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Abstract A new modified van Leusen strategy has been developed for
the synthesis of biologically significant 5-substituted oxazoles by the re-
action of (het)aryl methyl alcohols or benzyl bromides as precursors
with tosylmethylisocyanide (TosMIC) under basic conditions. This
method is efficient, takes place under mild reaction conditions, and is
tolerant of various functional groups with high yield.
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Oxazoles represents an important class of heterocyclic
compounds because of their presence in natural products1

and their versatile biological activities like antibacterial,2
antifungal,3 and others.4 Besides, they are also utilized as a
scaffold for the construction of many peptides, macrocyclic
compounds, and polymers.5 Hence, there is a great deal of
interest for the development of new strategies for the syn-
thesis of oxazoles. The available classical methods for the
synthesis of substituted oxazoles are copper- and rutheni-
um-catalyzed cyclizations of 3-substituted-1,4,2-dioxazol-
5-ones with phenylethenes or phenylacetylene,6 Robinson–
Gabriel cyclodehydration of α-acylaminoketones,7 and rho-
dium-catalyzed reaction of diazocarbonyl compounds with
nitriles.8 The recently reported methods are p-toluenesul-
fonic acid catalyzed reaction of amides with propargyl alco-
hols,9 tert-butyl hydroperoxide (TBHP)–I2 mediated tandem
oxidative cyclization of benzyl amines with alkenes,10 α-
aminoketones with aldehydes,11 silver-catalyzed reaction of
α-bromoketones with primary amides,12 cycloaddition of
alkynes with nitriles catalyzed by gold and copper,13 and
copper-catalyzed aerobic oxidative cyclization of aldehydes
with amines.14 Further, the functionalization to oxazole
ring were accessed via transition-metal-catalyzed reac-
tions.15

However, to synthesize biologically significant 5-
(het)aryl oxazoles, TosMIC and aldehydes are widely used
precursors for, for instance, van Leusen oxazole synthesis,
which involves the reaction of TosMIC with aldehydes in
the presence of potassium carbonate in methanol,16 the
modifications of van Leusen oxazole synthesis that involves
the reaction of solid-phase equivalents of TosMIC with al-
dehydes,17 quarternary ammonium hydroxide ion exchange
resin catalyzed reaction of TosMIC with aldehydes,18 reac-
tion of TosMIC with aldehydes/acid chlorides followed by
ultrasound-promoted desulfonation,19 reaction of TosMIC
with aldehydes in ionic liquid [bmim]Br,20 reaction of alde-
hydes with benzotrizolylmethylisocyanide,21 and other
methods including Suzuki–Miyaura cross-coupling of aryl
bromides with oxazoline-substituted potassium organotri-
fluoroborates22 and asymmetric condensations for oxazo-
lines.23 Also, few pharmacologically relevant chemotypes
have been synthesized through van Leusen strategy.24 The
literature survey reveals that an aldehyde precursor is most
commonly used with TosMIC reagent to access van Leusen
oxazoles.

Overall, the synthesis of oxazoles from classical and
conventional methods are associated with several disad-
vantages, such as need of harsh reaction conditions like
high temperature, toxic metal as catalyst, less stable precur-
sor (aldehyde), and difficulties to synthesize pre-function-
alized intermediates. As a part of our ongoing research on
the development of new synthetic methods for heterocyclic
compounds,25 we report herein a new approach for the syn-
thesis of 5-aryl oxazoles from TosMIC with alcohols or ben-
zyl bromides oxidized in propylphosphonic anhydride
(T3P®)–dimethyl sulfoxide (DMSO) or DMSO media, respec-
tively, for the first time.

In the beginning of our study, we selected the oxidation
of benzyl alcohol to benzaldehyde in T3P®–DMSO and reac-
tion of in situ generated benzaldehyde with TosMIC in the
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2016, 27, A–D
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presence of base as a model reaction. Our initial attempts
failed in the presence of bases like triethylamine, Hünig’s
base, NaHCO3, and K2CO3. The reason might be that the less
basic strength and strong alkaline media must be required
to neutralize the acidity of T3P®. Therefore, we have select-
ed aqueous–alcoholic NaOH and KOH as base in excess. The
reaction took place smoothly to give product 5-phenyloxaz-
ole (3a).26 However, from the point of view of reaction time
and yield aqueous–alcoholic KOH is the suitable base for
this reaction (83% yield, Table 1, entry 1). In addition, the
slight excess of aqueous–alcoholic KOH did not affect
during the course of the reaction.

Table 1  Synthesis of 5-(Het)aryl Oxazoles from (Het)aryl Methyl Alco-
hols

With this optimized reaction conditions, we extended
the protocol for the synthesis of 5-(p-tolyl)-, 5-(4-tert-bu-
tylphenyl)-, 5-(4-methoxy)phenyl-, and 5-(4-nitrophe-
nyl)oxazoles 3b–e bearing electron-donating and electron-
withdrawing groups from the corresponding substituted
aryl methyl alcohols in 65–84% yield (Table 1, entries 2–5).
Similarly, the methodology is equally extended to benzyl al-
cohols bearing different halogen atoms, which furnished
respective 5-aryl oxazoles 3f–h in 70–74% yield (Table 1,
entries 6–8). Likewise, the protocol is compatible with
fused aryl-like 2-naphthylmethyl alcohol, which give 5-(2-
naphthyl)oxazole 3i in 82% yield (Table 1, entry 9). The pro-
tocol succeeded equally well with 2-thienylmethyl alcohol,
furfurol, pyridine-2-yl methyl, and quinolin-3-yl methyl al-
cohols, which gave the corresponding 5-(het)aryl oxazoles

3j–m in 61–75% yields (Table 1, entries 10–13). Interesting-
ly, allylic alcohol 3-(2-methoxyphenyl)prop-2-en-1-ol also
underwent smooth oxidation and cyclization with TosMIC
to give 5-(2-methoxystyryl)oxazole (3n) in 78% yield (Table
1, entry 14).

The structure of one of the oxazoles, 5-(quinolin-3-
yl)oxazole (3m) was confirmed by single-crystal X-ray dif-
fraction studies (CCDC reference number 1429231),27 and
its ORTEP diagram is shown in Figure 1.

Further, we have focused our attention to synthesize 5-
aryl oxazoles from benzyl bromides via oxidation in DMSO
media in the presence of base. Oxidation of benzyl bromide
to benzaldehyde was carried out in the presence of NaHCO3
and DMSO, followed by cyclization with TosMIC in the pres-
ence of various bases like triethylamine, Hünig’s base,
NaHCO3, K2CO3, aqueous–alcoholic NaOH and KOH. It was
found that KOH is the best base with respect to reaction
time and yield of 3a (Table 2, entry 1).28 In a parallel study,

Entry 1, 3 R 3 Yield (%)

 1 Ph 3a 83

 2 4-MeC6H4 3b 84

 3 4-t-BuC6H4 3c 80

 4 4-MeOC6H4 3d 65

 5 4-O2NC6H4 3e 68

 6 4-FC6H4 3f 74

 7 4-ClC6H4 3g 72

 8 4-BrC6H4 3h 70

 9 2-naphthyl 3i 82

10 2-thienyl 3j 69

11 2-furyl 3k 61

12 pyridin-2-yl 3l 71

13 quinolin-3-yl 3m 75

14 2-methoxystyryl 3n 78

R OH Ts N
C

N

O
R

(i) T3P®/DMSO/Et3N
    0 °C to r.t., 1–1.5 h

(ii) KOH/H2O/EtOH
     0 °C to r.t., 2–3 h1a–n 2 3a–n

+

••

Figure 1  ORTEP diagram of 5-(quinolin-3-yl)oxazole (3m)

Table 2  Synthesis of 5-Aryl Oxazoles from Benzyl Bromides

Entry 4, 3 R 3 Yield (%)

1 Ph 3a 90

2 4-MeC6H4 3b 86

3 4-t-BuC6H4 3c 84

4 4-MeOC6H4 3d 77

5 4-O2NC6H4 3e 80

6 4-FC6H4 3f 82

7 4-ClC6H4 3g 78

8 4-BrC6H4 3h 75

9 2-naphthyl 3i 78

R Br Ts N
C

N

O
R

(i) DMSO/NaHCO3

    r.t., 1–1.5 h

(ii) KOH/H2O/EtOH
     0 °C to r.t., 2–3 h4a–i 2 3a–i

+
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this protocol was compared with benzyl chloride instead of
benzyl bromide, which results in longer reaction time and
low yield.

Thus, with these optimized reaction conditions, we ex-
amined the generality of the protocol by carrying the reac-
tion out with p-tolyl-, 4-tert-butylbenzyl-, 4-methoxyben-
zyl-, and 4-nitrobenzylbromide (Table 2, entries 2–5) to
furnish the corresponding 5-aryl oxazoles 3b–e in 77–86%
yield. Similarly, 4-flurophenyl-, 4-chlorophenyl-, and 4-bro-
mophenyl oxazoles 3f–h were obtained from the corre-
sponding halogen-substituted benzyl bromides in 75–82%
yield (Table 2, entries 6–8). This method can be equally ex-
tended for the synthesis of 5-(2-naphthyl) oxazole (3i) from
2-naphthylmethyl bromide in 78% yield (Table 2, entry 9).
Notably, 5-(het)aryl oxazoles could not be synthesized due
to nonavailability of precursors and difficulties in their
preparation.

The probable mechanism for oxidation of alcohols25d

and benzyl bromides29 to aldehydes and van Leusen cy-
clization16a is given in Scheme 1.

In conclusion, we have developed a new strategy for the
synthesis of 5-(het)aryl oxazoles from substituted (het)aryl
methyl alcohols and benzyl bromides via oxidation in
T3P®–DMSO and DMSO media, respectively, followed by the
cyclization of in situ generated aldehyde with TosMIC in the
presence of aqueous–alcoholic KOH with an excellent yield,
mild, and eco-friendly protocols. It should be noted that
these methods are the first substrate-modified green
van Leusen oxazole synthesis methods. The noteworthy
features of this developed protocol for the tandem reaction
are less reaction time, broad functional-group tolerance,
and ease of product purification.
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