LETTERS

Me₃SiCF₂Br-Self-Assisted Domino Reaction: Catalytic Synthesis of α, α -Difluorocyclopentanones from Methylvinylketones

Jian Chang,[†] Cong Xu,[†] Jie Gao,[†] Fengyun Gao,[†] Dongsheng Zhu,^{*,†} and Mang Wang^{*,†,‡}

[†]Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

 ‡ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China

Supporting Information

ABSTRACT: A complete self-assistance strategy based on Me₃SiCF₂Br was used in the domino conversion of methylvinylketones into α , α -difluorinated cyclopentanones. Initiated by 5 mol % of nBu_4NBr , the multistep reaction occurred in one pot under mild conditions via the *in situ* formation of silyl dienol ethers, difluorocyclopropanation, thermal vinylcyclopropane–cyclopentene rearrangement, and desilylation. The process takes advantage of the multitasking capability of Me₃SiCF₂Br as the difluorocarbene source, a silicon-based transfer agent, and a bromine anion releaser.

D omino reactions allow for rapid construction of complex molecules from simple substrates in an economically favorable way.¹ In this regard, the cascade sequences achieved by means of a catalytic self-assistance strategy of the reactant undoubtedly provide a more ecologically and remarkably desirable approach to organic synthesis. Here, we reported a catalytic domino transformation of methylvinylketones to α,α difluorinated cyclopentanones by the use of Me₃SiCF₂Br (TMSCF₂Br). The process takes advantage of the multitasking capability of TMSCF₂Br as the :CF₂ source, a TMS transfer agent, and the Br⁻ releaser. The method avoids the presynthesis of silyl dienol ethers and also does not require either the catalyst for difluorocyclopropanation or an external desilylating reagent.

 α, α -Difluorinated ketone is a privileged subset of medicinal and bioactive molecules.^{2–4} Among them, cyclic α, α -difluorinated ketones are notable examples.^{4a-c} As a consequence, reliable methods for their synthesis are valuable for developing new drug candidates and biological probes. However, current work is limited to the construction of difluorinated ketone scaffolds.^{3a,5,6} A facile and efficient approach for the synthesis of cyclic analogs has not been established. It was reported that α, α -difluorocyclopentanones could be prepared via the fluorinations of the corresponding cyclopentanones (Scheme 1A), including either by a direct nucleophilic α -fluorination^{5b,7} or by a deoxygenative fluorination-oxidation sequence.⁸ This kind of strategy requires the preconstruction of a cyclopentanone skeleton and usually suffers from hazardous fluorinating reagents. Moreover, the regioselectivity of the fluorination, in the case of those cyclopentanones bearing multiple reaction sites as the substrates, still remains a challenging issue. On the other hand, the synthesis of $\alpha_{,}\alpha_{-}$ difluoroketones from readily available fluorocarbon precursors represents a complementary route.^{3a,6} However, this strategy is seldom applied for the synthesis of difluorinated cyclic ketones though it is versatile and more convergent in essence, and is

Scheme 1. Strategies for the Synthesis of α, α -Difluorocyclopentanones

A. By introducing fluorines into cyclypentanones

also suited for regioselective synthesis of libraries of fluorinated chemicals.

In 2015, Ichikawa and co-workers reported a preparation of α, α -difluorocyclopentanones starting from methylvinylketones by use of trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl) acetate (TFDA, Scheme 1B, Ichikawa's work).⁹ The conversion was achieved via four separate steps including presynthesis of silyl dienol ethers, Ni-catalyzed difluorocyclopropanation, thermal vinylcyclopropane–cyclopentene (VCP) rearrangement,^{10,11} and desilylation. During our research on the synthetic applications of fluoroalkylsilanes,^{12,13} we have described a *n*BuN₄Br (TBAB)-catalyzed difluorocyclopropanation of enolizable ketones¹³ by using TMSCF₂Br as a difluorocarbene source. We then successfully carried out a ring-opening and defluorination reaction to prepare α -fluoroenones^{13a} and o-fluoroanphthols^{13b} by treating the resulting siloxyldifluoro-

Received: February 28, 2017

cyclopropanes with nBuN₄F (TBAF). Lately, we developed a well-controlled ring-opening and intramolecular S_NV type reaction of siloxyldifluorocyclopropanes in the presence of stoichiometric Cu or Ag salt via a metal difluorohomoenolate species for the synthesis of $\alpha_{,}\alpha_{-}$ difluorocyclopentenones.^{13c} We anticipated that further advances in the unique chemistry of TMSCF₂Br would enable a catalytic domino transformation¹ for the incorporation of a difluoromethylene fragment into the α -position of the carbonyl by utilizing a complete self-assistance strategy. Considering the ready availability of methylvinylketones and the possibility of the VCP rearrangement of siloxylvinyldifluorocyclopropane,⁹ we explore the reaction of methylvinylketones with TMSCF₂Br (Scheme 1B, this work). In this letter, we report that this catalytic process could indeed be achieved, allowing the development of a direct and efficient route to a wide range of functionalized $\alpha_{,\alpha}$ -difluorocyclopentanone derivatives.

Initially, the reaction of (Z)-3-benzoyl-4-phenyl-3-buten-2one 1a with TMSCF₂Br was selected as a model system to identify the reaction conditions. Delightfully, upon treatment of 1a with 2.5 equiv of TMSCF₂Br in the presence of 2.5 mol % TBAB in toluene at 100 °C, the desired 5-benzoyl-2,2-difluoro-4-phenylcyclopentanone could be obtained in its enolic form (Table 1) according to its NMR, MS spectra, and further by its

Table 1. Screening of the Reaction Conditions^a

O F 1a	COPh + TMSCF Ph	2 ^{Br} TBA solvent, te	B F emp F≺	OH COPh Ph 2a
entry	TBAB (mol %)	solvent	temp (°C)	yield ^b (%)
1	2.5	toluene	100	73
2	5	toluene	100	84
3	10	toluene	100	85
4	5	1,4-dioxane	100	76
5	5	MeCN	100	86
6	5	DCE	100	trace
7	5	toluene	90	86 (86)
8	5	toluene	80	75 ^c
9	5	MeCN	90	53 ^d
10	5	toluene	110	86

^{*a*}General reaction conditions: **1a** (0.2 mmol), TMSCF₂Br (2.5 equiv), solvent (1.0 mL), in a sealed tube, 7 h. ^{*b*1}H NMR yield by using 1,3,5-trimethoxybenzene as internal standard. Isolated yield was in parentheses. ^{*c*}13% yield of **3** was obtained. ^{*d*}24% of **1a** was recovered along with 7% yield of **3**.

F

X-ray data.¹⁴ By increasing the amount of the TBAB catalyst, the yield of the cyclic enol product 2a could reach 85% (entries 2 and 3). A screen of other solvents revealed that both 1,4-dioxane and MeCN could give 2a in good yield (entries 4 and 5), but DCE was inert for the reaction (entry 6). A lower temperature led to somewhat less efficiency of the conversion from siloxyldifluorovinylcyclopropane intermediate 3 to the final product 2a (entries 7–9), while a higher temperature did not provide a better experimental result (entry 10).

With the optimized reaction conditions (Table 1, entry 7), we then evaluated the reactivities of various structurally diverse

methylvinylketones 1 by using TMSCF_2Br as a fluorocarbon precursor. As presented in Table 2, most tested conversions

Table 2. Catalytic Synthesis of 2 from 1 and TMSCF ₂ Br ^a							
R ²	EWG + TMSC ″R ¹ –ad	$\mathbf{F_2Br} \frac{\text{TBAB (5 r}}{\text{toluene, S}}$	<u>nol %)</u> 90 °C	F F R^2 R^1 2a-ad			
entry	\mathbb{R}^1	EWG	R ²	yield ^b (%)			
1	Ph	PhCO	Н	2a , 86 (86)			
2	4-MeC ₆ H ₄	PhCO	Н	2b , 80 (89)			
3	4-MeOC ₆ H ₄	PhCO	Н	2c, 76 (92)			
4	3-MeOC ₆ H ₄	PhCO	Н	2d, 80 (82)			
5	2-MeOC ₆ H ₄	PhCO	Н	2e, 71 (90)			
6	4-BnOC ₆ H ₄	PhCO	Н	2f , 70 (95)			
7	2-naphthyl	PhCO	Н	2g, 90 (94)			
8	$4-FC_6H_4$	PhCO	Н	2h , 80 (94)			
9	$2-FC_6H_4$	PhCO	Н	2i , 79 (85)			
10	4-ClC ₆ H ₄	PhCO	Н	2 j, 89 (91)			
11	$4-BrC_6H_4$	PhCO	Н	2k, 85 (93)			
12	4-CNC ₆ H ₄	PhCO	Н	2l , 69 (82)			
13	3-CNC ₆ H ₄	PhCO	Н	2m , 76 (84)			
14	$4-NO_2C_6H_4$	PhCO	Н	2n , 60 (65)			
15	4-MeO ₂ CC ₆ H ₄	PhCO	Н	20 , 70 (73)			
16	$4-CF_3C_6H_4$	PhCO	Н	2p , 61 (85)			
17	N-Me-3-indolyl	PhCO	Н	2q , 71 (88)			
18	2-furyl	PhCO	Н	2r , 76 (87)			
19	2-thienyl	PhCO	Н	2s , 73 (89)			
20	cyclopropyl	PhCO	Н	2t , 64 (73) ^c			
21 ^d	4-MeOC ₆ H ₄	CO ₂ Me	Н	2u , 84 (89)			
22 ^d	4-MeOC ₆ H ₄	CO ₂ Et	Н	2v, 80 (90)			
23 ^d	4-MeOC ₆ H ₄	CO ₂ Bn	Н	2w, 85 (92)			
24 ^d	2-naphthyl	CO ₂ Me	Н	2x, 59 (93)			
25 ^d	3-ClC ₆ H ₄	CO ₂ Me	Н	2y, 65 (80)			
26 ^d	4-CNC ₆ H ₄	CO ₂ Me	Н	2z, 55 (77)			
27 ^d	4-MeOC ₆ H ₄	CO ₂ Me	Me	2aa , 67 (83)			
28 ^d	4-MeOC ₆ H ₄	CO ₂ Me	Et	2ab , 43 (60)			
29	Ph	COMe	Н	2ac , $(40)^e$			
				2ac', 2ac" (75) ^f			
30	Ph	CN	Н	complex			

^{*a*}General reaction conditions: **1** (0.2 mmol), TMSCF₂Br (2.5 equiv), toluene (1.0 mL), in a sealed tube, 7 h. ^{*b*}Isolated yields. ¹H NMR yields were in parentheses by using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}A mixture of two keto–enol isomers was obtained. ^{*d*}The reaction was performed in MeCN (1.0 mL), at 100 °C for 8 h. ^{*e*}Trace amount of **2ac'** was detected. 50% of **1ac** remained. ^{*f*}TMSCF₂Br (5 equiv). **2ac'** and **2ac''** were obtained in 1:5 mixture.

from 1 to 2 are highly efficient, while the isolated yields of 2 are somewhat low in some cases (such as Table 2, entries 3, 5, 6, 12, and 13) due to the inefficient chromatographic purification process. In general, there is to be a lack of significant electron effects of the R¹ substituent in 1 on the reaction efficiency. α -Benzoyl methylvinylketones 1b-g bearing electron-donating aromatic R¹ afforded the desire 2b-g in 82–95% NMR yields (entries 2–7). And substrates 1h-p with electron-deficient aromatic R¹ also gave 2h-p in 73–94% NMR yields (entries 8–16). By comparison, those substrates with a stronger electron-deficient substituent (such as NO₂ or CO₂Me) on the phenyl ring gave **2** in relatively lower yields (entries 14 and 15). Heteroaromatic ring-substituted methylvinylketones 1q-s could be used for the present domino reactions (entries 17-19). In the case of **1t** having an aliphatic cyclopropyl group, the reaction worked well furnishing a mixture of 2t and its keto isomer 2t' in good yield (entry 20). In addition, when α alkoxycarbonyl methylvinylketones 1u-ab were prepared for the reaction, corresponding $\alpha_{,\alpha}$ -difluorocyclopentanones 2uab were also obtained (entries 21-28). R²-Substituted vinylketones 1aa and 1ab gave 2aa and 2ab in lower yields under the identical reaction conditions (entries 27 and 28). When α -acetylated methylvinylketone 1ac was selected as the substrate, 2ac along with $2ac'^{15}$ was obtained (entry 29). By increasing the amount of TMSCF₂Br, the reaction gave 2ac' and $2ac''^{16}$ as the products (entry 29). Moreover, α -cyano methylvinylketone 1ad could not provide the desired product (entry 30) despite further efforts in optimizing the reaction conditions.

On the basis of our previous work¹³ and the VCP rearrangement reactions,^{9–11} it was reasonable to propose a catalytic domino mechanism for the above transformation. As described in Scheme 2, Br⁻-activated TMSCF₂Br first produced

 CF_2 and TMSBr. Silyl dienol ether I was then formed *in situ* by the reaction of methylvinylketone 1 and TMSBr along with releasing HBr to the reaction mixture. Next, difluorocyclopropanation of I with CF_2 gave vinyldifluorocyclopropane II followed by a thermal ring opening and recyclization (VCP rearrangement) leading to cyclic difluorinated silyl enol ether III. Finally, α, α -difluorocyclopentanone 2 was obtained by the desilylation with the assistance of HBr resulted from the former step.

Compared with the method developed by Ichikawa' group,⁹ the present work described a remarkably simple and catalytic domino transformation of methylvinylketones to α, α -difluorinated cyclopentanones. Notably, our method does not need any catalysts for either difluorocyclopropanation or desilylation. Once TMSCF₂Br is initially activated by a catalytic amount of TBAB, the cascade reaction will occur in a self-assisted manner. Besides generating difluorocarbene, the internal "TMS" and "Br" can be released from TMSCF₂Br during the reaction for all the following steps.

Encouraged by the above experimental results, we further investigated the domino conversion of methylvinylketones 1ae-aj without an α -substituent and made a comparison with Ichikawa' work (Scheme 3).⁹ By using TMSCF₂Br as the

difluorocarbene agent and TBAB as the initiator, lae could smoothly undergo a tandem enolization-silvlation, difluorocyclopropanation, VCP rearrangement, and desilylation sequence to furnish $\alpha_{,\alpha}$ -difluorocyclopentanone 4a in 92% NMR yield. It was true that 4a was sensitive toward chromatographic purification as observed in Ichikawa's experiments and, thus, had to be derivatized to oxime 5a by further reacting with a 1.5 equiv amount of hydroxylamine hydrochloride for isolation. Similarly, 1af-aj also gave the corresponding oximes 5b-f in good yields by the reaction with TMSCF₂Br and then with hydroxylamine hydrochloride in one pot. Clearly, a direct and easy transformation from readily available methylvinylketones to $\alpha_{,\alpha}$ -difluorocyclopentanones⁹ was realized in the present work by the use of 5 mol % of TBAB without any additional silvlation agent, metal catalyst for difluorocyclopropanation, and desilylation agent.

Additionally, when methylvinylketones 1ak-am with an α alkyl or α -aryl substituent were prepared and treated with TMSCF₂Br under standard reaction conditions, the reactions stopped at the cyclic difluorinated silyl enol ethers 6a-c, a type of intermediate III as described in Scheme 2, by analyzing the ¹H NMR spectra of the reaction mixture (Scheme 4). No

Scheme 4. Synthesis of 6/7 from 1 and TMSCF₂Br

desired α, α -difluorocyclopentanones were detected. However, decompositions of **6** during chromatography purification resulted in less than 10% isolated yields of **6**. Interestingly, a small amount of byproducts were isolated and identified to be the oxygenated cyclopentenones 7, which were likely formed via the desilylation of **6**, defluorination, and hydrolysis sequence.¹⁷ Considering that TBAB or HBr that existed in the reaction mixture was the potential initiator for the desilylation of **6**, either TBAB (1.5 equiv) or HBr (47% aqueous) was added to the reaction mixture after **1ak–am** were consumed. As we expected, **7a–c** were isolated in moderate to

Organic Letters

In conclusion, we have successfully developed a simple and efficient domino transformation of methylvinylketones to $\alpha_{,}\alpha_{-}$ difluorocyclopentanone derivatives using unique TMSCF₂Br as a difluorocarbene agent. A complete self-assistance strategy based on TMSCF₂Br enables the conversion to occur smoothly under the catalysis of 5 mol % of TBAB via the *in situ* formation of silvl dienol ethers, difluorocyclopropanation, thermal ring opening and recyclization rearrangement, and desilylation. This process represents the first example for the catalytic synthesis of difluorinated cyclic compounds from fluorocarbon precursors. The reliable installation of a difluoromethylene fragment at the α -position of readily available ketones makes the method wellsuited for wide applications in organic synthesis and drug design. Further work on the application and extension of the scope of the protocol are currently under investigation in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b00611.

Experimental procedures, analytical data for new compounds (PDF)

Crystallographic data for 2a (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhuds206@nenu.edu.cn. *E-mail: wangm452@nenu.edu.cn.

ORCID [®]

Mang Wang: 0000-0001-8006-4626

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Sciences Foundation of China (NNSFC-21372040 and 21672032) and the State Key Laboratory of Fine Chemicals (KF1502) for funding support of this research.

REFERENCES

(1) For reviews, see: (a) Trost, B. M. Science 1991, 254, 1471.
(b) Tietze, L. F. Chem. Rev. 1996, 96, 115. (c) Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233. (d) Pellissier, H. Chem. Rev. 2013, 113, 442.

(2) (a) Inhibition of Enzymes by Fluorinated Compounds. Béguè, J.-P.; Bonnet-Delpon, D. *Bioorganic and Medicinal Chemistry of Fluorine;* Wiley: Hoboken, NJ, 2008; Chapter 7, p 246. (b) *Fluorine in Medicinal Chemistry and Chemical Biology;* Ojima, I., Ed.; Wiley: West Sussex, 2009; p 29. (c) *Fluorine in Medicinal Chemistry and Chemical Biology;* Ojima, I., Ed.; Wiley: Chichester, 2009.

(3) (a) Han, C.; Salyer, A. E.; Kim, E. H.; Jiang, X.; Jarrard, R. E.; Powers, M. S.; Kirchhoff, A. M.; Salvador, T. K.; Chester, J. A.; Hockerman, G. H.; Colby, D. A. J. Med. Chem. 2013, 56, 2456. (b) Gelb, M. H.; Svaren, J. P.; Abeles, R. H. Biochemistry 1985, 24, 1813. (c) Takahashi, L. H.; Radhakrishnan, R.; Rosenfield, R. E.; Meyer, E. F.; Trainor, D. A. J. Am. Chem. Soc. 1989, 111, 3368.

(4) (a) Dan, N.; Bhakat, S. *Eur. J. Med. Chem.* **2015**, 95, 324. (b) Fah, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.;

Diederich, F. Org. Biomol. Chem. 2009, 7, 3947. (c) Persch, E.; Dumele, O.; Diederich, F. Angew. Chem., Int. Ed. 2015, 54, 3290. (d) Fah, C.; Hardegger, L. A.; Ebert, M.-O.; Schweizer, W. B.; Diederich, F. Chem. Commun. 2010, 46, 67.

(5) (a) Peng, W.; Shreeve, J. M. J. Org. Chem. 2005, 70, 5760.
(b) Pravst, I.; Zupan, M.; Stavber, S. Synthesis 2005, 2005, 3140.
(c) Singh, R. P.; Majumder, U.; Shreeve, J. M. J. Org. Chem. 2001, 66, 6263.

(6) (a) Yang, M.-H.; Orsi, D. L.; Altman, R. A. Angew. Chem., Int. Ed. 2015, 54, 2361. (b) Ge, S.; Chaladaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149. (c) Han, C.; Kim, E. H.; Colby, D. A. J. Am. Chem. Soc. 2011, 133, 5802.

(7) (a) Shimada, Y.; Taniguchi, N.; Matsuhisa, A.; Sakamoto, K.; Yatsu, T.; Tanaka, A. *Chem. Pharm. Bull.* **2000**, *48*, 1644. (b) Baudoux, J.; Cahard, D. *Org. React.* **2007**, *69*, 347.

(8) Meegalla, S. K.; Doller, D.; Liu, R.; Sha, D.; Lee, Y.; Soll, R. M.; Wisnewski, N.; Silver, G. M.; Dhanoa, D. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 1702.

(9) Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J. Org. Lett. 2015, 17, 5736.

(10) (a) Hudlický, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. **1985**, 33, 247. (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. **1989**, 89, 165. (c) Baldwin, J. E. Chem. Rev. **2003**, 103, 1197.

(11) Orr, D.; Percy, J. M.; Tuttle, T.; Kennedy, A. R.; Harrison, Z. A. Chem. - Eur. J. 2014, 20, 14305.

(12) (a) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683. (b) Xu, C.; Liu, J.; Ming, W.; Liu, Y.; Liu, J.; Wang, M.; Liu, Q. Chem. - Eur. J. 2013, 19, 9104. (c) Zheng, G.; Ma, X.; Li, J.; Zhu, D.; Wang, M. J. Org. Chem. 2015, 80, 8910.

(13) (a) Song, X.; Chang, J.; Zhu, D.; Li, J.; Xu, C.; Liu, Q.; Wang, M. Org. Lett. **2015**, *17*, 1712. (b) Chang, J.; Song, X.; Huang, W.; Zhu, D.; Wang, M. Chem. Commun. **2015**, *51*, 15362. (c) Song, X.; Tian, S.; Zhao, Z.; Zhu, D.; Wang, M. Org. Lett. **2016**, *18*, 3414.

(14) CCDC 1521772 contains the supplementary crystallographic data for **2a** for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. uk/data request/cif.

(15) $\overline{2ac'}$ was formed by further difluorocyclopropanation, ring opening, and defluorination of the acetyl group of 2ac.

(16) **2ac**" was formed by further difluorocyclopropanation, ring opening, and protonation of the acetyl group of **2ac**.

(17) Fuchibe, K.; Takayama, R.; Yokoyama, T.; Ichikawa, J. Chem. -Eur. J. 2017, 23, 2831.