Helical Structures

One-Step Construction of Five Successive Rings by Rhodium-Catalyzed Intermolecular Double [2+2+2] Cycloaddition: Enantioenriched [9]Helicene-Like Molecules**

Ken Tanaka,* Naohiro Fukawa, Takeshi Suda, and Keiichi Noguchi

Helicenes and helicene-like molecules have long attracted much attention because of their potential applications to optical or electronic functional materials.^[1] Therefore, flexible as well as convenient methods for their syntheses are highly desired for structural alterations and supply of sufficient quantities.^[2] The most frequently employed method for the synthesis of helicenes is the oxidative photocyclization of stilbene-type precursors, however this procedure cannot be conducted on a large scale because of the highly dilute reaction conditions.^[3] Several non-photochemical methods for the synthesis of [6]- and [7]helicenes and helicene-like molecules have been developed to date.^[4] As such, transition metal mediated intramolecular [2+2+2] cycloadditions of triynes are useful methods for the synthesis of [6]- and [7]helicene-like molecules through the formation of three successive rings.^[5,6] Stará and co-workers pioneered this strategy by using cobalt- or nickel-mediated or catalyzed [2+2+2] cycloadditions.^[5] Following this pioneering work, we recently reported a cationic rhodium(I)/chiral bisphosphine complex, which catalyzed the intramolecular [2+2+2] cycloadditions of 2-naphthol-linked triynes, leading to enantioenriched [7]helicene-like molecules (Scheme 1).^[6,7] Notably, non-photochemical methods that can furnish higher ordered $(\geq [8])$ helicenes and helicene-like molecules are rare.^[8]

To access sterically more demanding [9]helicene-like molecules^[9] starting from commercially available 2-naphthol, we designed an intermolecular double [2+2+2] cycloaddition

[*]	Prof. Dr. K. Tanaka, N. Fukawa, T. Suda
	Department of Applied Chemistry, Graduate School of Engineering
	Tokyo University of Agriculture and Technology
	Koganei, Tokyo 184-8588 (Japan)
	Fax: (+81) 42-388-7037
	E-mail: tanaka-k@cc.tuat.ac.jp
	Prof. Dr. K. Noguchi
	Instrumentation Analysis Center
	Tokyo University of Agriculture and Technology
	Koganei, Tokyo 184-8588 (Japan)
[**]	This work was supported partly by a Grant-in-Aid for Scientific Research (Nos. 20675002 and 20.8746) from MEXT (Japan). We

thank Prof. Dr. Kenji Ogino (TUAT) for the measurement of fluorescence spectra, Dr. Katsuya Maeyama (TUAT) for the measurement of UV spectra, and Takuya Osaka (TUAT) for his preliminary experiment. We also thank Takasago International Corporation for the gift of segphos [(4,4'-bi-1,3-benzodioxole)-5,5'diylbis(diphenylphosphine)] and H₈-binap (2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl), and Umicore for generous support in supplying the rhodium complex.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200901962.

Scheme 1. Rhodium-catalyzed intramolecular [2+2+2] cycloaddition leading to enantioenriched [7]helicene-like molecules.

between a 2-naphthol-linked tetrayne and a dialkynylketone,^[10] which forms five successive rings (Scheme 2). This method would furnish various [9]helicene-like molecules, containing a densely substituted fluorenone core, by changing substituents of each cycloaddition partner.

The 2-naphthol-linked tetraynes **4** were readily prepared by a three-step sequence starting from a known terminal alkyne $\mathbf{1}^{[7]}$ as shown in Scheme 3. A copper-mediated

Scheme 3. Syntheses of tetraynes **4a** and **4b**. DMAP=4-dimethyl-aminopyridine, DCC=dicyclohexylcarbodiimide.

5470

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2009, 48, 5470-5473

homocoupling of **1** and subsequent treatment with aqueous HCl furnished the 2-naphthol-substituted 1,3-diyne **3**. Etherification of **3** with 1-bromo-2-butyne gave the ether-linked tetrayne **4a**. Ester-linked tetrayne **4b** was also prepared by esterification of **3** with 2-butynoic acid.

Upon obtaining tetraynes 4a and 4b, we first investigated an intermolecular double [2+2+2] cycloaddition of the etherlinked tetrayne 4a with dialkynylketone 5a in the presence of cationic rhodium(I) complexes and various bis(phosphine) ligands (Figure 1). The study revealed that the use of

Figure 1. Structures of axially chiral biaryl bisphosphine ligands.

10 mol% of a $[Rh(cod)_2]BF_4/(R)$ -segphos (cod = cycloocta-1,5-diene) complex at room temperature furnished the expected fluorenone-containing [9]helicene-like molecule **6aa** as a yellow solid in 56% yield upon isolation and

Table 1: Rhodium-catalyzed double [2+2+2] cycloadditions of tetrayne **4a** with diynes **5a-d**.

[a] Yield of isolated product. [b] 5a: 2 equiv. [c] Catalyst: 20 mol%.

47% *ee* (Table 1, entry 1). In addition to **5a**, *n*-butyl- (Table 1, entry 2), phenyl- (Table 1, entry 3), and methoxymethyl substituted diethynylketones (Table 1, entries 4 and 5) participated in this reaction at room temperature by employing a cationic rhodium(I)/(R)-segphos or (R)-H₈-binap complex (10–20 mol%) as the catalyst.

Next, an intermolecular double [2+2+2] cycloaddition of ester-linked tetrayne **4b** with **5a** was also investigated, revealing that the use of 20 mol% of a $[Rh(cod)_2]BF_4/(R)$ -binap complex at room temperature furnished the expected fluorenone-containing [9]helicene-like molecule **6ba** as a red solid in 42% yield and 26% *ee* (Table 2, entry 1). The reactions of **4b** with *n*-butyl- (Table 2, entry 2) and phenyl-substituted diethynylketones (Table 2, entry 3) also pro-

Table 2: Rhodium-catalyzed double [2+2+2] cycloadditions of tetrayne **4b** with diynes **5a**-**d**.

[a] Yield of isolated product. [b] Catalyst: 40 mol%. Solvent: $(CH_2Cl)_2$. Temperature: 40°C.

(R)-segphos

(R)-segphos

(-)-6bc

(+)-6bd

61 (31)

32 (60)

5c (Ph)

5d (CH₂OMe)

3

4^[b]

ceeded by employing the cationic rhodium(I)/(R)-H₈-binap or (R)-segphos complex (20 mol %) as the catalyst. Although a high loading of the cationic rhodium(I)/(R)-segphos complex was required, the reaction of **4b** and methoxymethylsubstituted diethynylketone **5d** proceeded to yield the corresponding [9]helicene-like molecule **6bd** with the highest *ee* value (Table 2, entry 4).

As expected, fluorenone-containing [9]helicene-like molecules **6**, possessing large overlapping rings, did not undergo racemization at room temperature in CH_2Cl_2 . In contrast, fluorenone-containing [7]helicene-like molecule **8**, which was prepared from phenol-linked tetrayne **7** and dialkynylketone **5a**, underwent gradual racemization under the same conditions (Scheme 4).

Scheme 4. Synthesis and racemization of fluorenone-containing [7]helicene-like molecule **8**.

The enantiopure crystal of (P)-(+)-**6aa** was readily prepared by recrystallization (Figure 2).^[11] The pseudohelical axes of [9]helicene-like molecules are nearly parallel to the *a*axis (ca. 16.5°). The molecules that are related by the crystallographic 2₁-axes along the *c*-axis are packed almost parallel to the *bc*-plane. Adjacent molecular layers along the *a*-axis are related by the other 2₁-axes along the *b*-axis. Therefore, the helically chiral molecules are stacked in a partially overlapped fashion along the *a*-axis.

Communications

Figure 2. Packing structure of enantiopure (*P*)-(+)-**6 aa**. A) *a*-projection view, B) *c*-projection view.

The enantiopure acetone solvate crystals of (P)-(+)-**6ba** was also readily prepared by recrystallization (Figure 3).^[11] The pseudohelical axes of **6ba** are almost parallel to the *c*-axis (ca. 3.9°). The molecules that are related by crystallographic two-fold axes along the *b*-axis form a columnar structure. In this column, the fluorenone parts of the **6ba** molecules are stacked along the *c*-axis. In addition, intermolecular stacking between naphthalene rings was observed with an average ring separation of 3.415(2) Å.

Photophysical properties of helicene-like molecules **6** and **8** were briefly examined as shown in Table 3. As expected, highly conjugated ester-linked [9]helicene-like molecules **6ba–d** (Table 3, entries 5–8), containing two α -pyrone rings, exhibit larger optical rotation values than ether-linked [9]helicene-like molecules **6aa–d** (Table 3, entries 1–4). Interestingly, ether-linked [7]- and [9]helicene-like molecules **8** and **6aa** exhibit very close optical rotation values (Table 3, entries 1 and 9). In general, when the compounds possess two α -pyrone rings (Table 3, entries 5–8), bathochromic shifts in emission were observed when compared to **6aa–d** (Table 3, entries 1–4).

In conclusion, we have achieved the flexible and convenient syntheses of enantioenriched fluorenone-containing [9]helicene-like molecules by rhodium-catalyzed intermolecular double [2+2+2] cycloadditions. Their unique crystal structures and photophysical properties have also been

Figure 3. Packing structure of enantiopure (*P*)-(+)-**6ba**. A) *c*-projection view, B) *b*-projection view.

TUDIE 4. PHOLODINASICAL GALA OF HELICENE-LIKE MOLECULE D ANG O.	Table 3:	Photophysical	data of helicene-like	molecule 6 and 8. ^{[a}
---	----------	---------------	-----------------------	---------------------------------

Entry	Compound	$[\alpha]_{\rm D}^{\rm 25[b]}$	UV Absorption $\lambda_{\max} [nm]^{[c]}$	Emission λ_{\max} [nm]
1	(+)-6aa	1250	356	556
2	(+)-6ab	1499	357	554
3	(-)-6ac	1151	377	420, 444
4	(+)-6ad	1585	379	561
5	(+)-6ba	2050	313	580
6	(-)-6bb	1752	376	578
7	(-)-6bc	1605	341	423, 572
8	(+)-6 bd	2033	381	472, 575
9	(+)-8	1245	349	559

[a] Measured in CHCl₃. [b] Values are calculated as 100% *ee*. [c] Only the longest absorption maximum wavelengths are given.

determined. Future studies will focus on expanding the substrate scope including [11]helicene-like molecules and developing new materials by additional functionalization of these new helically chiral molecules.

Received: April 13, 2009 Published online: June 18, 2009

Keywords: alkynes · asymmetric catalysis · fluorenones · helicenes · rhodium

For recent reviews, see: a) A. Rajca, M. Miyasaka in *Functional Organic Materials: Syntheses, Strategies, and Applications* (Eds.: T. J. J. Müller, U. H. F. Bunz), Wiley-VCH, Weinheim, 2007,

p. 543; b) C. Schmuck, Angew. Chem. 2003, 115, 2552; Angew. Chem. Int. Ed. 2003, 42, 2448; c) C. Nuckolls, R. F. Shao, W. G. Jang, N. A. Clark, D. M. Walba, T. J. Katz, Chem. Mater. 2002, 14, 773; d) H. Osuga, K. Tanaka, J. Synth. Org. Chem. Jpn. 2002, 60, 593; e) T. J. Katz, Angew. Chem. 2000, 112, 1997; Angew. Chem. Int. Ed. 2000, 39, 1921; f) S. Grimme, J. Harren, A. Sobanski, F. Vögtle, Eur. J. Org. Chem. 1998, 1491.

- [2] For a recent review, see: A. Urbano, Angew. Chem. 2003, 115, 4116; Angew. Chem. Int. Ed. 2003, 42, 3986.
- [3] For recent examples, see: a) F. Aloui, R. E. Abed, A. Marinetti, B. B. Hassine, *Tetrahedron Lett.* 2008, 49, 4092; b) C. Rigamonti, M. T. Ticozzelli, A. Bossi, E. Licandro, C. Giannini, S. Maiorana, *Heterocycles* 2008, 76, 1439; c) A. Bossi, S. Maiorana, C. Graiff, A. Tiripicchio, E. Licandro, *Eur. J. Org. Chem.* 2007, 4499; d) R. El Abed, F. Aloui, J.-P. Genet, B. Ben Hassine, A. Marinetti, *J. Organomet. Chem.* 2007, 692, 1156.
- [4] For recent examples, see: a) J. Storch, J. Sykora, J. Cermak, J. Karban, I. Cisarnova, A. Ruzicka, J. Org. Chem. 2009, 74, 3090; b) S. Graule, M. Rudolph, N. Vanthuyne, J. Autschbach, C. Roussel, J. Crassous, R. Reau, J. Am. Chem. Soc. 2009, 131, 3183; c) J. Cote, S. K. Collins, Synthesis 2009, 1499; d) C. Li, J. Shi, L. Xu, Y. Wang, Y. Cheng, H. Wang, J. Org. Chem. 2009, 74, 408; e) G. Lamanna, C. Faggi, F. Gasparrini, A. Ciogli, C. Villani, P. J. Stephens, F. J. Devlin, S. Menichetti, Chem. Eur. J. 2008, 14, 5747; f) M. C. Carreño, A. Enriquez, S. García-Cerrada, M. J. Sanz-Cuesta, A. Urbano, F. Maseras, A. Nonell-Canals, Chem. Eur. J. 2008, 14, 603; g) N. Takenaka, R. S. Sarangthem, B. Captain, Angew. Chem. 2008, 120, 9854; Angew. Chem. Int. Ed. 2008, 47, 9708; h) A. Grandbois, S. K. Collins, Chem. Eur. J. 2008, 14, 9323; i) J. Ichikawa, M. Yokota, T. Kudo, S. Umezaki, Angew. Chem. 2008, 120, 4948; Angew. Chem. Int. Ed. 2008, 47, 4870; j) K. Kamikawa, I. Takemoto, S. Takemoto, H. Matsuzaka, J. Org. Chem. 2007, 72, 7406; k) S. K. Collins, A. Grandbois, M. P. Vachon, J. Côté, Angew. Chem. 2006, 118, 2989; Angew. Chem. Int. Ed. 2006, 45, 2923; 1) D. C. Harrowven, I. L. Guy, L. Nanson, Angew. Chem. 2006, 118, 2300; Angew. Chem. Int. Ed. 2006, 45, 2242; m) K. Nakano, Y. Hidehira, K. Takahashi, T. Hiyama, K. Nozaki, Angew. Chem. 2005, 117, 7298; Angew. Chem. Int. Ed. 2005, 44, 7136; n) T. J. Wigglesworth, D. Sud, T. B. Norsten, V. S. Lekhi, N. R. Branda, J. Am. Chem. Soc. 2005, 127, 7272; o) M. C. Carreño, M. González-López, A. Urbano, Chem. Commun. 2005, 611; p) M. Miyasaka, A. Rajca, M. Pink, S. Rajca, Chem. Eur. J. 2004, 10, 6531; q) A. Rajca, M. Miyasaka, M. Pink, H. Wang, S. Rajca, J. Am. Chem. Soc. 2004, 126, 15211.
- [5] For examples, see: a) L. Adriaenssens, L. Severa, T. Šálová, I. Císařová, R. Pohl, D. Šaman, S. V. Rocha, N. S. Finney, L.

Pospísil, P. Slavíček, F. Teplý, Chem. Eur. J. 2009, 15, 1072; b) J.
Míšek, F. Teplý, I. G. Stará, M. Tichý, D. Saman, I. Císařová, P.
Vojtísek, I. Starý, Angew. Chem. 2008, 120, 3232; Angew. Chem.
Int. Ed. 2008, 47, 3188; c) F. Teplý, I. G. Stará, I. Starý, A.
Kollarovic, D. Lustinec, Z. Krausova, D. Šaman, P. Fiedler, Eur.
J. Org. Chem. 2007, 4244; d) I. G. Stará, Z. Alexandrová, F.
Teplý, P. Sehnal, I. Starý, D. Šaman, M. Buděšinský, J. Cvačka, Org. Lett. 2005, 7, 2547, and references therein.

- [6] K. Tanaka, A. Kamisawa, T. Suda, K. Noguchi, M. Hirano, J. Am. Chem. Soc. 2007, 129, 12078.
- [7] For reviews of transition metal catalyzed enantioselective
 [2+2+2] cycloadditions of alkynes, see: a) K. Tanaka, *Chem. Asian J.* 2009, *4*, 508; b) T. Shibata, K. Tsuchikama, *Org. Biomol. Chem.* 2008, *6*, 1317.
- [8] Only a few examples for non-photochemical synthesis of higher order (≥[8]) helicenes or helicene-like molecules have been reported. For [8]helicenes, see: a) J. M. Fox, T. J. Katz, J. Org. Chem. **1999**, 64, 302. For a [9]thiahelicene, see: b) T. B. Norsten, A. Peters, R. McDonald, M. Wang, N. R. Branda, J. Am. Chem. Soc. **2001**, 123, 7447. For a β-undecathiophene (sulfur [11]helicene), see: c) M. Miyasaka, A. Rajca, M. Pink, S. Rajca, J. Am. Chem. Soc. **2005**, 127, 13806.
- [9] Cobalt-mediated [2+2+2] cycloadditions to yield [6], [7], [8],
 [9]heliphenes were reported, although product yields were very low (2-8%); see: a) S. Han, A. D. Bond, R. L. Disch, D. Holmes, J. M. Schulman, S. J. Teat, K. P. C. Vollhardt, G. D. Whitener, *Angew. Chem.* 2002, 114, 3357; *Angew. Chem. Int. Ed.* 2002, 41, 3223; b) S. Han, D. R. Anderson, A. D. Bond, H. V. Chu, R. L. Disch, D. Holmes, J. M. Schulman, S. J. Teat, K. P. C. Vollhardt, G. D. Whitener, *Angew. Chem.* 2002, 114, 3361; *Angew. Chem. Int. Ed.* 2002, 41, 3227.
- [10] For transition metal catalyzed enantioselective double [2+2+2] cycloadditions to produce chiral aromatic molecules, see: a) G. Nishida, S. Ogaki, Y. Yusa, T. Yokozawa, K. Noguchi, K. Tanaka, Org. Lett. 2008, 10, 2849; b) A. Wada, K. Noguchi, M. Hirano, K. Tanaka, Org. Lett. 2007, 9, 1295; c) G. Nishida, N. Suzuki, K. Noguchi, K. Tanaka, Org. Lett. 2006, 8, 3489; d) S. Doherty, C. H. Smyth, R. W. Harrington, W. Clegg, Organometallics 2008, 27, 4837; e) T. Shibata, S. Yoshida, Y. Arai, M. Otsuka, K. Endo, Tetrahedron 2008, 64, 821.
- [11] CCDC 727181 (6aa) and 727180 (6ba) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.