Bioorganic & Medicinal Chemistry Letters 20 (2010) 7246-7249

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

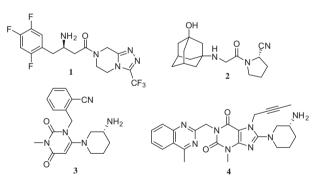
Discovery of new chemotype dipeptidyl peptidase IV inhibitors having (*R*)-3-amino-3-methyl piperidine as a pharmacophore

Yukihiro Nishio*, Hidenori Kimura, Shinya Tosaki, Eiji Sugaru, Mutsuko Sakai, Masakuni Horiguchi, Yumi Masui, Michiko Ono, Tsutomu Nakagawa, Hiroyuki Nakahira

Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan

ARTICLE INFO

ABSTRACT


Article history: Received 5 July 2010 Revised 1 October 2010 Accepted 20 October 2010 Available online 26 October 2010

Keywords: Dipeptidyl peptidase 4 DPP-4 Dipeptidyl peptidase 4 inhibitors DPP-4 inhibitors 3-Amino-piperidine (R)-3-Amino-3-methyl piperidine

Patients suffering from type 2 diabetes are on the increase worldwide. Although a number of therapies are available for this condition, recent efforts have been focusing on dipeptidyl peptidase IV (DPP-4) inhibitors as a new class of therapeutic agents for type 2 diabetes.¹ Indeed, a number of clinical studies have already confirmed the efficacy and good tolerance of DPP-4 inhibitors. DPP-4, a serine protease distributed throughout the body, cleaves a wide range of peptides to modulate their biological activity. One of these peptides is glucagon-like peptide-1 (GLP-1), which plays an important role in the regulation of blood glucose level.² GLP-1 is released after food ingestion and through its receptor stimulates insulin biosynthesis and secretion. GLP-1 also inhibits glucagon release, delays gastric emptying, and induces pancreatic β-cell proliferation.³

A number of DPP-4 inhibitors, such as **1** (sitagliptin)⁴, **2** (vildagliptin),⁵ and **3** (alogliptin)⁶, have already been approved, while others, for example, **4** (linagliptin),⁷ are still under development (Fig. 1). In our search for potent DPP-4 inhibitors, we have identified a series of compounds represented here by **6**, which have a pyrolo[3,2-*d*]pyrimidine structure.⁸ The scaffold of these compounds was derived from our HTS hit compound **5**, which possesses a xanthine scaffold like that of **4**.⁷ Based on **5**, other series of compounds were also identified and their SARs will be disclosed elsewhere in the near future.

* Corresponding author. *E-mail address:* yukihiro-nishio@ds-pharma.co.jp (Y. Nishio).

© 2010 Elsevier Ltd. All rights reserved.

Structures containing the (R)-3-amino-3-methyl piperidine unit as a new pharmacophore moiety have

been shown to possess moderate inhibitory activity for DPP-4 with good pharmacokinetics profile. One

of these compounds was found to have good oral bioavailability and PK/PD profile in ZF-rat.

Figure 1. Structures of small molecule DPP-4 inhibitors.

Reports describing compounds $\mathbf{3}^6$ and $\mathbf{4}^7$ indicate that the (*R*)-3amino piperidine group is essential for activity as this group interacts with DPP-4 (the enzyme). This finding is based on X-ray crystal analysis of the identified DPP-4 inhibitors complexed with hDPP-4. In our study, compound **6**, which has the same piperidine unit as **3** and **4**, was found to have an excellent DPP-4 inhibitory activity, but showed modest bioavailability (B.A.) (37%). Based on the structure of **6**, we assumed that the primary amine moiety, which has high hydrophilicity, is one of the main reasons for **6** modest B.A. From this point of view, we considered introducing substituents at the piperidine part of **6** to increase lipophilicity, and consequently identified (*R*)-3-amino-3-methyl piperidine unit

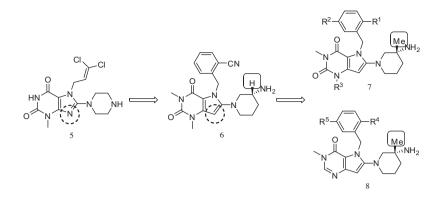
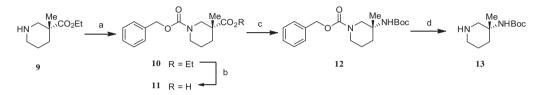
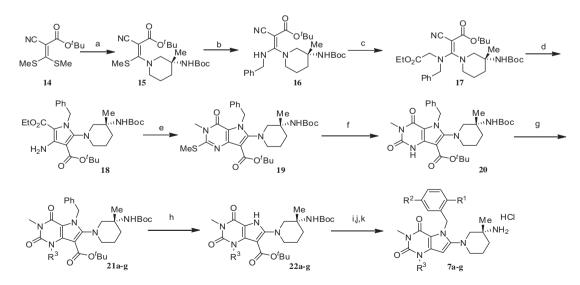
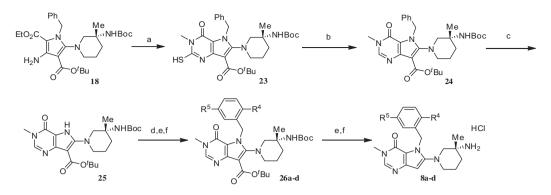



Figure 2. Synthesis of new chemotype DPP-4 inhibitors from HTS hit 5.


Scheme 1. Reagents and conditions: (a) CbzCl (1.1 equiv), Et₃N (1.2 equiv), THF, rt, 10 h; (b) NaOHaq (2.0 equiv), THF, MeOH, rt, overnight; (c) DPPA (1.02 equiv), Et₃N (1.2 equiv), toluene, 100 °C, 2 h then t-BuOK (0.1 equiv), t-BuOH (10 equiv), 80 °C, 2 h, 57% from 9; (d) Pd/C (10 wt % vs 12), H₂, MeOH, rt, 8 h, 95%.

as acceptable for good B.A. and appropriate DPP-4 inhibitory activity. In this Letter we describe the structure–activity relationship, pharmacokinetics, and pharmacological evaluation of the newly synthesized structures, which are represented here as **7** and **8** (Fig. 2).


As shown in Scheme 1, the (R)-3-amino-3-methyl piperidine **13** was synthesized in five steps from the known compound **9**.⁹ Following protection of the amine by a carbobenzyloxy (Cbz), hydrolysis of **10** gave the carboxylic acid **11**. After Curtius rearrangement using diphenylphosphoric azid (DPPA), the solution containing the intermediate isocyanate was first washed with water to remove by-products, and then treated with excess amount of *tert*-butyl

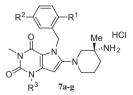
alcohol and catalytic amount of potassium *tert*-butoxide to generate the *tert*-butoxy carbonyl (Boc) protected amine **12**. The target amine unit **13** was obtained by hydrogenation of **12**.

Compounds **7a–g** having a pyrolo[3,2-*d*]pyrimidine were synthesized as shown in Scheme 2.⁸ Reaction of **13** with **14** without use of any base gave **15**, but the next reaction from **15** to **16** required DBU to proceed. Reaction of **16** with ethyl bromoacetate afforded **17**, which underwent cyclization in the presence of lithium *tert*-butoxide generated in situ from lithium amide and *tert*-butyl alcohol to produce the common intermediate **18**. The next intermediate **19** was obtained by methylation following reaction of methyl isothiocyanate (MeNCS) with **18**. The next reaction,

Scheme 2. Reagents and conditions: (a) **13** (1.0 equiv), toluene, 60 °C, 4 h, quant.; (b) benzylamine (1.2 equiv), DBU (2.0 equiv), CH₃CN, 80 °C, 5 h, 72%; (c) ethyl bromoacetate (1.1 equiv), K₂CO₃ (1.2 equiv), DMF, 50 °C, 1 h, quant.; (d) LiNH₂ (2.0 equiv), t-BuOH (20 equiv), CH₃CN, heptane, rt, 1 h, 72%; (e) MeNCS (2.0 equiv), K₂CO₃ (2.0 equiv), pyridine, 120 °C, 6 h then Mel (1.2 equiv), K₂CO₃ (2.0 equiv), acetone; (f) Na₂WO₄·5H₂O (1.1 equiv), H₂O₂ aq (10 equiv), MeOH–ACOH–H₂O (9/31), 50 °C, 5 h, 50% from **18**; (g) Mel (1.2 equiv) for **21a**–c, Etl (1.2 equiv) for **21d**, CICH₂CONMe₂ (1.2 equiv) for **21e**, Br(CH₂)₃OTHP (1.2 equiv) for **21f**, Br(CH₂)₃OEt (1.2 equiv) for **21g**, K₂CO₃ (2.0 equiv), DMF, 50 °C, 3 h; (h) Pd/C (200 wt %), HCO₂MH₄ (300 equiv), MeOH, reflux, 4 h, **22a**–c 62%, **22d** 60%, **22e** 72%, **22f** 58%; (i) appropriate benzyl bromide (1.1 equiv), K₂CO₃ (2.0 equiv), DMF, 70 °C, 3 h; (k) HCl–Et₂O (1.1 equiv), CHCl₃, **7a** 21%, **7b** 18%, **7c** 23%, **7d** 30%, **7e** 12%, **7g** 25% from **22a**–g.

Scheme 3. Reagents and conditions: (a) MeNCS (2.0 equiv), K₂CO₃ (2.0 equiv), pyridine, 120 °C, 6 h; (b) Na₂WO₄·5H₂O (1.1 equiv), H₂O₂aq (10 equiv), MeOH–AcOH–H₂O (9/3/1), 50 °C, 5 h, 72% from **18**; (c) Pd/C (200 wt %), HCO₂NH₄ (300 equiv), MeOH, reflux, 4 h, 82%; (d) appropriate benzyl bromide (1.1 equiv), K₂CO₃ (2.0 equiv), DMF, 70 °C, 3 h; (e) PhSO₃H monohydrate (2.0 equiv), 70 °C, 3 h; (f) HCl–Et₂O (1.1 equiv), CHCl₃, **8a** 14%, **8b** 20%, **8c** 21%, **8d** 15% from **26a–d**.

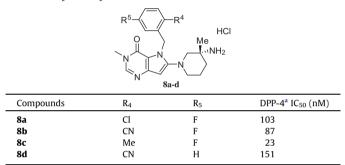
which included oxidation and hydrolysis of **19** was carried out under the same conditions and constructed the pyrolo[3,2-*d*]pyrimidine scaffold **20**. Alkylation of **20** with appropriate alkyl halides gave **21a–g**. As removal of benzyl protection in **21** did not proceed under usual hydrogenation conditions, that is, hydrogen atmosphere with a catalytic amount of palladium/carbon (Pd/C), excess amount of Pd/C, and ammonium formate were used under reflux. After benzylation of **22a–g**, Boc protection and substitution of the *tert*-butyl ester at the 7-position of the pyrolo[3,2-*d*]pyrimidine structure were cleaved by benzensulphonic acid monohydrate, and the purified free amines were converted to **7a–g** by 1 N HCl–ether solution.


As for compounds **8a–d** having a deazahypoxanthine, they were synthesized by almost the same route as that for **7a–g** (Scheme 3). The only difference was at the first step from the common intermediate **18–23**, which did not include methylation like in the case of **20**. The rest was the same as shown in Scheme 2.

In vitro activity of the synthesized compounds listed in Table 1 was examined using human plasma DPP-4. As expected, introducing steric hindrance at the 3-position of the piperidine moiety decreased the activity (**6**: $IC_{50} = 1.8 \text{ nM} \text{ vs } 7a$: $IC_{50} = 36 \text{ nM}$) and increased the value of $\log P^*$ (0.1 for **6** and 0.28 for **7a**). However, compound **7a** retained acceptable DPP-4 inhibitory activity.

Variation of substituents at the benzyl position is reported in Table 1, that is, **7a–c**. Changes at the R^1 and R^2 positions did not come to improve the inhibitory activity for DPP-4. As for R^3 , the

Table 1


In vitro activity of the synthesized DPP-4 inhibitors

Compounds	R ₁ R ₂		R ₃	DPP-4 ^a IC_{50} (nM)
6	_	_	-	1.8
7a	CN	Н	Me	36
7b	Cl	F	Me	28
7c	Me	F	Me	27
7d	CN	F	Et	12
7e	Cl	F	CH ₂ CONMe ₂	13
7f	Cl	F	(CH ₂) ₃ OH	23
7g	Cl	F	(CH ₂) ₃ OEt	122

^a DPP-4 inhibitory activity is given as the mean of at least three experiments.

Table 2 In vitro activity of the synthesized DPP-4 inhibitors

^a DPP-4 inhibitory activity is given as the mean of at least three experiments.

activity was kept even in the case of a polar substituent (**7e**: $IC_{50} = 13 \text{ nM}$, **7f**: $IC_{50} = 23 \text{ nM}$), but there seems to be limitation to the extend of the linker (**7g**: $IC_{50} = 122 \text{ nM}$). While the series of compounds **7a–f** exhibited good DPP-4 inhibitory activity, almost all compounds shown in Table 2 gave less satisfactory results ($IC_{50} > 50 \text{ nM}$), except for **8c** ($IC_{50} = 23 \text{ nM}$).

Selectivity against DPP-8¹⁰ and DPP-9¹¹, both of which belong to the same gene family as DPP-4, was also assessed. Although the biological roles of DPP-8 and DPP-9 are still unclear, it is important to avoid potential side effects associated with these off-target enzymes. All compounds disclosed in this Letter showed good selectivity ($IC_{50} > 10 \,\mu$ M) against DPP-8/9.

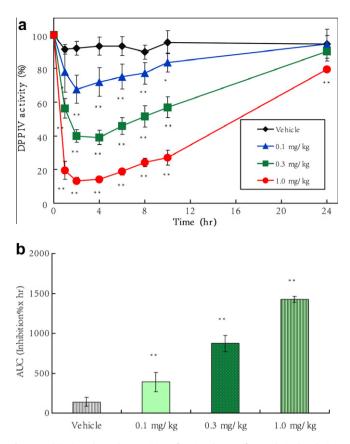

Among the compounds listed in Tables 1 and 2, **7b–f** and **8c**, which showed IC_{50} values <30 nM in in vitro activity assessment, were selected for in vitro pharmacokinetics evaluation. In terms

Table 3In vitro pharmacokinetic parameter of 7b-f and 8c

	CYP inhibition ^a IC_{50} (μM)			MS ^b (ml/min/mg protein)		
	1A2	2D6	3A4	Human	Rat	
7b	>40	3.4	10.2	0.082	0.046	
7c	>40	>40	20.2	0.056	0.013	
7d	26.8	0.4	9.4	0.021	<0.01	
7e	26.3	<0.165	13.4	0.019	<0.01	
7f	>40	0.2	7.7	0.016	0.017	
8c	>40	14.3	11.9	0.048	0.264	

 a CYP inhibition was evaluated after incubation for 10 min with human liver microsomes and NADPH. Initial concentration of each compound was 10 $\mu M.$

 $^b\,$ MS means metabolic stability, which was evaluated after incubation for 30 min with hepatic microsomes and NADPH. Initial concentration of each compound was 10 $\mu M.$

Figure 3. (a) Time-dependent activity of **7c** in plasma after oral single administration in ZF rats; *p < 0.05, **p < 0.01 versus the vehicle-treated group (Dunnett's multiple comparison test). (b) Dose-dependent increase in AUC of plasma DPP-4 inhibition (inhibition% × h) in ZF rats (test of linearity (lack of fit)); **p < 0.01, compound **7c**-treated Zucker-fatty rats versus vehicle-treated Zucker-fatty rats; Dunnett multiple comparison with two-sided significance level of 5%. Data are given as the mean ± SEM (n = 5).

Table 4

Pharmacokinetic parameters of 6 and 7c in rat

		Dose (mg/kg)	CL (ml/min/kg)	$V_{\rm dss}~({\rm L/kg})$	$T_{1/2}(h)$	B.A (%)
6	iv	1	52.7	4.2	-	
	ро	10	-	_	1.30	37
7c	iv	1	51.5	14.4	-	
	ро	10	-	_	4.69	69.3
7c	iv	1	_ 51.5 _	 14.4 	_	57

of CYP enzymes inhibition, especially 2D6, **7c** and **8c** were clearly better than the other compounds (Table 3). As for metabolic stability in rats, **7c**¹² was selected as the most suitable for pharmacokinetic (PK) study in rat.

Compound **7c** showed longer half-life $(T_{1/2})$ than **6** with almost the same clearance (CL). This result is in good correlation with that of human serum protein binding (95.1% for **7c** and 71.1% for **6**), which is believed to be associated with the value of log P^* (1.17 for **7c** and 0.1 for **6**). Compound **7c** distribution volume (V_{dss}) increased, suggesting improved B.A., and its maximum concentration time (T_{max}) was observed at 3 h after administration. These findings indicate that **7c** possesses favorable oral B.A. and is therefore suitable for PK/PD evaluation in Zucker-Fatty (ZF) rat (Table 4).

To assess the potency of single oral administration of 7c (0.1–1.0 mg/kg), the inhibitory activity of this compound for DPP-4 in

ZF rats was evaluated over a time-course of 0–24 h (Fig. 3). Compound **7c** showed the strongest inhibition against DPP-4 at 1.0 mg/kg around 2 h after administration and remained active for up to 10 h. In addition, AUC of plasma DPP-4 inhibition by **7c** increased in a dose dependent manner. These results indicate that **7c** acts as a potent inhibitor in ZF rats.

In conclusion, we found that compounds having (*R*)-3-amino-3methyl piperidine moiety, as represented here by compound **7c**, are potent DPP-4 inhibitors with good bioavailability and PK/PD profiles. Unfortunately, compound **7c** showed modest inhibition against hERG (IC₅₀ = 6 μ M), making further evaluation of this compound was suspended. To search for the more desirable compounds, additional optimization study of these series of compounds is currently in progress.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.10.101.

References and notes

- For recent reviews see (a) Havale, S. H.; Pal, M. Bioorg. Med. Chem. 2009, 17, 1783; (b) Mest, H.-J.; Mentlein, R. Diabetlogia 2005, 48, 616; (c) Weber, A. E. J. Med. Chem. 2004, 47, 4135; (d) Augustyns, K.; Van der Veken, P.; Senten, K.; Haemers, A. Expert Opin. Ther. Patents 2003, 13, 499.
- For recent references see (a) Holst, J. J. Curr. Opin. Endocrin. Diabetes 2005, 48, 616; (b) Knudsen, L. B. J. Med. Chem. 2004, 47, 4128.
- Farilla, L.; Hui, H.; Bertolotto, C.; Kang, E.; Bulotta, A.; Di Mario, U.; Perfetti, R. Endocrinology 2002, 143, 4397.
- Kim, D.; Wamg, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrowv, A.; Scapin, G.; Patel, S. B.; SinhaRoy, R.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 48, 141.
- Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B. F.; Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes, T. E. J. Med. Chem. 2003, 46, 2774.
- (a) Gwaltney, S. L.; Aertgeerts, K.; Feng, J.; Kaldor, S. W.; Kassel, D. B.; Manuel, M.; Navre, M.; Prasad, G. S.; Shi, L.; Skene, R. J.; Stafford, J. A.; Wallace, M.; Wu, R.; Ye, S.; Zhang, Z. Abstracts of Papers, 231st, Meeting of the American Chemical Society, Atlanta, GA, 2006; American Chemical Society: Washington, DC, 2006; MEDI-018.; (b) Feng, J.; Zhang, Z.; Wallace, M. B.; Sttaford, J. A.; Kaldor, S. W.; Kassel, D. B.; Navre, M.; Shi, L.; Skene, R. J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D. R.; Gwaltney, S. L. J. Med. Chem. 2007, 50, 2297.
- Eckhardt, M.; Langkopf, E.; Mark, M.; Tadayyon, M.; Thomas, L.; Nar, H.; Pfrengle, W.; Guth, B.; Lotz, R.; Sieger, P.; Fuchs, H.; Himmerlsbach, F. J. Med. Chem. 2007, 50, 6450.
- 8. Nakahira, H.; Kimura, H.; Hochigai, H. WO2006068163, 2006.
- (a) Castro Pineiro, J. L.; Rubo, P. A.; Swain, C. J. WO 2002057250, 2002.; (b) Nelson, T. D.; Rosen, J. D.; Smitrovich, J. H.; Payack, J.; Craig, B.; Matty, L.; Huffman, M. A.; Mcnamara, J. Org. Lett. 2005, 7, 55.
- (a) Abbot, C. A.; Yu, D. M.; Woollatt, E.; Sutherland, G. R.; McCaughen, G. W.; Gorrell, M. D. *Eur. J. Biochem.* **2000**, 267, 6140; (b) Olsen, C.; Wagtmann, N. *Gene* **2002**, 299, 185.
- (a) Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G. J.; Beconi, M. G.; Biftu, T.; Chan, C.-C.; Edmondson, S.; Feeney, W. P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A. E.; Thronberry, N. A. *Diabetes* **2005**, *54*, 2988; (b) Burkey, B. F.; Hoffmann, P. K.; Hassiepen, U.; Trappe, J.; Juedes, M.; Foley, J. E. *Diabetes Obes. Metab.* **2008**, *10*, 1057; (c) Wu, J.-J.; Tang, H.-K.; Yeh, T.-K.; Chen, C.-M.; Shy, H.-C.; Chu, Y.-R.; Chien, C.-H.; Tsai, T.-Y.; Huang, Y.-C.; Huang, Y.-L.; Huang, C.-H.; Tseng, H.-Y.; Jiaang, W.-T.; Chao, Y.-S.; Chen, X. *Biochem. Pharmacol.* **2009**, *78*, 203.
- 12. Analytical data of **7c** as a HCl salt: ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.20 (3H, s), 1.48–1.61 (2H, m), 1.65–1.90 (2H, m), 2.35 (3H, s), 2.63–2.72 (1H, m), 2.75–2.82 (1H, m), 2.90 (1H, d, *J* = 11.8 Hz), 3.05 (1H, d, *J* = 12.1 Hz), 3.12 (3H, s), 3.39 (3H, s), 5.42 (2H, s), 5.93 (1H, dd, *J* = 10.2, 2.3 Hz), 6.06 (1H, s), 6.94 (1H, td, *J* = 8.4, 2.7 Hz), 7.22 (1H, dd, *J* = 8.4, 6.0 Hz), 8.19 (3H, bs), ¹³C NMR (100 MHz, CDCl₃-*d*₃) δ : 18.7, 21.1, 23.0, 27.9, 31.7, 33.3, 45.8, 53.4, 54.1, 59.5, 83.9, 106.1, 112.0 (²*J*(C, F) = 22.9 Hz), 113.3 (²*J*(C, F) = 6.5 Hz), 149.8, 151.38, 154.8, 161.6 (³*J*(C, F) = 7.6 Hz), 135.6, 139.3 (³*J*(C, F) = 6.5 Hz), 149.8, 151.38, 154.8, 161.6 (¹*J*(C, F) = 241 Hz). IR (ATR): 2942, 1685, 1635 cm⁻¹. HRMS (ESI+): *m/z* 414.2290 (calcd *m/z* 414.2300 for C_{22H28}FN₅O₂ + H). Anal. Calcd for C_{22H28}FN₅O₂ HCI 3/2H₂O: C, 55.40; H, 6.76; N, 14.68. Found: C, 55.53; H, 6.59; N, 14.59.