Catalytic [2+2+1] Cross-Cyclotrimerization of Silylacetylenes and Two Alkynyl Esters To Produce Substituted Silylfulvenes**

Yu Shibata and Ken Tanaka*

The transition-metal-catalyzed [2+2+2] cross-cyclotrimerization of two or three different alkynes,^[1] a transformation in which three C–C bonds form simultaneously, is a useful method for the synthesis of substituted benzenes. A number of successful examples have been reported (Scheme 1).^[2] In

precedents

Scheme 1. Transition-metal-catalyzed cross-cyclotrimerizations.

sharp contrast, the synthesis of substituted fulvenes by a transition-metal-catalyzed [2+2+1] cross-cyclotrimerization of two different alkynes, a transformation in which one C–H bond as well as three C–C bonds form simultaneously, has not been reported (Scheme 1). There have been only a few reported examples of the transition-metal-catalyzed [2+2+1] homo-cyclotrimerization of alkynes.^[3–7] Rothwell and co-workers reported the titanium(IV)-catalyzed homo-cyclotrimerization of *tert*-butylacetylene, leading to a 1,3,6-substituted fulvene.^[3] Yamamoto and co-workers reported the palladium(II)-catalyzed homo-cyclotrimerization of terminal alkynes, leading to 1,2,4-substituted fulvenes.^[4,5] Herein, we disclose the first catalytic [2+2+1] cross-cyclotrimerization of two different alkynes to produce substituted silylfulvenes.^[8]

Our research group previously reported that a cationic rhodium(I)/H₈-binap (2,2'-bis(diphenylphosphino)-5,5',6,6',-7,7',8,8'-octahydro-1,1'-binaphthyl) complex is a highly effective catalyst for the [2+2+2] cross-cyclotrimerization of

 [*] Y. Shibata, Prof. Dr. K. Tanaka Department of Applied Chemistry, Graduate School of Engineering Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 (Japan) E-mail: tanaka-k@cc.tuat.ac.jp Homepage: http://www.tuat.ac.jp/~tanaka-k/
 [**] This work was supported partly by Grants-in-Aid for Scientific

Research (Nos. 23105512, 20675002, and 21906) from MEXT (Japan). We thank Umicore for generous support in supplying rhodium complexes.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201105517.

electron-rich terminal alkynes and electron-deficient alkynyl esters.^[2a,b] In this catalyst system, the use of trimethylsilylace-tylene and diethyl acetylenedicarboxylate furnished 2:1 and 1:2 cross-cyclotrimerization products in high combined yield (Scheme 2).^[2a,b]

Scheme 2. Rhodium-catalyzed [2+2+2] cross-cyclotrimerization. cod = 1,5-cyclooctadiene.

We examined different combinations of electron-rich terminal alkynes, electron-deficient internal alkynes, and rhodium(I) catalysts in detail. As a result, we were pleased to find that the [2+2+1] cross-cyclotrimerization of triiso-propylsilylacetylene (**1a**) and two alkynyl esters **2a** proceeded at 80 °C and gave substituted silylfulvene **3aa** in high yield using [Rh(cod)₂]BF₄ (5 mol %) as the catalyst and 1,4-dioxane as the solvent (Scheme 3).^[9]

Scheme 3. Rhodium-catalyzed [2+2+1] cross-cyclotrimerization of 1a and 2a.

In this rhodium(I)-catalyzed silylfulvene synthesis, the choice of catalyst and solvent is important. The effect of the catalyst and solvent is summarized in Table 1, starting with the best catalyst and solvent combination with a higher catalyst loading (10 mol%) and at a lower temperature (60°C; entry 1) than used in the initial reaction conditions shown in Scheme 3. With regard to the catalyst, [Rh-(cod)OAc]₂ (entry 2) and an insitu generated cationic rhodium(I)/cod complex (entry 3) catalyzed the fulvene formation. However, the use of a cationic rhodium(I)/nbd complex (entry 4), a neutral rhodium(I)/cod complex (entry 5), and a cationic rhodium(I)/binap (2,2'-bis(diphenyl-phosphino)-1,1'-binaphthyl) complex (entry 6) led to poor substrate conversions. The use of a rhodium catalyst is

Communications

Table 1: Effect of catalysts and solvents.^[a]

[a] Catalyst (0.010 mmol), **1a** (0.10 mmol), **2a** (0.20 mmol), and solvent (1.0 mL) were used. [b] Determined by ¹H NMR spectroscopy.

 $\mathsf{DME}=1,2\text{-}dimethoxyethane, \ \mathsf{nbd}=\mathsf{norbornadiene}, \ \mathsf{THF}=\mathsf{tetrahydro-furan}.$

essential to promote this reaction; both a cationic iridium(I)/ cod complex (entry 7) and $Pd(OAc)_2$ (entry 8) failed to catalyze the fulvene formation. With regard to the solvent, the fulvene formation proceeded in moderately coordinating solvents (entries 9–12). However, the use of a highly coordinating solvent (entry 13) and a less-coordinating solvent (entry 14) led to poor substrate conversions.

The scope of this rhodium(I)-catalyzed silylfulvene synthesis is shown in Scheme 4. With respect to the alkynyl ester, not only the methyl-substituted alkynyl ester 2a but also a variety of primary and secondary alkyl-substituted esters (2bf) reacted with **1a** to give the corresponding silvlfulvenes in high yields. The reactions of 1a and haloalkyl-substituted alkynyl esters 2g and 2h also proceeded to give the corresponding silvlfulvenes in good yields. Alkynyl esters 2i-k, which have oxygen-containing functional groups (R¹), could also participate in this reaction, although the product yields from propargyl alcohol derivatives 2i and 2j were moderate owing to their partial decomposition during isolation by chromatography on silica gel. Phenyl-substituted alkynyl ester 21 and isopropyl 2-butynoate (2m) could be employed, although high catalyst loadings were required. Unfortunately, the reaction of 1a and alkynyl amide 2n furnished the corresponding silvlfulvene 3an in < 5%yield.^[10] Importantly, when alkynyl ester **2**j and alkynyl amide 2n were used, cross-dimerization products 4aj and 4an were generated in 13% and 78% yields, respectively;^[11] the reason for this result is not clear. The scope of the silvlacetylenes was also examined. The reactions of various bulky silvlacetylenes 1b-d with 2a were attempted, but (tertbutyldimethylsilyl)acetylene (1b) was the only silylacetylene that could be employed for this reaction.^[12]

Scheme 4. Scope of silylacetylenes and alkynyl esters (amide). [Rh- $(cod)_2$]BF₄ (0.015 mmol), **1** (0.30 mmol), **2** (0.66 or 0.30 mmol), and 1,4-dioxane (3.0 mL) were used. The cited yields are of the isolated products. [a] Cross-dimerization product **4aj** or **4an** was also isolated. [b] 10 mol% of catalyst. [c] Yield is based on **21**. [d] 20 mol% of catalyst.

A mechanistic proposal for this rhodium(I)-catalyzed fulvene synthesis is shown in Scheme 5.^[13] Carborhodation of alkynyl ester **2** with rhodium acetylide **A**, which was generated through the reaction of silylacetylene $\mathbf{1}^{[11b-e]}$ and the cationic rhodium(I) complex, affords (alkenyl)rhodium **B** and this compound reacts with another **2** to generate (dienyl)rhodium **C**. Subsequent intramolecular carborhodation to the silyl-bound triple bond affords (fulvenyl)rhodium

Scheme 5. A mechanistic proposal for the formation of fulvenes 3.

D. Protonation of intermediate **D** affords the cross-trimerization product (*E*)-**3** and regenerates the rhodium(I) catalyst. As the cationic rhodium(I) complexes are effective catalysts for the E/Z isomerization of conjugated carbonyl compounds,^[14] the isomerization of the initially formed (*E*)-**3** would furnish (*Z*)-**3**. Alternatively, protonation of intermediate **B** affords cross-dimerization product **4**.

Consistent with the above pathway, partially deuterated **3aa** was generated in the presence of an external deuterium source (CD₃OD, Scheme 6), and the E/Z isomerization of the isolated (*E*)- and (*Z*)-**3** proceeded under the same reaction conditions as described in Scheme 3 (Scheme 7).

Scheme 6. Rhodium-catalyzed [2+2+1] cross-cyclotrimerization of **1a** and **2a** in the presence of CD₃OD.

Scheme 7. Rhodium-catalyzed E/Z isomerization of (*E*)- and (*Z*)-**3 aa**.

The E/Z mixture of silvlfulvene **3 aa** can serve as a useful precursor for the preparation of a η^5 -cyclopentadienyl rhodium(III) complex as shown in Scheme 8. The direct

Scheme 8. Reductive complexation of 3 aa with RhCl₃.

reductive complexation^[15,16] of **3aa** with RhCl₃ smoothly proceeded in EtOH at 80 °C to give the corresponding dinuclear electron-deficient cyclopentadienyl rhodium(III) **5** in high yield.^[6e,f,17,18]

A dicationic rhodium(III)/Cp* complex, derived from [{Cp*RhCl₂]₂], is known to be a highly effective catalyst for a number of C-H bond activation reactions.^[19] To improve the selectivity and reactivity, sterically tuned cyclopentadienyl ligands have been investigated recently,^[20,21] but an electronically tuned cyclopentadienyl ligand has not been investigated. We anticipated that an in situ generated dicationic complex of 5, bearing the electron-deficient cyclopentadienyl ligand, would show higher catalytic activity than that of [{Cp*RhCl₂]₂] in the electrophilic C-H bond activation reaction. Indeed, the dicationic complex derived from 5 had significantly higher activity and selectivity than the complex derived from the commonly employed [{Cp*RhCl₂}], in the oxidative coupling of both electron-rich and electron-deficient acetanilides, 6a and 6b, respectively, with alkyne 7, thus complete substrate conversion and quantitative product yields were achieved at room temperature (Scheme 9).^[22]

Scheme 9. Comparison of catalytic activity between two cationic rhodium(III) complexes, generated in situ from [{Cp*RhCl₂}] and **5**.

In conclusion, we have developed the [2+2+1] crosscyclotrimerization of silylacetylenes and two alkynyl esters catalyzed by the cationic rhodium(I)/cod complex to produce substituted silylfulvenes. The unprecedented reductive complexation of the silylfulvene product with RhCl₃ in EtOH furnished the corresponding dinuclear electron-deficient cyclopentadienyl rhodium(III) complex. This rhodium(III) complex is a highly active and selective precatalyst for the oxidative coupling of acetanilides and alkynes. Future work will focus on further utilization of the novel electron-deficient cyclopentadienyl rhodium(III) complexes in various electrophilic C–H bond activation reactions.

Received: August 4, 2011 Published online: September 16, 2011

Communications

Keywords: [2+2+1] cross-cyclotrimerization · alkynes · cyclopentadienyl complexes · fulvenes · rhodium

- For a recent review of the transition-metal-catalyzed intermolecular [2+2+2] cross-cyclotrimerization of two and three different alkynes, see: B. R. Galan, T. Rovis, *Angew. Chem.* 2009, 121, 2870; *Angew. Chem. Int. Ed.* 2009, 48, 2830.
- [2] For Rh, see: a) K. Tanaka, K. Shirasaka, Org. Lett. 2003, 5, 4697; b) K. Tanaka, K. Toyoda, A. Wada, K. Shirasaka, M. Hirano, Chem. Eur. J. 2005, 11, 1145; c) G. Nishida, N. Suzuki, K. Noguchi, K. Tanaka, Org. Lett. 2006, 8, 3489; d) K. Tanaka, H. Hara, G. Nishida, M. Hirano, Org. Lett. 2007, 9, 1907; e) Y. Komine, Y. Miyauchi, M. Kobayashi, K. Tanaka, Synlett 2010, 3092; f) T. Konno, K. Moriyasu, R. Kinugawa, T. Ishihara, Org. Biomol. Chem. 2010, 8, 1718; for Ir, see: g) R. Takeuchi, Y. Nakaya, Org. Lett. 2003, 5, 3659; h) G. Onodera, M. Matsuzawa, T. Aizawa, T. Kitahara, Y. Shimizu, S. Kezuka, R. Takeuchi, Synlett 2008, 755; for Ni, see: i) N. Mori, S. Ikeda, K. Odashima, Chem. Commun. 2001, 181; for Pd, see: j) V. Gevorgyan, U. Radhakrishnan, A. Takeda, M. Rubina, M. Rubin, Y. Yamamoto, J. Org. Chem. 2001, 66, 2835; k) Y. Shen, H. Jiang, Z. Chen, J. Org. Chem. 2010, 75, 1321; for Ru, see: 1) Y. Ura, Y. Sato, M. Shiotsuki, T. Kondo, T.-a. Mitsudo, J. Mol. Catal. A 2004, 209, 35; m) Y. Ura, Y. Sato, H. Tsujita, T. Kondo, M. Imachi, T.-a. Mitsudo, J. Mol. Catal. A 2005, 239, 166.
- [3] E. S. Johnson, G. J. Balaich, P. E. Fanwick, I. P. Rothwell, J. Am. Chem. Soc. 1997, 119, 11086.
- [4] U. Radhakrishnan, V. Gevorgyan, Y. Yamamoto, *Tetrahedron Lett.* 2000, 41, 1971.
- [5] The palladium(II)-catalyzed [2+2+1] homo-cyclotrimerization of cyclopropylacetylene was reported, see: U. M. Dzhemilev, R. I. Khusnutdinov, N. A. Shchadneva, O. M. Nefedov, G. A. Tolstikov, *Izv. Akad. Nauk SSSR Ser. Khim.* **1989**, 2360.
- [6] Syntheses of transition-metal complexes with fulvene derivatives by the intermolecular stoichiometric reaction of transition-metal complexes and terminal alkynes have been reported. For Pd, see: a) H.-J. Kim, N.-S. Choi, S. W. Lee, J. Organomet. Chem. 2000, 616, 67; for Rh, see: b) J. Moreto, K. Maruya, P. M. Bailey, P. M. Maitlis, J. Chem. Soc. Dalton Trans. 1982, 1341; c) G. Moran, M. Green, A. G. Orpen, J. Organomet. Chem. 1983, 250, C15; d) A. D. Burrows, M. Green, J. C. Jeffery, J. M. Lynam, M. F. Mahon, Angew. Chem. 1999, 111, 3228; Angew. Chem. Int. Ed. 1999, 38, 3043; e) H. Komatsu, Y. Suzuki, H. Yamazaki, Chem. Lett. 2001, 998; f) W. S. Han, S. W. Lee, Organometallics 2005, 24, 997; g) M. S. Lim, J. Y. Baeg, S. W. Lee, J. Organomet. Chem. 2006, 691, 4100; for Ir, see: h) J. M. O'Connor, K. Hiibner, R. Merwin, P. K. Gantzel, B. S. Fong, M. Adams, A. L. Rheingold, J. Am. Chem. Soc. 1997, 119, 3631; i) J. M. O'Connor, A. Closson, K. Hiibner, R. Merwin, P. Gantzel, D. M. Roddick, Organometallics 2001, 20, 3710; j) J. M. O'Connor, A. P. Closson, R. L. Holland, S. K. Cope, C. L. Velez, C. E. Moore, A. L. Rheingold, Inorg. Chim. Acta 2010, 364, 220; for Ru, see: k) E. Becker, K. Mereiter, M. Puchberger, R. Schmid, K. Kirchner, A. Doppiu, A. Salzer, Organometallics 2003, 22, 3164; for Os, see: l) T. B. Wen, Z. Y. Zhou, G. Jia, Angew. Chem. 2006, 118, 5974; Angew. Chem. Int. Ed. 2006, 45, 5842; m) T. B. Wen, W. Y. Hung, H. H. Y. Sung, Z. Zhou, I. D. Williams, G. Jia, Eur. J. Inorg. Chem. 2007, 2693; for Re, see: n) K. W. Chiu, C. G. Howard, H. S. Rzepa, R. N. Sheppard, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, Polyhedron 1982, 1, 441.
- [7] Syntheses of transition-metal complexes with fulvenes by intramolecular stoichiometric reactions of transition-metal complexes and cyclic triynes have also been reported. For Cr, Mo, and W, see: a) H. Sakurai, Y. Nakadaira, A. Hosomi, Y. Eriyama, K. Hirama, C. Kabuto, J. Am. Chem. Soc. 1984, 106, 8315; for Co

and Mn, see: b) K. Ebata, T. Matsuo, T. Inoue, Y. Otsuka, C. Kabuto, A. Sekiguchi, H. Sakurai, *Chem. Lett.* **1996**, 1053.

- [8] For selected examples of catalytic fulvene syntheses, see: a) G. Wu, A. L. Rheingold, S. J. Geib, R. F. Heck, Organometallics 1987, 6, 1941; b) G. C. M. Lee, B. Tobias, J. M. Holmes, D. A. Harcourt, M. E. Garst, J. Am. Chem. Soc. 1990, 112, 9330; c) L. J. Silverberg, G. Wu, A. L. Rheingold, R. F. Heck, J. Organomet. Chem. 1991, 409, 411; d) E. Negishi, L. S. Harring, Z. Owczarczyk, M. M. Mohamud, M. Ay, Tetrahedron Lett. 1992, 33, 3253; e) G. Dyker, P. Siemsen, S. Sostmann, A. Wiegand, I. Dix, P. G. Jones, Chem. Ber/Recl. 1997, 130, 261; f) M. Kotora, H. Matsumura, G. Gao, T. Takahashi, Org. Lett. 2001, 3, 3467; g) C. N. Iverson, W. D. Jones, Organometallics 2001, 20, 5745; h) M. Uemura, Y. Takayama, F. Sato, Org. Lett. 2004, 6, 5001; i) K. Shibata, T. Satoh, M. Miura, Adv. Synth. Catal. 2007, 349, 2317; j) F. W. Patureau, T. Besset, N. Kuhl, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2154.
- [9] Recently, our research group have reported the cationic rhodium(I) complex catalyzed cross-trimerization of propargyl esters and two arylacetylenes, leading to substituted dihydropentalenes, see: Y. Shibata, K. Noguchi, K. Tanaka, Org. Lett. 2010, 12, 5596.
- [10] Unfortunately, the use of the alkynyl ketone 3-hexyn-2-one led to a complex mixture of products.
- [11] For the rhodium(I)-catalyzed cross-dimerizations of two different alkynes, see: a) J. Ito, M. Kitase, H. Nishiyama, Organometallics 2007, 26, 6412; b) T. Katagiri, H. Tsurugi, A. Funayama, T. Satoh, M. Miura, Chem. Lett. 2007, 36, 830; c) T. Nishimura, X.-X. Guo, K. Ohnishi, T. Hayashi, Adv. Synth. Catal. 2007, 349, 2669; d) T. Katagiri, H. Tsurugi, T. Satoh, M. Miura, Chem. Commun. 2008, 3405; e) N. Matsuyama, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 3576.
- [12] The reaction of triethylsilylacetylene (1c) and 2a was sluggish and furnished oligomers of 1c as the major products. No reaction was observed in the reaction of (*tert*-butyldiphenylsilyl)acetylene (1d) and 2a. In addition, the use of carbon-substituted terminal alkynes, instead of silicon-substituted ones, was also investigated. However, the reaction of phenylacetylene with 1a led to a complex mixture of products, and no reaction was observed in the case of alkylacetylenes (1-octyne and 3,3dimethyl-1-butyne) with 1a.
- [13] The formation of fulvene derivatives via metalacyclopentadiene intermediates (Ref. [6h–j,8g]) or metal vinylidene intermediates (Ref. [6c,f,g]) has been proposed for the stoichiometric reactions, but the mechanism shown in Scheme 4 is more plausible because of the formation of cross-dimerization products 4.
- [14] K. Tanaka, T. Shoji, M. Hirano, Eur. J. Org. Chem. 2007, 2687.
- [15] The desilylative complexation of silylcyclopentadienes with RhCl₃ in an alcohol solvent was reported, see: C. H. Winter, S. Pirzad, D. D. Graf, D. H. Cao, M. J. Heeg, *Inorg. Chem.* **1993**, *32*, 3654.
- [16] We presume that the present reductive complexation proceeds through the reaction of the desilylated fulvene and the rhodium hydride species, generated by the reaction of RhCl₃ and EtOH. For the generation of the rhodium hydride species by the reaction of RhCl₃ and EtOH, see: a) E. G. Thaler, E. G. Lundquist, K. G. Caulton, *Polyhedron* **1989**, *8*, 2689; the reductive complexations of fulvenes and metal hydride species to produce the corresponding cyclopentadienyl complexes have been reported, for Zr, see: b) J. J. Eisch, F. A. Owuor, X. Shi, *Organometallics* **1999**, *18*, 1583; for U, see: c) W. J. Evans, G. W. Nyce, K. J. Forrestal, J. W. Ziller, *Organometallics* **2002**, *21*, 1050; for Y, see: d) W. J. Evans, B. L. Davis, T. M. Champagne, J. W. Ziller, *Proc. Natl. Acad. Sci. USA* **2006**, *103*, 12678; for Ru, see: e) S. K. S. Tse, T. Guo, H. H.-Y. Sung, I. D. Williams, Z. Lin, G. Jia, *Organometallics* **2009**, *28*, 5529; for Os, see: f) S. K. S. Tse,

10920 www.angewandte.org

W. Bai, H. H.-Y. Sung, I. D. Williams, G. Jia, *Organometallics* **2010**, *29*, 3571.

- [17] For reviews of η⁵-cyclopentadienyl rhodium(III) complexes, see:
 a) P. M. Maitlis, J. Organomet. Chem. 1995, 500, 239; b) E. Peris,
 P. Lahuerta in Comprehensive Organometallic Chemistry III,
 Vol. 7 (Eds.: H. C. Robert, D. M. P. Mingos), Elsevier, Oxford,
 2007, p. 139.
- [18] For recent examples of syntheses of functionalized-cyclopentadienyl rhodium(III) complexes, see: a) M. Ito, Y. Endo, N. Tejima, T. Ikariya, Organometallics 2010, 29, 2397; b) M. Ito, N. Tejima, M. Yamamura, Y. Endo, T. Ikariya, Organometallics 2010, 29, 1886; c) T. Reiner, D. Jantke, A. Raba, A. N. Marziale, J. Eppinger, J. Organomet. Chem. 2009, 694, 1934; d) A. Pontes da Costa, M. Sanau, E. Peris, B. Royo, Dalton Trans. 2009, 6960; e) Y. Miyano, H. Nakai, Y. Hayashi, K. Isobe, J. Organomet. Chem. 2007, 692, 122; f) T. Cadenbach, C. Gemel, R. Schmid, R. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17068; g) J. Cermak, K. Auerova, H. T. T. Nguyen, V. Blechta, P. Vojtisek, J. Kvicala, Collect. Czech. Chem. Commun. 2001, 66, 382; h) Q.-A. Kong, G.-X. Jin, Yingyong Huaxue 2001, 18, 322.
- [19] For a review of the oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis, see: T. Satoh, M. Miura, *Chem. Eur. J.* 2010, *16*, 11212.
- [20] Satoh, Miura, and co-workers reported that the use of a rhodium(III)/C₅H₂Ph₄ or C₅H₃Ph₃ complex in place of a rhodium(III)/Cp* complex could improve the catalytic activity and change the reaction pathway in the oxidative C–H bond functionalization, see: a) T. Uto, M. Shimizu, K. Ueura, H. Tsurugi, T. Satoh, M. Miura, *J. Org. Chem.* 2008, *73*, 298; b) M. Shimizu, H. Tsurugi, T. Satoh, M. Miura, *J. Org. Chem. Asian J.* 2008, *3*, 881; c) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, *Chem. Asian J.* 2008, *120*, 4083; *Angew. Chem. Int. Ed.* 2008, *47*, 4019; d) M. Shimizu, K. Hirano, T. Satoh, M. Miura, *J. Org. Chem.* 2009, *74*, 3478; e) S. Mochida, M. Shimizu, K. Hirano, T. Satoh, N. Shibata, H. Sato, M. Miura, *J. Org. Chem.* 2011, *76*, 13.
- [21] Rovis and Hyster reported that the use of a rhodium(III)/Cp^t complex (Cp^t=1,3-di-*tert*-butylcyclopentadienyl) in place of a rhodium(III)/Cp* complex improved the regioselectivity in the oxidative pyridone synthesis, see: a) T. K. Hyster, T. Rovis, *Chem. Sci.* 2011, 2, 1606; For comparison, see: b) T. K. Hyster, T. Rovis, *J. Am. Chem. Soc.* 2010, *132*, 10565.
- [22] a) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 16474; b) D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 18326.