Synthesis and polymerization of sterically hindered 2,5-diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles*

O. V. Petrova,^a M. V. Markova,^a L. N. Sobenina,^a L. V. Morozova,^a A. I. Mikhaleva,^a S.-H. Hyun,^b and B. A. Trofimov^{a*}

 ^aA. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation. Fax: +7 (3952) 41 9346. E-mail: boris_trofimov@irioch.irk.ru
^bSamsung Advanced Institute of Technology, Display Device & Material Lab. San 14-1, Nongseo-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-712, Korea. Fax: +82 31 280 9349. E-mail: romeos.hyun@samsung.com

Sterically hindered 2,5-diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles have been obtained by the vinylation of the corresponding NH-pyrroles with acetylene in superbasic catalytic system KOH—DMSO in up to 78% yield. 2,3,5-Triphenyl-1-vinylpyrrole has also been obtained in 75% yield by the regioselective bromination of 2,3-diphenyl-1-vinylpyrrole with subsequent cross-coupling of 5-bromo-2,3-diphenyl-1-vinylpyrrole with phenylmagnesium bromide in the presence of dichloro[1,1´-bis(diphenylphosphino)ferrocene]palladium(II). 2,5-Diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles undergo a free-radical polymerization (AIBN, 80 °C) to form oligomers in 11 and 27% yield, respectively.

Key words: pyrroles, 2,5-diphenyl-1-vinylpyrrole, 2,3,5-triphenyl-1-vinylpyrrole, vinylation, cross-coupling, polymerization.

In the last decades, a growing interest to pyrroles is cased by their wide synthetic possibilities and enormous biological and technical potential.^{1–4} A variety of medicines, including antitumor, are obtained on the basis of pyrroles.^{5,6} Pyrroles are also the basis for development of light-emitting diodes, electroconducting coatings,⁷ they are used as components for modern rechargeable lithium batteries.⁸

The presence of a vinyl group in the structure of pyrrole derivatives increases their synthetic potential, allows one to obtain unique polymers: electroconducting materials and organic metals for the processes of transformation of the solar energy and recording of information,^{9–11} sorbents for noble metals,¹² biologically active compounds and plant protection substances,^{11,13} modificators of polymers and polymeric azo dyes.^{14,15}

Due to the discovery and systematic development of the reaction of ketoximes with acetylene in superbasic media (the Trofimov reaction), a possibility to synthesize a wide range of substituted pyrroles in one preparative stage has been appeared.^{1–3}

Vinylation of phenylpyrroles with acetylene proceeds in the catalytic system KOH–DMSO at both high and atmospheric pressure.^{1,16–18} In the latter case (100 °C, 5 h), 2,5-diphenyl-1-vinylpyrrole is formed only in the trace amounts (2–3%), whereas vinylation of 2,3-diphenyl-pyrrole under the same conditions leads to 2,3-diphenyl-1-vinylpyrrole in 35% yield (see Ref. 18). Conducting the reaction under pressure of acetylene (the initial pressure of 10–12 atm) allows one to increase the yield of 2,3-diphenyl-1-vinylpyrrole up to 72% (100 °C, 3 h).^{16,17}

The present work deals with the synthesis of 2,5-diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles and their polymerization.

Experiments showed that, in contrast to 2,3-diphenylpyrrole, 2,5-diphenylpyrrole (1) is vinylated under more drastic conditions: 2,5-diphenyl-1-vinylpyrrole (2) is not detected (¹H NMR) in the reaction medium after 3 h at 90–110 °C (the initial pressure of acetylene was 11–12 atm). An increase in the temperature up to 140 °C (the initial pressure of acetylene was 11–12 atm, 3 h) allowed us to obtain vinylpyrrole 2 in 20% yield (Scheme 1). And only on conducting the reaction at 150 °C (the initial pressure of acetylene was 11–12 atm, 3 h), the yield of vinylpyrrole 2 reached 78%.

The low vinylation rate of 2,5-diphenylpyrrole (1), obviously, results from the strong steric hindrance of the anionic center on the nitrogen atom by two phenyl substituents.

* Dedicated to Academician A. I. Konovalov on his 75th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 115-118, January, 2009.

^{1066-5285/09/5801-0115 © 2009} Springer Science+Business Media, Inc.

R = H (1, 2), Ph (3, 4)

Conditions: KOH-DMSO, 150 °C.

Under comparable conditions ($150 \,^{\circ}$ C, the initial pressure of acetylene of $11-12 \,$ atm, 4 h), 2,3,5-triphenylpyrrole (**3**) reacts with acetylene to form 2,3,5-triphenyl-1-vinylpyrrole (**4**) (77% yield).

2,3,5-Triphenyl-1-vinylpyrrole (**4**) was also obtained by the bromination of 2,3-diphenyl-1-vinylpyrrole (**5**) with *N*-bromosuccinimide¹⁹ with subsequent Pd-catalyzed cross-coupling²⁰ of thus obtained 5-bromo-2,3-diphenyl-1-vinylpyrrole (**6**) with phenylmagnesium bromide (Scheme 2).

Scheme 2

Reagents and conditions: *i. N*-bromosuccinimide (NBS), THF, 8–12 °C; *ii.* dichloro[1,1´-bis(diphenylphosphino)ferrocene]-palladium(II) (PdCl₂•dppf) (1 mol.%), THF, 60–63 °C.

It was found that 1-vinylphenylpyrroles **2** and **4** can polymerize in the presence of 2,2'-azo-bis(isobutyronitrile) (AIBN) with the formation of oligomers **7** and **8** (molecular mass 1400 and 1500, respectively, Scheme 3), well soluble in organic solvents (benzene, acetone, chloroform).

According to the IR and ¹H NMR spectroscopic data, the oligomers synthesized have the structure shown in Scheme 3.

In the IR spectra of polymers 7 and 8, the absorption bands of the vinyl group (1640, 849, 577 cm⁻¹)^{1,21} are absent and the bands of stretching vibrations of the CH₂

R = H (2, 7), Ph (4, 8)

and CH groups of the polymeric chain (2961, 2927, 2869 cm^{-1}) are present. The absorption bands of benzene and pyrrole rings remain in the IR spectra.

As it is characteristic of polymers, all the signals are broadened in the ¹H NMR spectra. The signals for the protons of the vinyl group (4.46-4.58, 4.70-4.80, and 6.67-6.81 ppm) disappear from them and the broad signals for the protons of the CH and CH₂ groups of the polymeric chain appear in the regions 3.73-4.27 and 2.13-3.17 ppm. The protons of the benzene rings resonate as a wide signal with the maximum at 7.25 ppm for 7 and 7.09 ppm for 8, the signals for the protons of the protons of the polymeric ring are observed at 6.05 and 6.50 ppm for compounds 7 and 8, respectively.

2,5-Diphenyl- (2) and 2,3,5-triphenyl-1-vinylpyrroles (4) under study are characterized by low activity in the radical polymerization. Thus, the yield of poly(2,5-diphenyl-1-vinylpyrrole) (7) on polymerization in benzene (the ratio monomer : benzene was 2 : 1, 80 °C, 160 h) is only 2%. In the absence of benzene (polymerization in the neat mass), the yield of polymer 7 did not exceed 6%. The use of special method, *viz.*, the addition of an initiator into the melted monomer, allowed us to raise the yield up to 11%.

Poly(2,3,5-triphenyl-1-vinylpyrrole) (8) was obtained under similar conditions in 27% yield for 115 h (Fig. 1).

The reduced activity of 2,5-diphenyl-1-vinylpyrrole in the polymerization, obviously, is caused by the limited

Fig. 1. Yields (Y) of poly(2,5-diphenyl-1-vinylpyrrole) (7) and poly(2,3,5-triphenyl-1-vinylpyrrole) (8) versus polymerization time.

accessibility of the monomer to the growing radical shielded by the phenyl groups.

The more than two-fold increase in the yield of polymer **8** in comparison with polymer **7**, apparently, is caused by the positive steric effect, namely, by the increase in the rotation angle of the phenyl substituent at position 2 with respect to the pyrrole ring due to the steric interaction with the phenyl substituent at position 3. This should lead to the steric deshielding of the *N*-vinyl group.

The formation of oligomers characteristic of 1-vinylphenylpyrroles 2 and 4 under study, as in the case of other 1-vinylpyrroles, probably, should be referred to the processes of the chain transfer on a monomer.^{1,22}

In conclusion, we found conditions for the vinylation of sterically hindered 2,5-diphenyl- and 2,3,5-triphenylpyrroles with acetylene. Alternatively 2,3,5-triphenyl-1-vinylpyrrole was prepared by bromination of 2,3-diphenyl-1-vinylpyrrole with subsequent cross-coupling of 5-bromo-2,3-diphenyl-1-vinylpyrrole with phenylmagnesium bromide. The possibility to obtain oligomers of 2,5-diphenyl- and 2,3,5-triphenyl-1-vinylpyrroles under conditions of radical polymerization was demonstrated.

Experimental

IR spectra of compounds synthesized in the region 400–4000 cm⁻¹ were recorded in KBr pellets on a Bruker IFS-25 spectrometer. NMR spectra were recorded on a Bruker DPX 400 spectrometer (400.13 (¹H) MHz, 100.6 MHz (¹³C)); CDCl₃ was the solvent, HMDS was the internal standard. 2,3-Diphenyl-1-vinylpyrrole (5) was synthesized according to the procedure described earlier,¹⁷ the catalyst PdCl₂• dppf was obtained according to the known procedure.²³

Polymerization of 2,5-diphenyl-1-vinylpyrrole and 2,3,5-triphenyl-1-vinylpyrrole was carried out under argon in the presence of 2,2'-azo-bis(isobutyronitrile) (AIBN), which was recrystallized twice from methanol. Solvents (benzene, hexane) were purified by known procedures.²⁴

Molecular mass of poly(2,5-diphenyl-1-vinylpyrrole) (7) was determined on a Waters gel chromatograph with the channel refractometric detector at 25 °C with THF being the eluent. Molecular mass of poly(2,3,5-triphenyl-1-vinylpyrrole) (8) was determined by the isopiestic method in benzene at 60 °C with azobenzene being the standard.²⁵

2,5-Diphenyl-1-vinylpyrrole (2). 2,5-Diphenylpyrrole (1) (2.0 g, 9.1 mmol), KOH (0.60 g, 30 wt%, 10.7 mmol), and DMSO (50 mL) were placed in a 0.25 L rotary steel autoclave, acetylene was passed through until saturation, and the mixture was heated for 3 h at 150 °C. After cooling, the reaction mixture was diluted with water (250 mL) and extracted with hexane (5×50 mL). The extracts were washed with water (2×70 mL), and dried with K_2CO_3 . After the solvent was evaporated, the residue was distilled *in vacuo* (7 • 10⁻² Torr, 142–162 °C) to obtain 2,5-diphenyl-1-vinylpyrrole (2) (1.74 g, 78%), beige crystals, m.p. 80–81 °C. Found (%): C, 88.20; H, 6.08; N, 5.69. $C_{18}H_{15}N$. Calculated (%): C, 88.13; H, 6.16; N, 5.71. IR, v/cm⁻¹: 3049, 1947, 1882, 1813, 1641, 1600, 1548, 1486, 1448, 1407, 1388, 1324, 1297, 1239, 1122, 1075, 968, 915, 896, 849,

838, 781, 765, 754, 729, 697, 653, 577. ¹H NMR, δ : 7.42 (m, 4 H, Ph); 7.36 (m, 4 H, Ph); 7.28 (m, 2 H, Ph); 6.81 (dd, 1 H, H_x, J_{H_a,H_x} = 8.8 Hz, J_{H_b,H_x} = 15.9 Hz); 6.31 (s, 2 H, H(3), H(4)); 4.81 (d, 1 H, H_a, J_{H_a,H_x} = 8.8 Hz); 4.58 (d, 1 H, H_b, J_{H_b,H_x} = 15.9 Hz). ¹³C NMR, δ : 135.4, 133.6, 131.5, 129.4, 128.2, 127.0, 110.9, 109.5.

117

2,3,5-Triphenyl-1-vinylpyrrole (4). A. 2,3,5-Triphenylpyrrole (3) (2.1 g, 7.1 mmol), KOH (0.63 g, 30 wt%, 11.2 mmol), and DMSO (50 mL) were placed in a 0.25 L rotary steel autoclave, acetylene was passed through until saturation, and the mixture was heated for 4 h at 150 °C. After cooling, the reaction mixture was extracted with hexane (5×50 mL), the extracts were washed with water (2×70 mL), and dried with MgSO₄. After the solvent was evaporated, the product was isolated by column chromatography (Al₂O₃, hexane) to obtain 2,3,5-triphenyl-1-vinylpyrrole (4) (1.76 g, 77%), white crystals, m.p. 76–78 °C. Found (%): C, 89.86; H, 5.89; N, 4.20. C $_{24}H_{19}N$. Calculated (%): C, 89.68; H, 5.96; N, 4.36. IR, v/cm⁻¹: 3057, 3030, 1950, 1888, 1813, 1640, 1603, 1503, 1485, 1468, 1406, 1388, 1358, 1298, 1115, 1072, 963, 913, 762, 696. ¹H NMR, δ: 7.49 (m, 2 H, Ph); 7.38–7.30 (m, 7 H, Ph); 7.17 (m, 5 H, Ph); 7.09 (m, 1 H, Ph); 6.67 (dd, 1 H, H_x, $J_{H_a,H_x} = 8.8$ Hz, $J_{H_b,H_x} = 15.8$ Hz); 6.50 (s, 1 H, H(4)); 4.70 (d, 1 H, H_a, $J_{H_a,H_x} = 8.8$ Hz); 4.46 (d, 1 H, H_b, $J_{H_b,H_x} = 15.8$ Hz). ¹³C NMR, δ : 136.6, 135.1, 134.1, 133.7, 132.5,132.1, 130.1, 129.2, 129.1, 128.9, 128.5, 127.9, 126.4, 124.9, 112.1, 109.7.

B. Dichloro[1,1[']-bis(diphenylphosphino)ferrocene]palladium(II) (0.042 g, 1 mol.%, $5.7 \cdot 10^{-5}$ mmol) and a solution of PhMgBr in THF (1 *M*, 13.2 mL) were sequentially added to a solution of 5-bromo-2,3-diphenyl-1-vinylpyrrole (**6**) (1.85 g, 5.7 mmol) in THF (5 mL) under argon and the mixture was heated for 3 h (60–63 °C). After cooling, the reaction mixture was diluted with water (60 mL), extracted with ether (3×20 mL), and dried with Na₂SO₄. After the solvent was evaporated, the product was isolated by column chromatography (Al₂O₃, hexane) to obtain 2,3,5-triphenyl-1-vinylpyrrole (**4**) (1.37 g, 75%).

5-Bromo-2,3-diphenyl-1-vinylpyrrole (6). N-Bromosuccinimide (NBS) (1.07 g, 6.0 mmol) was added to a solution of 2,3-diphenyl-1-vinylpyrrole (5) (1.23 g, 5.0 mmol) in THF (20 mL) cooled to 10-12 °C, the mixture was stirred until complete dissolution (10-15 min) and kept in refrigerator (8-10 °C) for 18 h. After that, sodium sulfate (1.0 g) was added to the mixture, the solvent was evaporated under reduced pressure, the residue was diluted with CCl_4 (5 mL), a precipitate was filtered off and washed with CCl₄ (3 mL). After evaporation of the solvent, the residue was passed through a layer of Al_2O_2 (light petroleum) to obtain 5-bromo-2,3-diphenyl-1-vinylpyrrole (6) (1.06 g, 65%), beige crystals, m.p. 70-71 °C. Found (%): C, 66.46; H, 4.25; Br, 23.98; N, 4.38. C₁₈H₁₄BrN. Calculated (%): C, 66.68; H, 4.35; Br, 24.65; N, 4.32. IR, v/cm⁻¹: 3081, 3048, 2923, 2851, 1957, 1888, 1636, 1600, 1489, 1459, 1447, 1406, 1351, 1319, 1294, 1179, 1069, 1029, 958, 916, 896, 786, 761, 739, 697, 576. ¹H NMR, δ: 7.40 (m, 3 H, Ph); 7.24 (m, 2 H, Ph); 7.15 (m, 2 H, Ph); 7.10 (m, 3 H, Ph); 6.62 (dd, 1 H, H_v, $\begin{aligned} &J_{\text{H}_{a},\text{H}_{x}} = 9.0 \text{ Hz}, J_{\text{H}_{b},\text{H}_{x}} = 15.6 \text{ Hz}); \, 6.51 \, (\text{s}, 1 \text{ H}, \text{H}(4)); \, 4.98 \, (\text{d}, \\ 1 \text{ H}, \text{H}_{a}, J_{\text{H}_{a},\text{H}_{x}} = 9.0 \text{ Hz}); \, 4.96 \, (\text{d}, 1 \text{ H}, \text{H}_{b}, J_{\text{H}_{b},\text{H}_{x}} = 15.6 \text{ Hz}). \\ ^{13}\text{C} \text{ NMR}, \, \delta: \, 135.9, \, 133.1, \, 132.2, \, 132.0, \, 131.6, \, 129.3, \, 129.0, \end{aligned}$ 128.9, 128.8, 126.8, 113.8, 111.4.

Polymerization (general procedure). 2,2⁻Azo-bis(isobutyronitrile) (5 wt%) was added to the melted monomer **2** or **4** with stirring and the mixture was incubated at 80 °C. The polymers **7** and **8** obtained were purified by reprecipitation from benzene with hexane and dried *in vacuo* until the weight is constant.

Poly(2,5-diphenyl-1-vinylpyrrole) (7). Polymer 7 (0.28 g, 11%) was obtained from 2,5-diphenyl-1-vinylpyrrole (2) (2.54 g, 10.4 mmol) in the presence of AIBN (0.127 g, 0.77 mmol) after 140 h, white powder, m.p. 136–142 °C, molecular mass 1400. Found (%): C, 88.63; H, 5.96; N, 5.38. $C_{18}H_{15}N$. Calculated (%): C, 88.13; H, 6.16, N, 5.71. IR, v/cm⁻¹: 3056, 3026, 2964, 2927, 2864, 1602, 1575, 1485, 1465, 1445, 1374, 1313, 1222, 1202, 1176, 1156, 1071, 1027, 968, 915, 757, 701, 667. ¹H NMR, δ : 7.26–7.11 (Ph); 6.01 (H(3), H(4)); 4.27 (N–CH); 2.12 (CH₂).

Poly(2,3,5-triphenyl-1-vinylpyrrole) (8). Polymer **8** (0.66 g, 27%) was obtained from 2,3,5-triphenyl-1-vinylpyrrole (4) (2.44 g, 7.6 mmol) in the presence of AIBN (0.122 g, 0.75 mmol) after 115 h, beige powder, m.p. 244–254 °C, molecular mass 1500. Found (%): C, 89.78; H, 5.90; N, 4.30. $C_{24}H_{19}N$. Calculated (%): C, 89.68; H, 5.96; N, 4.36. IR, v/cm⁻¹: 3054, 2964, 2926, 2867, 1601, 1501, 1485, 1466, 1447, 1406, 1389, 1298, 1277, 1115, 1072, 913, 760, 696. ¹H NMR, δ: 7.49–7.09 (Ph); 6.50 (H(4)); 3.73 (N–CH); 3.17 (CH₂).

References

- 1. B. A. Trofimov, A. I. Mikhaleva, *N-Vinilpirroly* [*N-Vinyl-pyrroles*], Nauka, Novosibirsk, 1984, 262 pp. (in Russian).
- B. A. Trofimov, in Adv. Heterocycl. Chem., Ed. A. R. Katritzky, Acad. Press, Inc., San Diego, 1990, Vol. 51, 177.
- B. A. Trofimov, Vinylpyrroles, in The Chemistry of Heterocyclic Compounds. Part 2; Pyrroles, Ed. R. A. Jones, Wiley, New York, 1992, Vol. 48, 131.
- M. D. Levi, Y. Gofer, D. Aurbach, *Polym. Adv. Technol.*, 2002, 13, 697.
- 5. Pat. US No. 6518426; Chem. Abstrs, 2006 (electronic version).
- P. G. Baraldi, A. Bovero, F. Fruttarolo, D. Preti, M. A. Tabrizi, M. G. Pavani, R. Romagnoli, *Med. Res. Rev.*, 2004, 24, 475.
- 7. Pat. US No. 6803446; *RZhKhim.* [*Abstr. J. Chem.*], 2006 (electronic version) (in Russian).
- 8. Pat. US No. 6811924; *RZhKhim.* [*Abstr. J. Chem.*], 2005 (electronic version) (in Russian).
- B. A. Trofimov, L. V. Morozova, I. L. Filimonova, A. I. Mikhaleva, S. E. Korostova., A.s. SSSR 997540, 1981; *Byull. izobret.* [*Bull. Invent.*], 2008, No. 13.
- L. V. Morozova, A. I. Mikhaleva, S. E. Korostova, I. L. Filimonova, in *Elektronika organicheskikh materialov* [*Electronics of Organic Materials*], Ed. A. A. Ovchinnikov, Nauka, Moscow, 1985, 305.
- 11. M. V. Markova, Ph.D. Thesis, Irkutsk State Univ., Irkutsk, 1999, 126 pp. (in Russian).
- L. V. Morozova, M. V. Markova, A. I. Mikhaleva, I. P. Golentovskaya, L. P. Shaulina, *Zh. Prikl. Khim.*, 1990, 63, 2022 [*J. Appl. Chem. USSR (Engl. Transl.)*, 1990, 63].

- L. V. Morozova, A. I. Mikhaleva, M. V. Markova, O. Yu. Molchanov, T. V. Putan, *Khimiya i primenenie pestitsidov* [*Chemistry and Application of Pesticides*], Trudy VNIIKhim sredstv zashchity rastenii, Moscow, 1990, 7 (in Russian).
- B. A. Trofimov, E. Yu. Schmidt, A. I. Mikhaleva, A. M. Vasil'tsov, A. B. Zaitsev, N. S. Smolyanina, E. Yu. Senotrusova, A. V. Afonin, I. A. Ushakov, K. B. Petrushenko, O. N. Kazheva, O. A. Dyachenko, V. V. Smirnov, A. F. Schmidt, M. V. Markova, L. V. Morozova, *Eur. J. Org. Chem.*, 2006, 4021.
- B. A. Trofimov, M. V. Markova, L. V. Morozova, E. Yu. Shmidt, E. Yu. Senotrusova, G. F. Myachina, Yu. A. Myachin, T. I. Vakul'skaya, A. I. Mikhaleva, *Vysokomolekulyar. Soed.*, 2007, **49B**, 2200 [*Polym. Sci., Ser. B (Engl. Transl.*), 2007, **49**].
- 16. B. A. Trofimov, A. I. Mikhaleva, S. E. Korostova, A. N. Vasil'ev, L. N. Balabanova, *Khim Geterotsikl. Soedin*, 1977, 213 [*Chem. Heterocycl. Compd. (Engl. Transl.)*, 1977, **13**, 170].
- B. A. Trofimov, S. E. Korostova, L. N. Balabanova, A. I. Mikhaleva, *Zh. Org. Khim.*, 1978, 14, 2182 [*Russ. J. Org. Chem. (Engl. Transl.)*, 1978, 14].
- B. A. Trofimov, S. E. Korostova, S. G. Shevchenko, E. A. Polubentsev, A. I. Mikhaleva, *Zh. Org. Khim.*, 1990, 26, 1110 [*Russ. J. Org. Chem. (Engl. Transl.*), 1990, 26].
- 19. H. M. Gilow, D. E. Burton, J. Org. Chem., 1981, 46, 2221.
- N. A. Bumagin, A. F. Sokolova, I. P. Beletskaya, G. Vol'ts, *Zh. Org. Khim.*, 1993, **29**, 162 [*Russ. J. Org. Chem. (Engl. Transl.)*, 1993, **29**].
- 21. Atlas spectrov aromaticheskih i geteroaromaticheskih soedinenii [Atlas of Spectra of Aromatic and Heteroaromatic Compounds], Ed. V. A. Koptyug, Issue 21, Spektry pogloshcheniya proizvodnykh pirrola i 1-vinilpirrola v infrakrasnoi, ul'trafioletovoi i vidimoi oblastyakh [Absorption Spectra of Pyrrole and 1-Vinylpyrrole Derivatives in the Infrared, Ultraviolet. and Visible Regions], Novosibirsk, 1981, 102 pp. (in Russian).
- L. V. Morozova, I. V. Tatarinova, M. V. Markova, A. M. Vasil'tsov, A. V. Ivanov, T. I. Vakul'skaya, A. I. Mikhaleva, B. A. Trofimov, *Izv. Akad. Nauk, Ser. Khim.*, 2007, 2134 [*Russ. Chem. Bull., Int. Ed.*, 2007, 56, 2209].
- L. Brandsma, S. F. Vasilevsky, H. D. Verkruijsse, *Application of Transition Metal Catalysts in Organic Synthesis*, Springer-Verlag, Berlin-Heidelberg-New York, 1998, 5.
- 24. A. Weissberger, E. Proskauer, J. Riddick, E. Toops, Organic Solvents. Physical Properties and Methods of Purification, Interscience, New York, 1955.
- J. Rabek, Experimental Methods in Polymer Chemistry, Wiley and Sons, Chichester—New York—Brisbane—Toronto, 1980.

Received March 12, 2008; in revised form November 6, 2008