2) | | 3 g | 80 | 228-229 | 3025, 2997, 2940 (CH), 1640
(C=N azine), 1590 (C=N
oxime), 1508, 1490 | 3.99 (a, $J = 6$, 1 H, Hz)
3.99 (s, 3 H, OCH ₃), 6.09 (s, 2 H, CH ₂), 7.63, 7.72 (AA'BB', 4 H, Ar), 8.06 (t, $J = 7.5$, 1 H, H6), 8.26 (t, $J = 7.5$, 1 H, H7), 8.32 (d, $J = 8$, 1 H, H4), 8.48–8.60 (m, 3 H, H3, 5, 8), 10.02 (s, 1 H, H2) | ^a Satisfactory microanalyses obtained: $C \pm 0.17$, $H \pm 0.15$, $N \pm 0.21$. Table 2. Imidazo[1,2-a]pyridines 4 Prepared | Prod-
uct ^a | Yield
(%) | mp (°C)
(heptane) | IR (CHCl ₃)
v (cm ⁻¹) | 1 H NMR (CDCl ₃ /TMS) δ , J (Hz) | |---------------------------|--------------|----------------------|---|---| | 4a | 96 | 215-216 | 2928, 2856 (CH), 1480,
1470, 1455 | 6.80 (t, $J = 6.5$, 1 H, H6), 7.20 (dd, $J = 6.5$, 9, 1 H, H7), 7.57, 7.83 (AA'BB', 4 H, Ar), 7.64 (d, $J = 9$, 1 H, H8), 7.86 (s, 1 H, H3), 8.12 (d, $J = 6.5$, 1 H, H5) | | 4 b | 89 | 95-96 | 2932, 2856 (CH), 1588, 1548, 1512, 1476, 1412 | 2.62 (s, 3 \dot{H} , CH ₃), 6.64 (d, $J = 7$, 1 \dot{H} , H6), 7.18 (dd, $J = 7$, 9, 1 \dot{H} , H7), 7.50–7.60 (m, 3 \dot{H} , H8 and Ar), 7.74 (s, 1 \dot{H} , H3), 7.83–7.90 (m, 2 \dot{H} , Ar) | | 4c | 78 | 129-130 | 2988, 2928, 2856 (CH),
1588, 1542, 1476, 1432,
1402 | 2.65 (s, 3 H, CH ₃), 6.67 (t, $J = 7$, 1 H, H6), 6.95 (d, $J = 7$, 1 H, H7), 7.53 , 7.82 (AA'XX', 4 H, Ar), 7.79 (s, 1 H, H3), 7.95 (d, $J = 7$, 1 H, H5) | | 4d | 83 | 204-205 | 2932, 2856 (CH), 1588, 1542, 1476, 1430, 1410 | 2.60 (s, 3 H, CH_3), 6.61 (d, $J = 7$, 1 H, $H6$), 7.55, 7.80 (AA'XX', 4 H, Ar), 7.60 (s, 1 H, $H8$), 7.82 (s, 1 H, $H3$), 8.04 (d, $J = 7$, 1 H, $H5$) | | <i>4</i> e | 83 | 217-218 | 2965, 2845 (CH), 1680 (CO), 1622, 1476, 1430 | 2.64 (s, 3 H, CH_3), 7.57, 7.82 (AA'XX', 4 H, Ar), 7.64 (d, $J = 9.5$, 1 H, H8), 7.73 (dd, $J = 9.5$, 1.5, 1 H, H7), 7.94 (s, 1 H, H3), 8.80 (s, 1 H, H5) | | 4f | 88 | 174–175 | 2980 (CH), 1602, 1478,
1448, 1416 | 7.50 (t, $J = 7.5$, 1 H, H7), 7.54–7.65 (m, 4 H, H8, H10 and Ar), 7.68 (t, $J = 8$, 1 H, H6), 7.84 (d, $J = 8$, 1 H, H5), 7.88 (m, 2 H, Ar), 7.96 (d, $J = 8.5$, 1 H, H9), 8.33 (s, 1 H, H3) | | 4g | 87 | 203-204 | 2930 (CH), 1630, 1478,
1446, 1420 | 7.05 (d, $J = 8$, 1 H, H6), 7.52–7.73 (m, 5 H, H7, H8, H9 and Ar), 7.81 (s, 1 H, H3), 7.85–7.95 (m, 3 H, H10 and Ar), 8.72 (d, $J = 8$, 1 H, H5) | $^{^{\}rm a}$ Satisfactory microanalyses obtained: C \pm 0.22, H \pm 0.16, N \pm 0.20. ^b All products were purified by washing with acetone. 1 H NMR (CDCl₃/TMS): $\delta = 4.10$ (s, 3 H, CH₃), 4.33 (s, 2 H, CH₂), 7.54 and 7.58 (AA'BB', 4 H, Ar). $^{13}\text{C NMR}$ (CDCl₃/TMS): $\delta = 34.5$ (CH₂), 63.6 (CH₃), 123.3 (C4-Ar), 127.6 (C2-Ar), 131.7 (C3-Ar), 134.9 (C1-Ar), 161.2 (C=N). IR (KBr): v = 3055 (CH-Ar), 2980 (CH₂), 2898, 2823, 1592 (C=N), 1488, 1463, 1447 cm $^{-1}$. MS: m/z = 309, 307, 305 (M⁺), 228, 226 (M⁺ – Br). ## O-Methyl p-Bromophenacyloximepyridinium Bromides 3a-g; General Procedure: To a solution of 1 (3 mmol) in anhyd acetone (15 mL) was added the corresponding pyridine 2 (3 mmol) and the mixture was allowed to stand for 12 h at r.t. Precipitated salt was filtered, washed with acetone, and dried in the air (Table 1). ## Imidazo[1,2-a]pyridines 4a-g; Typical Procedure: To a solution or a suspension of pyridinium salt 3 (2 mmol) in MeOH (20 mL) was added Et₃N (253 mg, 2.5 mmol) and the mixture was refluxed for 4 h. The resulting mixture was poured into water and extracted with CHCl₃. The CHCl₃ phase was dried (MgSO₄), and passed through a layer of silica gel (5 g) for the removal of gummy products. Removal of solvent afforded practi- cally pure products. Analytical samples were obtained by recrystallization from heptane (Table 2). This work was supported by International Science Foundation, Grant No. MEN 300. - (1) Tominaga, J.; Shiroshita, Y., Hosomi, A. Heterocycles 1988, 27, 2251. - (2) Chichibabin, A.E. Ber. Dtsch. Chem. Ges. 1925, 58, 1706. - (3) McGill, C.K.; Rappa, A. Adv. Heterocycl. Chem. 1988, 44, 1. - (4) Kröhnke, F.; Kickhöfen, B.; Thoma, C. Chem. Ber. 1955, 88, 1117. - (5) Hand, E.S., Paudler, W.W. J. Org. Chem. 1978, 43, 658. - (6) Alcock, N. W.; Golding, B. T.; Hall, D. R.; Horn, U.; Watson, W.P. J. Chem. Soc. Perkin Trans. 1 1975, 386. - (7) Smith, J. H.; Heidema, J. H.; Kaiser, E. T.; Wetherington, J. B.; Moncrief, J. W. J. Am. Chem. Soc. 1972, 94, 9274. - (8) Artyomov, V.A.; Shestopalov, A.M.; Litvinov, V.P. Zh. Org. Khim. 1995, 31, 595. - (9) Boulton, A.J.; McKillop, A. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R.; Rees, C.W., Eds.; Pergamon: 1984, Vol. 2, p 12.