3,5-Dibenzoyl-1,4-dihydropyridines: Synthesis and MDR Reversal in Tumor Cells

Masami Kawase, ${ }^{\text {a,* }}$ Anamik Shah, ${ }^{\text {b }}$ Harsukh Gaveriya, ${ }^{\text {b }}$ Noboru Motohashi, ${ }^{\text {c }}$ Hiroshi Sakagami, ${ }^{\text {d }}$ Andreas Varga ${ }^{\mathrm{e}}$ and Joseph Molnár ${ }^{\mathrm{f}}$
${ }^{a}$ aculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
${ }^{\mathrm{b}}$ Department of Chemistry, Saurashtra University, Rajkot-360 005, India
${ }^{\mathrm{c}}$ Meiji Pharmaceutical University, Tokyo 204-8588, Japan
${ }^{\text {d }}$ Department of Dental Pharmacology, Meikai University School of Dentistry, Saitama 350-0283, Japan
${ }^{\mathrm{e}}$ Department of Molecular Parasitology, Humboldt University, Berlin, Germany
${ }^{\mathrm{f}}$ Faculty of Medicine, Institute of Microbiology, Albert Szent-Györgyi Medical University, Szeged, Hungary

Received 6 August 2001; accepted 9 October 2001

Abstract

Fifteen 4-phenyl-3,5-dibenzoyl-1,4-dihydropyridines (BzDHPs) (1-15) substituted at the 4-phenyl ring were synthesized and compared to their cytotoxic activity and multidrug resistance (MDR)-reversing activity in in vitro assay systems. Among them, $2-\mathrm{CF}_{3}(\mathbf{5})\left(\mathrm{IC}_{50}=8.7 \mu \mathrm{M}\right), 2-\mathrm{Cl}\left(\mathbf{1 1)}\left(\mathrm{IC}_{50}=7.0 \mu \mathrm{M}\right)\right.$ and 3-Cl$(\mathbf{1 2})\left(\mathrm{IC}_{50}=7.0 \mu \mathrm{M}\right)$ derivatives showed the highest cytotoxic activity against human oral squamous carcinoma (HSC-2) cells. The activity of P-glycoprotein (Pgp) responce for MDR in tumor cells was reduced by some of derivatives $(\mathbf{3}, \mathbf{4}, \mathbf{8}, \mathbf{1 2})$, verapamil (VP) and nifedipine (NP). These data suggest that 3,5-dibenzoyl-4-(3-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine (12) can be recommended as a new drug candidate for MDR cancer treatment. (C) 2002 Elsevier Science Ltd. All rights reserved.

Introduction

Multidrug resistance (MDR) of cancer cells has often been correlated with the overexpression of P-glycoprotein (Pgp). An ABC transporter ATP-binding cassette acts as a cellular pump membrane transporter by extruding the anticancer agents and preventing their antitumor effect. ${ }^{1}$ Therefore, it is important to develop molecules that can inhibit Pgp activity. ${ }^{2,3}$ A variety of compounds have been shown to inhibit Pgp-mediated drug efflux. ${ }^{4}$ Characterizing common structural features of Pgp-blocking agents is challenging. In general, MDR active compounds are highly lipophilic and have aromatic ring systems in the molecule ${ }^{5}$ and a cationic or dicationic side chain. ${ }^{4}$ Most compounds also possess a tertiary nitrogen atom with positive charge at a physiological $\mathrm{pH} .{ }^{6}$ Among the possible resistance modifiers, the dihydropyridines (DHPs), calcium antagonists, have been studied extensively as the analogue of verapamil (VP). ${ }^{7}$ In a combination treatment with antitumor

[^0]agents, such as vinca alkaloids or anthracyclines, and VP, cardiovascular side effects were found. ${ }^{8}$ It is very important finding that DHPs without calcium antagonistic activity possess MDR reversal activity. ${ }^{7}$ Struc-ture-activity relationship of DHP calcium channel antagonists suggests that two acyl substituents at the 3and 5-positions in DHP ring might affect the activity of DHP calcium channel antagonists. ${ }^{9}$ Actually, the antagonist activity is optimized by ester substituents at the 3- and 5-positions and is reduced by their replacement with acetyl group. ${ }^{9}$ By a rhodamine 123 fluorescent assay, we have demonstrated that 3,5-diacetyl-1,4-dihydropyridines are the efficient Pgp inhibitors. ${ }^{10}$ Studies of structure-activity relationships have demonstrated that the most hydrophobic compound shows the highest MDR reversing effect, but, the lipophilicity is not the only determinant of MDR-modulating activity. Furthermore, alterations in the substituents at 4-phenyl ring or substituent's position reduced the activity. In this paper, we investigated the MDR-reversal activities of 3,5-diben-zoyl-2,6-dimethyl-1,4-dihydro-4-phenylpyridine derivatives (BzDHPs) (1-15) against mouse lymphoma cells transfected with human $M D R 1$ gene, and their cytotoxic activity against human oral tumor cell lines.

Results and Discussion

Chemistry

BzDHP derivatives ($\mathbf{1} \mathbf{- 1 5}$) were prepared by the variations of the Hantzch reaction (Scheme 1). ${ }^{11}$ Thus, refluxing the mixture of aqueous ammonia (excess), aldehyde and 2 equiv of benzoylacetone in MeOH gave BzDHPs (1-15) in moderate yields.

Cytotoxicity

Fifteen BzDHP derivatives ($\mathbf{1} \mathbf{- 1 5)}$ showed significantly varied cytotoxic activity against two human oral tumor cell lines (HSC-2 and HSG), depending on the substituents at the 4-phenyl ring and the substituent's position. As shown in Table 1, compounds $5\left(\mathrm{IC}_{50}=8.7 \mu \mathrm{M}\right)$, $11\left(\mathrm{IC}_{50}=7.0 \mu \mathrm{M}\right)$ and $12\left(\mathrm{IC}_{50}=7.0 \mu \mathrm{M}\right)$ showed the highest cytotoxic activity against HSC-2. The cytotoxicity was nearly the same to that of doxorubicine $\left(\mathrm{IC}_{50}=4.1 \mu \mathrm{M}\right)$. On the other hand, cytotoxic activity of $5\left(\mathrm{IC}_{50}=8.7 \mu \mathrm{M}\right)$ against HSG was higher than those of $11(28 \mu \mathrm{M})$ or $12(150 \mu \mathrm{M})$. Normal fibroblasts (HGF) were relatively resistant to $\mathbf{5}, \mathbf{1 1}$ and $\mathbf{1 2}$, as judged by the higher selectivity index ($\mathrm{SI}=\mathrm{HGF} / \mathrm{HSC}-2$) ratio ($60-$ >143) suggesting a tumor-selective cytotoxicity of these compounds.

MDR reversal on tumor cells

Rhodamine 123 assay has been widely accepted as a direct and reproducible assay for measuring Pgpdependent drug efflux. ${ }^{12,13}$ Therefore, a series of BzDHPs ($\mathbf{1} \mathbf{- 1 5)}$ have been evaluated for the ability to inhibit the Pgp-mediated drug-efflux by the rhodamine 123 fluorescent assay in the human MDR1 gene transfected T cell mouse lymphoma cell. Among fifteen BzDHPs (1-15), 2-nitro- (3), 3-phenoxy- (4), 4-methyl-thio- (8) and 3-chloro- (12) derivatives were more potent than that of VP. A recent study conducted with 3,5-diacetyl-DHPs has also shown that the presence of 3phenoxy substituent on the 4 -phenyl ring considerably enhanced the MDR-reversing activity. ${ }^{10}$ Among three 2- (11), 3- (12), and 4-chloro (13) derivatives, compound $\mathbf{1 2}$ was found to be more active than $\mathbf{1 1}$ or $\mathbf{1 3}$, meaning that chloro-substitution at 3 position on phenyl ring brings a higher cytotoxic activity and MDR activity
than that at the 2- or 4-position. However, 3-bromo derivative (14) was inactive. Two 2-methoxy (9) and 4methoxy (10) derivatives have comparable activity with the parent DHP (1). The introduction of 2-nitro (3), or 4 -methylthio (8) groups at 4 -phenyl ring led to much more active derivatives when compared to 1 .

Lipophilicity

Lipophilicity is one of the important parameters affecting MDR-modulating efficiency in the structure-activity relationship studies of MDR modulating drugs. ${ }^{4,6}$ The $\log P$ values of $\mathbf{1}-\mathbf{1 5}$ were calculated by CLOGP ${ }^{14}$ and were found to be higher $(\log \mathrm{P}=4.26-7.47)$ when compared to VP or nifedipine (NP) (Table 1). However, lipophilicity alone was not an essential parameter of direct MDR-modulating activity of the present series of compounds.

In conclusion, we synthesized and evaluated a new series of MDR-modulators derived from BzDHPs. The potency of MDR reversal was dependent on the nature of substituents and their positions at the 4 -phenyl ring of BzDHPs. Compound $\mathbf{1 2}$ with the 3 -chloro group on 4 -phenyl ring showed the high MDR-modulating activity and the tumor-specific cytotoxicity, indicating a new drug candidate for MDR cancer chemotherapy.

Experimental

Melting points of BzDHPs (1-15) were determined in open glass capillaries in a paraffin bath and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were performed on a JEOL JNM-GSX $500(500 \mathrm{MHz})$ spectrophotometer using tetramethylsilane as an internal standard. Mass spectra (MS) were recorded on a JEOL-JMS-DX300 spectrophotometer with direct inlet system at 70 eV . Combustion analyses were carried out on Coleman elemental analyser at Vadodara, India. Thin layer chromatography (TLC) was performed on a Merck Kieselgel 60 F254 (Merck 5549, USA).

The following chemicals were obtained from each indicated company: VP (Aldrich Chem. Comp. Inc., Milwarkee, WI, USA); NP (Wako Pure Chem. Ind.,

Compound	R	Compound	R	Compound	R
$\mathbf{1}$	H	6	$3-\mathrm{CF}_{3}$	11	$2-\mathrm{Cl}$
2	$3-\mathrm{NO}_{2}$	7	$4-\mathrm{CF}_{3}$	12	$3-\mathrm{Cl}$
3	$2-\mathrm{NO}_{2}$	8	$4-\mathrm{MeS}$	13	$4-\mathrm{Cl}$
4	$3-\mathrm{PhO}_{3}$	9	$2-\mathrm{MeO}$	14	$3-\mathrm{Br}$
5	$2-\mathrm{CF}_{3}$	10	$4-\mathrm{MeO}$	15	$3,4,5-(\mathrm{MeO})_{3}$

Scheme 1.

Table 1. Cytotoxic activity, MDR modulating activity and $\log \mathrm{P}$ of BzDHPs (1-15)

Compound	Cytotoxic activity ($\mathrm{IC}_{50} \mu \mathrm{M}$)			SI (HGF/HSC-2)	MDR modulating activity ${ }^{\text {a }}$			Fluoresence activity ratio	Calcd $\log \mathrm{P}$
	HSC-2	HSG	HGF		FSC ${ }^{\text {b }}$	$\mathrm{SSC}^{\text {b }}$	FL-1 ${ }^{\text {b }}$		
Par (control) ${ }^{\text {c }}$	-	-	-	-	513	269	7006	42.0	-
MDR + R $123{ }^{\text {d }}$	-	-	-	-	658	233	167	1.0	-
(\pm)-Verapamil	399	403	424	1.1	550	266	1960	11.8	3.71
Nifedipine	543	636	890	1.6	-	-	-	-	2.35
1	265	397	420	1.6	560	312	571	3.4	5.37
2	103	390	>1000	>9.7	547	267	407	2.4	5.11
3	285	315	929	3.3	514	263	2792	16.8	5.11
4	639	722	>1000	> 1.6	555	269	2416	14.5	7.47
5	8.7	8.7	978	112	541	298	617	3.7	6.25
6	117	193	397	3.4	562	285	758	4.6	6.25
7	236	>1000	>1000	>4.2	567	298	822	4.9	6.25
8	> 1000	>1000	>1000	$><1.0$	525	267	1660	10.0	5.93
9	>1000	>1000	>1000	$><1.0$	547	403	607	3.7	5.29
10	>1000	>1000	>1000	$><1.0$	562	283	538	3.3	5.29
11	7.0	28	421	60.1	534	267	565	3.4	6.08
12	7.0	150	>1000	> 143	567	275	1882	11.3	6.08
13	37	365	716	19.4	540	270	328	2.0	6.08
14	434	>1000	>1000	>2.3	543	283	871	5.2	6.23
15	> 1000	>1000	>1000	$><1.0$	550	259	434	2.6	4.26
Doxorubicin• HCl	4.1	5.3	> 100	>24.4	-	-	-	-	-

${ }^{\text {a }}$ The final concentration of each compounds was $8 \mu \mathrm{~g} / \mathrm{mL}$ in culture medium containing cell suspension and 0.4% DMSO.
${ }^{\mathrm{b}}$ FSC, forward scatter count; SSC, side scatter count; FL-1, fluorescence intensity.
${ }^{\text {cPar, }}$ a parental cell without transfection of MDR gene.
${ }^{\mathrm{d}}$ MDR, a parental cell transfected with MDR gene.

Ltd., Osaka, Japan); Dulbecco's modified eagle medium (DMEM) (Gibco BRL, Grand Island, NY, USA); fetal bovine serum (FBS) (JRH Biosci., Lenexa, KS, USA).

General procedure for the preparation of BzDHPs (115)

A solution of benzoylacetone $(1.0 \mathrm{~g}, 10 \mathrm{mmol})$ and liquid ammonia (sp. gr. 0.90) ($0.32 \mathrm{~mL}, 20 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was treated with respective aldehyde (5 mmol), and the mixture was refluxed for $20-24 \mathrm{~h}$. The separated solid was collected by suction and then, after charcoal treatment, recrystallized from MeOH .

3,5-Dibenzoyl-1,4-dihydro-2,6-dimethyl-4-phenylpyridine (1). $\mathrm{Mp} 220-222^{\circ} \mathrm{C}(\mathrm{MeOH})\left(\right.$ lit. ${ }^{11} \mathrm{mp} 229-231^{\circ} \mathrm{C}$), yield $28 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 5.14$ (s, $1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), \quad 7.12 \quad(\mathrm{t}, \quad 2 \mathrm{H}, \quad J=7.4 \mathrm{~Hz}), \quad 7.33 \quad(\mathrm{t}, \quad 4 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), \quad 7.42(\mathrm{t}, 2 \mathrm{H}, \quad J=7.6 \mathrm{~Hz}), \quad 7.53(\mathrm{~d}, 4 \mathrm{H}$, $J=7.6 \mathrm{~Hz})$. MS m/e $393\left(\mathrm{M}^{+}, 56 \%\right), 316(100 \%)$.

3,5-Dibenzoyl-1,4-dihydro-2,6-dimethyl-4-(3'-nitrophenyl)pyridine (2). $\mathrm{Mp} 210-212^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{15} \mathrm{mp} 205^{\circ} \mathrm{C}$), yield 32%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~s}, 6 \mathrm{H}), 5.28$ (s, $1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.32(\mathrm{~d}, 1 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), \quad 7.37 \quad(\mathrm{t}, ~ 4 \mathrm{H}, \quad J=7.6 \mathrm{~Hz}), \quad 7.46 \quad(\mathrm{t}, \quad 2 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 7.54(\mathrm{~d}, 4 \mathrm{H}, \quad J=7.6 \mathrm{~Hz}), 7.93$ (d, 1H, $J=7.3 \mathrm{~Hz}), 7.94(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS} m / e 438\left(\mathrm{M}^{+}, 25 \%\right), 316$ (100%).

3,5-Dibenzoyl-1,4-dihydro-2,6-dimethyl-4-(2^{\prime}-nitrophenyl)pyridine (3). Mp $192-194{ }^{\circ} \mathrm{C}$ (dioxane), yield $30 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H})$, $7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.42-7.46$
(m, 3H), 7.52-7.55 (m, 2H), $7.58(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}) . \mathrm{MS}$ $m / e 438\left(\mathrm{M}^{+}, 6 \%\right), 421(100 \%)$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 73.97 ; \mathrm{H}, 5.02 ; \mathrm{N}, 6.39$. Found: C, 73.99; H, 5.05; N, 6.40.

3,5-Dibenzoyl-1,4-dihydro-2,6-dimethyl-4-(3'-phenoxyphenyl)pyridine (4). $\mathrm{Mp} 190^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 32%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{~s}, 6 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H})$, $6.65(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.69(\mathrm{dd}, 2 \mathrm{H}, J=2.1,7.6 \mathrm{~Hz})$, 6.82-6.85 (m, 2H), $7.03(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.07(\mathrm{t}, 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), \quad 7.24(\mathrm{t}, 2 \mathrm{H}, \quad J=7.8 \mathrm{~Hz}), 7.33(\mathrm{t}, ~ 4 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 7.42(\mathrm{dt}, 2 \mathrm{H}, J=1.5,7.4 \mathrm{~Hz}), 7.52(\mathrm{dt}, 4 \mathrm{H}$, $J=1.5,7.4 \mathrm{~Hz})$. MS $m / e: 485\left(\mathrm{M}^{+}, 62 \%\right), 316(100 \%)$. Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{3}: \mathrm{C}, 81.63 ; \mathrm{H}, 5.60 ; \mathrm{N}, 2.88$. Found: C, 81.67; H, 5.62; N, 2.85.

3,5-Dibenzoyl-4-($\mathbf{2}^{\prime}$-trifluoromethylphenyl)-1,4-dihydro-2,6-dimethylpyridine (5). Mp 190-192 ${ }^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield $18 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.89(\mathrm{~s}, 6 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.34(\mathrm{t}, 4 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), \quad 7.45(\mathrm{t}, 2 \mathrm{H}, \quad J=7.3 \mathrm{~Hz}), 7.52(\mathrm{t}, \quad 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.65(\mathrm{dd}, 4 \mathrm{H}$, $J=1.2,7.6 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$. MS $m / e 461$ ($\mathrm{M}^{+}, 14 \%$), 316 (100%). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, 72.88; H, 4.80; N, 3.04. Found: C, 72.89; H, 4.80; N, 3.06.

3,5-Dibenzoyl-4-($\mathbf{3}^{\prime}$-trifluoromethylphenyl)-1,4-dihydro-2,6-dimethylpyridine (6). $\mathrm{Mp} 188-190^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield $26 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$, $5.71(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.19-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.44(\mathrm{tt}$, $2 \mathrm{H}, J=1.5,7.6 \mathrm{~Hz}), 7.52(\mathrm{dd}, 4 \mathrm{H}, J=1.2,7.6 \mathrm{~Hz}) . \mathrm{MS}$ $m / e 461\left(\mathrm{M}^{+}, 65 \%\right), 316(100 \%)$. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, 72.88; H, 4.80; N, 3.04. Found: C, 72.87; H, 4.82; N, 3.05.

3,5-Dibenzoyl-4-(4'-trifluoromethylphenyl)-1,4-dihydro-2,6-dimethylpyridine (7). Mp 226-227 ${ }^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 20%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H})$, 5.67 (s, 1H), $7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.30(\mathrm{t}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 7.36(\mathrm{t}, 4 \mathrm{H}, \quad J=7.6 \mathrm{~Hz}), 7.39(\mathrm{~d}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 7.45(\mathrm{tt}, 2 \mathrm{H}, J=1.5,7.6 \mathrm{~Hz}), 7.54(\mathrm{dd}, 4 \mathrm{H}$, $J=1.5,7.6 \mathrm{~Hz})$. MS $m / e 461\left(\mathrm{M}^{+}, 68 \%\right), 316$ (100%). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, $72.88 ; \mathrm{H}, 4.80$; N, 3.04. Found: C, 72.90 ; H, 4.78; N, 3.02.

3,5-Dibenzoyl-1,4-dihydro-2,6-dimethyl-4-[4'-(methylthio)phenyllpyridine (8). Mp $144-146^{\circ} \mathrm{C} \quad(\mathrm{MeOH})$, yield $29 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $5.09(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.85$ $(\mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), \quad 7.28 \quad(\mathrm{t}, \quad 2 \mathrm{H}, \quad J=7.6 \mathrm{~Hz}), \quad 7.34 \quad(\mathrm{t}, \quad 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}$ $m / e 439\left(\mathrm{M}^{+}, 88 \%\right), 316(100 \%)$. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 76.51 ; \mathrm{H}, 5.73 ; \mathrm{N}, 3.19$. Found: C, 76.54; H, 5.72; N, 3.16.

3,5-Dibenzoyl-1,4-dihydro-4-($\mathbf{2}^{\prime}$-methoxyphenyl)-2,6-dimethylpyridine (9). Mp 238-240 ${ }^{\circ} \mathrm{C} \quad(\mathrm{MeOH})$, yield $22 \% .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}, 4: 1\right) \delta 1.38+1.39(\mathrm{~s}$, $6 \mathrm{H}), 2.67+2.68(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.96-6.10(\mathrm{~m}, 1 \mathrm{H})$, 6.15-6.25 (m, 1H), 6.33-6.40 (m, 1H), 6.45-6.50 (m, $1 \mathrm{H}), 6.73-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.05$ (m, 4H), 7.98 (s, 1H). MS m/e $423\left(\mathrm{M}^{+}, 7 \%\right), 392$ (100%). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, $79.41 ; \mathrm{H}, 5.95$; N, 3.31. Found: C, 79.42; H, 5.96; N, 3.33.

3,5-Dibenzoyl-1,4-dihydro-4-(4'-methoxyphenyl)-2,6-dimethylpyridine (10). Mp $191-192^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 20%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.42+6.65(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $6.85+6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $7.33(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.39-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.55$ (m, 4H). MS m/e 423 ($\mathrm{M}^{+}, 90 \%$), 316 (100\%). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 79.41; H, 5.95; N, 3.31. Found: C, 79.43; H, 5.94; N, 3.29.

3,5-Dibenzoyl-4-(2' ${ }^{\prime}$-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine (11). $\mathrm{Mp} 216-218{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 31%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{~s}, 6 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{dt}$, $1 \mathrm{H}, J=1.5,7.6 \mathrm{~Hz}), 7.06-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, 1 \mathrm{H}$, $J=1.5,7.8 \mathrm{~Hz}), 7.28-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.62(\mathrm{~m}, 4 \mathrm{H})$. MS $m / e 427(3.2 \%)+429$ (1.2\%) (3:1, M^{+}), 316 (100%). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{2}$: C, 75.78 ; H, 5.18; N, 3.27. Found: C, 75.80; H, 5.19; N, 3.25.

3,5-Dibenzoyl-4-($\mathbf{3}^{\prime}$-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine (12). $\mathrm{Mp} 184-186^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 35%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.92(\mathrm{~s}, 6 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}$, $1 \mathrm{H}), 6.79-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 7.35(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.44(\mathrm{tt}, 2 \mathrm{H}, J=1.5$, $7.6 \mathrm{~Hz}), 7.51-7.54(\mathrm{~m}, 4 \mathrm{H})$. MS m/e $427(56 \%)+429$ (17\%) (3:1, M^{+}), 316 (100%). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{2}: \mathrm{C}, 75.78 ; \mathrm{H}, 5.18 ; \mathrm{N}, 3.27$. Found: C, 75.79; H, 5.20; N, 3.29.

3,5-Dibenzoyl-4-(4' ${ }^{\prime}$ chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine (13). Mp $228-230^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 28%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}\right.$, 4:1) $\delta 1.49(\mathrm{~s}, 6 \mathrm{H}), 4.66$ (s,
$1 \mathrm{H}), 6.57(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $6.97(\mathrm{t}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.06(\mathrm{tt}, 2 \mathrm{H}, J=1.5,7.6 \mathrm{~Hz})$, 7.09-7.12 (m, 4H), 8.07 (s, 1H). MS m/e 427 $(75 \%)+429(23 \%)\left(3: 1, \mathrm{M}^{+}\right), 316(100 \%)$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{2}$: C, 75.78; H, 5.18; N, 3.27. Found: C, 75.80; H, 5.15; N, 3.26.

3,5-Dibenzoyl-4-(3'-bromophenyl)-1,4-dihydro-2,6-dimethylpyridine (14). Mp $182-184^{\circ} \mathrm{C}$ (Dioxane), yield 38%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), \quad 6.85(\mathrm{dt}, \quad 1 \mathrm{H}, \quad J=1.2, \quad 7.6 \mathrm{~Hz}), \quad 6.97(\mathrm{t}, \quad 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.18-7.19(\mathrm{~m}, 1 \mathrm{H})$, $7.30(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.35(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.42-$ $7.47(\mathrm{~m}, ~ 2 \mathrm{H}), ~ 7.52-7.56(\mathrm{~m}, ~ 4 \mathrm{H}) . \quad \mathrm{MS} m / e 471$ $(45 \%)+473(30 \%)\left(1: 1, \mathrm{M}^{+}\right), 316(100 \%)$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{BrNO}_{2}$: C, $68.65 ; \mathrm{H}, 4.69 ; \mathrm{N}, 2.97$. Found: C, 68.66; H, 4.66; N, 2.94.

3,5-Dibenzoyl-1,4-dihydro-4-($\mathbf{3}^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxyphenyl)-2,6-dimethylpyridine (15). Mp $186^{\circ} \mathrm{C}(\mathrm{MeOH})$, yield 17%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.96(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 7.35$ $(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.44(\mathrm{tt}, 2 \mathrm{H}, J=1.5,7.3 \mathrm{~Hz}), 7.56-$ $7.58(\mathrm{~m}, 4 \mathrm{H})$. MS m/e $483\left(\mathrm{M}^{+}, 74 \%\right), 316$ (100\%) . Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{5}$: C, 74.52; H, 6.04; N, 2.90. Found: C, 74.55; H, 6.01; N, 2.89.

Calculation of distribution coefficient. The $\log \mathrm{P}$ values of $\mathbf{1} \mathbf{- 1 5}$ were calculated by CLOGP. ${ }^{14}$

Cell culture. Human oral squamous cell carcinoma (HSC-2) cells and human salivary gland tumor (HSG) cells were maintained as a monolayer culture at $37^{\circ} \mathrm{C}$ in DMEM supplemented with 10% heat-inactivated FBS in a humidified $5 \% \mathrm{CO}_{2}$ atmosphere, and subcultured by trypsinization. Human gingival fibroblasts (HGF) were isolated from healthy gingival biopsies of a 10 -year-old female, as described previously. ${ }^{16}$ Cells between the fifth and seventh passages were used.

Cytotoxic activity

Cells were incubated for 24 h with the indicated concentrations of test samples in culture medium, and the viable cell number was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. ${ }^{16}$ The A_{540} values of control HSC-2, HSG and HGF cells were $0.805,0.623$ and 0.252 , respectively.

Cell and fluorescence uptake. $M D R 1 / \mathrm{A}$ expressing cell lines were selected by culturing the infected cells with $60 \mathrm{ng} / \mathrm{mL}$ colchicine to maintain the expression of the MDR phenotype. ${ }^{17}$ The L5178 MDR cell line and the L5178 Y parent cell line were grown in McCoy's 5A medium supplemented with 10% heat-inactivated horse serum, L-glutamine and antibiotics. The cells were adjusted to a concentration of $2 \times 10^{6} / \mathrm{mL}$ and resuspended in serum-free McCoy's 5A medium, and 0.5 mL aliquots of the cell suspension were distributed into each Eppendorf centrifuge tube. Then, $2 \mu \mathrm{~L}$ of $2 \mathrm{mg} / \mathrm{mL}$ test compounds were added and incubated for 10 min at room temperature. Then, $50 \mu \mathrm{~L}$ rhodamine 123 (R123) as indicator was added to the samples $(5.2 \mu \mathrm{M}$ final
concentration) and the cells were incubated for a further 20 min at $37^{\circ} \mathrm{C}$, washed twice and resuspended in 0.5 mL phosphate-buffered saline (PBS) (pH 7.4) for analysis. The fluorescence of cell population was measured by flow cytometry using Beckton Dickinson FACScan instrument (cell sorter). (\pm)-Verapamil (VP) was used as the positive control in R123 accumulation experiments. ${ }^{17}$ The R123 accumulation was calculated from fluorescence of one height value using the second equation $y=10^{\mathrm{X} / 256}$. In the case of logarithmic transformation, the 1024 digital channels were switched to one decade at each $256\left(=2^{8}\right)$ channels. Then, the percentage of mean fluorescence intensity was calculated in parental and MDR cell lines, compared to untreated cells. The fluorescence activity ratio was calculated by the following equation: ${ }^{17,18}$

MDR reversal activity $=($ MDR treated $/$ MDR control $) /$ (parental treated/parental control)

Acknowledgements

This study was supported by the Foundation for Cancer Research of Szeged and COST-16 Action.

References and Notes

1. Szabo, D.; Keyzer, H.; Kaiser, H. E.; Molnár, J. Anticancer Res. 2000, 20, 4261.
2. Raderer, M.; Scheithauer, W. Cancer 1993, 72, 3553.
3. Lehne, G. Current Drug Targets 2000, 1, 85.
4. Zamora, J. M.; Pearce, H. L.; Beck, W. T. Mol. Pharm. 1988, 33, 454.
5. Molnár, J.; Szabo, D.; Mandi, Y.; Mucsi, I.; Fischer, J.; Varga, A.; König, S.; Motohashi, N. Anticancer Res. 1998, 18, 3033.
6. Ecker, G.; Huber, M.; Schmid, D.; Chiba, P. Mol. Pharm. 1999, 56, 791.
7. Tanabe, H.; Tasaka, S.; Ohmori, H.; Gomi, N.; Sasaki, Y.; Machida, T.; Iino, M.; Kiue, A.; Naito, S.; Kuwano, M. Bioorg. Med. Chem. 1998, 6, 2219 and references cited therein. 8. Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1981, 41, 1967.
8. Triggle, D. J. Compr. Med. Chem. 1990, 3, 1047.
9. Shah, A.; Gaveriya, H.; Motohashi, N.; Kawase, M.; Saito, S.; Sakagami, H.; Satoh, K.; Tada, Y.; Solymosi, A.; Walfard, K.; Molnár, J. Anticancer Res. 2000, 20, 373.
10. Lhotak, P.; Kurfurst, A. Collect. Czech. Chem. Commun. 1992, 57, 1937.
11. Kessel, D. Cancer Commun. 1989, 1, 145.
12. Lee, J.-S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever, M.; Fojo, A. T.; Bates, S. E. Mol. Pharmacol. 1994, 46, 627.
13. Pomana College Medicinal Chemistry Project, Claremont, CA, USA.
14. Devarajegowda, H. C.; Prasad, J. S.; Sridhar, M. A.; Gevaria, H. C.; Shah, A. Mol. Cryst. Lig. Cryst. 2000, 348, 301.
15. Sakagami, H.; Jiang, Y.; Kusama, K.; Atsumi, T.; Ueha, T.; Toguchi, M.; Iwakura, I.; Satoh, K.; Ito, H.; Hatano, T.; Yoshida, T. Phytomedicine 2000, 7, 39.
16. Weaver, J. L.; Szabo, G.; Pine, P. S.; Gottesmann, M. M.; Goldenberg, S.; Aszalos, A. Int. J. Cancer 1993, 54, 456.
17. Aszalos, A.; Pine, P. S.; Pandey, R.; Gottesman, M. M. Biochem. Pharm. 1995, 50, 889.

[^0]: *Corresponding author. Tel.: + 81-49-286-2233x455; fax: + 81-49-2717984; e-mail: kawasema@josai.ac.jp

