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Abstract: A library of 4-(3-acyl- or carbamoylaminoimidazo[1,2-a]pyridin-2-yl)benzamides (8) was synthesized on solid 

phase. A suitably protected core acid (1) was synthesized in multigram quantity using previously published procedure and 

used as the acylating reagent for modifying a set of AMEBA resins. Subsequent liberation of the amino group (using a 

novel hydrazine procedure) and its acylation or carbamoylation provided, after cleavage, final products in higher chemical 

yields and purities compared to known protocols that include formation of the imidazo[1,2-a]pyridine core on solid 

support.  

Keywords: Imidazo[1,2-a]pyridines, solid phase, combinatorial libraries, isocyanide-based multi-component reactions, 
privileged structures.  

INTRODUCTION 

The efficient synthesis of imidazo[1,2-x]azines via a 
reaction between a 2-aminoazine, an aldehyde and an 
isocyanide known as the Groebke-Blackburn multicom-
ponent reaction (GB-MCR) [1], has triggered numerous 
efforts to develop combinatorial libraries based on this drug-
like core [2]. This resulted in increased presence of the 
respective chemotypes in various screening collections and, 
hence, their extensive annotation vs. a number of biological 
targets. Analysis of the recent patent literature reveals (Fig. 
1) that imidazo[1,2-a]azines manifested themselves as 
modulators of sodium channels [3], ubiquitin ligase 
inhibitors [4], potential antidiabetic SGLT1 inhibitors [5], 
hystone deacetylase inhibitors [6], skeletal muscle myosin 
modulators [7], angiogenesis inhibitors [8], as well as 
ligands for G-protein coupled receptors (e. g., PAR2 [9]). 
Thus, imidazo[1,2-a]azine fragment can be regarded as a 
privileged structure for drug design [10]. This consideration 
has prompted us to include various Groebke-Blackburn-type 
templates in our combinatorial library synthesis program. 
Herein, we report on the synthesis of a library of 
imidazo[1,2-a]pyridines containing various carboxamide and 
urea appendages, on solid phase.  

RESULTS AND DISCUSSION 

Besides the use of ring-substituted 2-aminoazines, GR-
MCR products can be diversified i. via the use of various 
aldehydes and isocyanides, or ii. by combining a diversity 
set of aldehydes with a single convertible isocyanide. In the 
latter case, the initially formed GB-MCR products are 
converted into primary amines that can be further modified  
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at the amino group via, for example, acylation (carbamoyl-
ation) [11] or N-arylation [2]. Solid-phase protocols for 
production of imidazo[1,2-a]azine libraries via GB-MCR 
described to-date, included preparation of resin-supported 
aldehyde [11] or isonitrile [12] and exposing such modified 
resin to 2-aminoazine and the third reaction partner. Our 
initial attempts to produce large (>100 members) 
combinatorial arrays using GB-MCR with a resin-supported 
reagents resulted in low (<60%) product purities. Therefore, 
we decided to explore an alternative strategy by preparing a 
suitably functionalized imidazo[1,2-a]azine core in solution 
and then using this core as a scaffold for solid-phase 
development of the final set of compounds. We recently 
reported on the use of tert-butyl isocyanide as a convertible 
reagent in GB-MCR. It was shown that removal of the tert-
butyl group from the initially formed tert-butylaminoimidazo 
[1,2-a]azines with TFA led to intermediate formation of 
trifluoroacetamides (and, hence, the need to hydrolyze them) 
[13]. We reasoned that the trifluoroacetyl-protected amino 
group of GB-MCR products resulting from such protocol 
could be useful as the amino group can be unmasked only 
after the imidazo[1,2-a]azine core is placed on solid support 
(e. g., via a carboxy function).  

A multigram quantity of the core 4-[3-(trifluoroacetyl-
amino)imidazo[1,2-a]pyridin-2-yl]benzoic acid (1) has been 
prepared as described earlier (Scheme 1) [13]. A set of 
secondary amine resins 3{1-14} (prepared via reductive 
amination [14] of the AMEBA resin [15] with primary 
amines 2{1-14} depicted in Fig. 2) was acylated with 1 using 
DIC/HOBt method [16]. Removal of trifluoroacetyl group 
from 4 with aqueous KOH methanol [13], however, was 
found problematic and resulted only in partial conversions, 
as monitored by LCMS analysis of the material cleaved off 
the solid support. This was unsurprising as the resin was 
unlikely to properly swell in aqueous methanol. We found 
however, that trifluoroacetyl group is cleanly removed from 
4 using hydrazine hydrate in DMF [17]. The primary amino 
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Fig. (1). Selected biologically active Groebke-Blackburn-type imidazo[1,2-a]azines [3-9]. 
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Scheme 1. Large-scale synthesis of the library core reagent 1 [13]. 

Reagents and conditions. (i) 1 eq. 4-OHCC6H4COOMe, MeCN, reflux, 2 h; (ii) TMSCl (1 eq.), MeCN-DCM, rt, 30 min; (iii) t-BuNC (i – iii, 

76%); (iv) aq. KOH (1 eq.), rt, 4 h (93%); (v) TFA, reflux, 3 h (88%).  
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Fig. (2). Diversity reagents 2{1-14}. 
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Fig. (3). Diversity reagents 6{1-24}. 
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Scheme 2. Library synthesis. 
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group was now available for further modification. Fourteen 
resin-supported GB-MCR-type amines 5 were reacted with a 
set of acyl chlorides and isocyanates 6{1-24} Fig. (3). 
Following the cleavage with 10% TFA in DCM and 
evaporation of the volatiles, the 336 product mixtures 8 were 
analyzed by LCMS [18]. To our delight, the desired product 
was detected in all cases: 152 compounds were at least 80% 
pure and were not purified further (the rest of compounds 
were purified by reverse-phase HPLC). Chemical yields of 
these products were in the range 25-68% relative to the 
amount of 3 used per one final compound, based on 
calculated resin loading (Scheme 2). Selected examples of 
the compounds 8 and their chemical yields are presented in 
Table 1 [19].  

CONCLUSION 

In conclusion, we have demonstrated that formation of 
imidazo[1,2-a]pyridine core via GB-MCR prior to solid-
phase expansion of the library provided advantages to 
alternative protocols where GB-MCR is carried out with a 
solid phase supported reagents. The synthesized imidazo 
[1.2-a]pyridine-based bis-amides and amide ureas 8 
represent novel compounds that are now part of biological 
annotation program in our laboratories. Additionally, these 
findings can potentially be extended to other imidazo[1,2-
x]azines and –azoles prepared by GB-MCR. Currently we 
are investigating the scope of the presented combinatorial 
approach. The results of our efforts will be reported in due 
course. 

Table 1. Selected Compounds 8 Prepared in this Work 

 

Compound R
1
 X MW LC MS m/z (M+1) Yield, % 

8a 
O *

 

*

O

 

476.6 477 49 

8b O *

 
N
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*

 

443.5 444 38 

8c 
*
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O

 

378.4 379 64 

8d 

*
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O
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