

Tetrahedron Letters 44 (2003) 4953-4956

TETRAHEDRON LETTERS

Synthesis of α -amino γ -butyrolactone derivatives by aziridination of α -ylidene γ -butyrolactones

Tecla Gasperi,^{a,b} M. Antonietta Loreto,^{a,b,*} Paolo A. Tardella^a and Elisabetta Veri^a

^aDipartimento di Chimica, Università 'La Sapienza', P. le Aldo Moro 5, I-00185 Roma, Italy ^bIstituto C.N.R. di Chimica Biomolecolare, Sezione Roma, Dipartimento di Chimica, Università 'La Sapienza', Roma, Italy

Accepted 12 May 2003

Abstract—The reactions of exocyclic α , β -unsaturated γ -lactones with NsONHCO₂Et and CaO produce *N*-(ethoxycarbonyl) spiroaziridino γ -lactones. By reaction with acetic acid these products give ring opening reaction and acetylated *N*-protected α -amino γ -butyrolactones are obtained. The ring opening reaction is quantitative and highly regioselective. © 2003 Elsevier Science Ltd. All rights reserved.

Aziridines are versatile synthetic intermediates for the synthesis of many biologically active molecules such as antitumor agents,¹ cysteine protease² or squalene synthase inhibitors.³ The ability of aziridines to undergo highly regio and stereoselective ring opening reactions gives them a great value in the field of amino acids, heterocycles and alkaloids.⁴ Spiroaziridines are investigated to obtain functionalized branched-chain amino derivatives.⁵ In recent years our research group has focused attention on the use of the ethyl N-{[(4-nitrobenzene)sulphonyl]oxy}carbamate (NsONHCO₂Et)⁶ in the presence of an inorganic insoluble base, such as CaO in CH₂Cl₂ to aziridinate electron poor olefins such as α,β -unsaturated carboxylates⁷ and phosphonates.⁸ Now we are interested to obtain spiroaziridines from exocyclic α,β -unsaturated γ -lactones 2, and to investigate the ring opening reaction to get amino lactone derivatives.

The scaffold of these compounds, homoserine lactones, is a common feature in certain biological analogs including immunosuppressant, antiallergy and antineoplastic agent.⁹ Furthermore α -amino γ -lactones are precursors of several non-proteinogenic amino acids and building blocks of polypirrolynone asymmetric synthesis.¹⁰

 α -Ylidene γ -lactones 2 were synthesized by the Horner– Wadsworth–Emmons procedure, starting from the α diethoxyphosphonyl- γ -butyrolactone 1¹¹ and different aldehydes or ketones,^{12,13} using K₂CO₃ as base. The substrates 2b, 2f and 2c, 2e were obtained as mixtures of *E* and *Z* isomers easily separated by flash chromatography on silica gel.

The aziridination reactions were carried out adding NsONHCO₂Et and CaO portionwise, reaching the molar ratio reported in Table 1. Starting from substrates 2a-e,

Entry	R_1	R_2	Molar ratio 2: NsONHCO ₂ Et:CaO	Products and yield (%) ^a
2a	Н	Н	1:2:2	3a (39%)
2b (<i>E</i>)	CH ₃	Н	1:3:3	3b (45%)
2c (<i>E</i>)	CH ₂ (CH ₂) ₃ CH ₃	Н	1:5:5	3c (47%)
2d (<i>E</i>)	Ph	Н	1:5:5	3d (60%)
2e	CH ₃	CH ₃	1:3:3	3e (52%)
2f (Z)	CH ₃	Н	1:3:3	3f (42%)+ 3b (39%)
2g (Z)	CH ₂ (CH ₂) ₃ CH ₃	Н	1:5:5	3g (28%)+ 3c (24%)

Table 1. Aziridination of α -ylidene γ -butyrolactones 2

^a Yield of isolated, purified products.

* Corresponding author. Tel.: +39 06 49913668; fax: +39 06 490631; e-mail: mariaantonietta.loreto@uniromal.it

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01166-3

Scheme 1.

only one *N*-(ethoxycarbonyl)spiroaziridine (**3a**–**e**) was obtained, while aziridination of **2f** and **2g** led to two *N*-protected diastereomeric spiroaziridines in the ratio 1:1 (**3f** and **3b**, **3g** and **3c**, Scheme 1). The products were isolated by chromatography on silica gel and characterized by GC–MS, IR, ¹H, ¹³C NMR analysis.¹⁴ Also using ethyl *N*-[(trifluoromethanesulfonyl)oxy]-carbamate¹⁵ as an aminating agent, it was possible to obtain the *N*-(ethoxycarbonyl)spiroaziridine **3a** in good yield from **2a**.

The hypothesis that aziridine ring opening¹⁶ gives amino lactones, led us to test the reactivity with a nucleophile such as AcOH.¹⁷ Compounds **3a**–g were allowed to react with acetic acid at 80°C.¹⁸ The ring opening reactions for **3a–c** and **3e–g** seemed to be quantitative giving only the acetylated *N*-protected α amino γ -butyrolactones **4a–c** and **4e–g**. From spectral data **4b** and **4f** appear to be different stereomers as well as **4c** and **4g**.

Even if a mixture of compounds was obtained starting from 3d, the α -amino γ -butyrolactones 4d was isolated as the main product (80%). This clearly shows that the ring opening reaction is regioselective and stereo-selective.

All products **4** have been characterized by GC–MS, IR, ¹H, ¹³C NMR analysis and spectroscopic data are in agreement with the reported structure.¹⁹

Our first attempts at reductive ring opening of **3** by catalytic transfer hydrogenation in the presence of 10% Pd(0)/C and ammonium formate^{16h} was successful for aziridines **3a**, **3d** and **3e** giving as single products the

N-(ethoxycarbonyl) α -amino γ -butyrolactones **5a**, **5d** and **5e**.²⁰

We tested aziridination on *endocyclic* α , β -unsaturated γ -lactones such as **6**, known to be unreactive toward other aminating agents.²¹ Compounds **6a–b** gave only traces of aziridines though the molar ratio substrate:NsONHCO₂Et:CaO reached 1:6:6. Meanwhile **6c** showed a good reactivity in the presence of 5 equiv. of reagent **1** and the base. The aziridine **7c** was isolated in a yield of 30% (Scheme 2).²²

In conclusion, an efficient synthesis of *N*-(ethoxycarbonyl)spiroaziridino- γ -lactones has been developed based on the reaction with NsONHCO₂Et of α -ylidene γ -butyrolactones. The following regioselective and stereoselective ring opening reaction leads to α -amino γ -butyrolactone derivatives, biologically interesting molecules. Efforts to extend the scope of this process to chiral α -ylidene γ -butyrolactones are currently in progress. Moreover we are pursuing studies on the aziridination reaction by different aminating reagent.

Scheme 2.

General procedure. For compounds 3 and 6c. To a stirred solution of the substrate 2 (10.2 mmol) in 2.0 mL of CH_2Cl_2 , NsONHCO₂Et (10.2 mmol, 1 equiv.) and CaO were added every hour, reaching the molar ratio substrate:NsONHCO₂Et:CaO reported in Table 1. Because the reaction is exothermic, during the addition the flask was cooled in a water bath to avoid overheating. After 6 h, 10 mL of hexane was added. After filtration, the organic mixture containing the aziridine 3 was concentrated in vacuo. The product was isolated by flash chromatography on silica gel (hexane:ethyl acetate) in the yields reported in Table 1.

For compounds 4: The aziridines 3 were stirred at 80° C in the presence of acetic acid as a solvent. Different substrates needed different heating times to reach the complete conversion.¹⁸ The reaction mixture was evaporated under reduced pressure, and then CHCl₃ was added. The organic layer was washed with a saturated solution of NaHCO₃ then dried over Na₂SO₄. After the work-up, the solvent was evaporated in vacuo giving the products 4.¹⁹

Acknowledgements

We thank the Italian Ministero dell'Istruzione dell'Università e della Ricerca (MIUR), the University 'La Sapienza' of Rome (National Project 'Stereoselezione in Sintesi Organica. Metodologie e Applicazioni') and Consiglio Nazionale delle Ricerche (CNR) for financial support.

References

- de Saint-Fuscien, C.; Tarrade, A.; Dauban, P.; Dodd, R. H. *Tetrahedron Lett.* 2000, 41, 6393–6397 and references cited therein.
- 2. Schirmeister, T. J. Med. Chem. 1999, 42, 560-572.
- Koohang, A.; Coates, R. M.; Owen, D.; Poulter, C. D. J. Org. Chem. 1999, 64, 6–7.
- 4. McCoull, W.; Davis, F. A. Synthesis 2000, 1347-1365.
- Alves, R. J.; Castillon, S.; Dessinges, A.; Herczegh, P.; Lopez, J. C.; Lukas, G.; Olesker, A.; Thang, T. T. J. Org. Chem. 1988, 53, 4616–4618.
- Lwowski, W.; Maricich, T. J. J. Am. Chem. Soc. 1965, 3630–3637.
- Carducci, M.; Fioravanti, S.; Loreto, M. A.; Pellacani, L.; Tardella, P. A. *Tetrahedron Lett.* **1996**, *37*, 3777–3778.
- Fazio, A.; Loreto, M. A.; Tardella, P. A. *Tetrahedron* Lett. 2001, 42, 2185–2187.
- deSolms, S. J.; Giuliani, E. A.; Graham, S. L.; Koblan, K. S.; Kohl, N. E.; Mosser, S. D.; Oliff, A. I.; Pompiliano, D. L.; Rands, E.; Scholz, T. H.; Wiscount, C. M.; Gibbs, J. B.; Smith, R. L. J. Med. Chem. 1998, 41, 2651–2656.
- Smith, A. B., III; Liu, H.; Hirschmann, R. Org. Lett. 2000, 2, 2037–2040.
- (a) Murphy, J. A.; Rasheed, F.; Roome, S. J. J. Chem. Soc., Perkin Trans. 1 1998, 2331–2340; (b) Brill, T. B.; Landon, S. J. Chem. Rev. 1984, 84, 577–585.

- (a) Lee, K.; Jackson, J. A.; Wiemer, D. F. J. Org. Chem.
 1993, 58, 5967–5971; (b) Rambaud, M.; Del Vecchio, A.;
 Villieras, J. Synth. Commun. 1984, 833–841.
- (a) Beji, F.; Besbes, R.; Amri, H. Synth. Commun. 2000, 21, 3947–3954; (b) Minami, T.; Niki, I.; Agawa, T. J. Org. Chem. 1974, 39, 3236–3238; (c) Henning, R.; Hoffmann, H. M. R. Tetrahedron Lett. 1982, 23, 2305–2308.
- 14. Spectral data: **3a**: ¹H NMR (200 MHz, CDCl₃): δ 1.26 (t, 3H, CH_2CH_3); 2.51 (d, 1H, CHN, J=1.2 Hz); 2.38–2.67 (m, 2H, OCH₂CH₂); 2.81 (d, 1H, CHN, J = 1.2 Hz); 4.18 (q, 2H, CH_2CH_3); 4.43–4.65 (m, 2H, OCH_2CH_2); ¹³C NMR (50 MHz, CDCl₃): 14.2, 26.8, 36.3, 42.0, 63.1, 65.6, 159.9, 172.8; IR: (CCl₄): 1794, 1748 cm⁻¹; GC–MS: m/z185 [M⁺] (<1%), 69 (100%). **3b**: ¹H NMR: δ 1.21 (t, 3H, CH_2CH_3 ; 1.29 (d, 3H, CHCH₃, J=5.6 Hz); 2.31–2.43 (m, 2H, OCH₂CH₂); 2.95 (q, 1H, CHN, J=5.6 Hz); 4.12 (q, 2H, CH₂CH₃); 4.36–4.64 (m, 2H, OCH₂CH₂); ¹³C NMR: 14.1, 14.2, 24.1, 42.0, 45.8, 62.7, 65.7, 159.9, 173.0; IR: 1785, 1749 cm⁻¹; GC–MS: m/z 199 [M⁺] (<1%), 54 (100%). **3c**: ¹H NMR: δ 1.25 (t, 3H, CH₂CH₃); 1.20–1.64 (m, 11H, CH₂(CH₂)₃CH₃); 2.26–2.34 (m, 2H, OCH₂CH₂); 2.91 (t, 1H, CHN, J = 5.6 Hz); 4.17 (q, 2H, OCH₂CH₃); 4.37–4.67 (m, 2H, OCH₂CH₂); ¹³C NMR: 13.8, 14.1, 22.1, 24.4, 26.4, 29.0, 31.1, 45.8, 46.7, 62.7, 65.0, 65.7, 159.9, 173.0; IR: 1790, 1735 cm⁻¹ GC-MS: *m*/*z* 255 [M⁺] (7.2%), 55 (100%). **3d**: ¹H NMR: δ 1.29 (t, 3H, CH₂CH₃); 1.97 (ddd, 1H, OCH₂CHH, J=5.0, 8.6, 14.0 Hz); 2.44 (ddd, 1H, OCH₂CH*H*, *J*=7.0, 9.2, 14.0 Hz); 4.05 (s, 1H, CHN); 4.25 (q, 2H, CH_2CH_3); 4.21–4.40 (m, 1H, OCHHCH₂); 4.57 (ddd, 1H, OCHHCH₂, *J*=5.0, 9.2, 9.2 Hz); 7.27–7.44 (m, 5H, CH arom.); ¹³C NMR: 14.2, 23.8, 48.6, 48.7, 63.2, 65.6, 127.1, 128.6, 128.7, 132.9, 159.5, 172.2; IR: 1785, 1735 cm⁻¹ GC–MS: m/z 261 [M⁺] (<1%), 173 (100%). 3e: ¹H NMR: 1.23 (t, 3H, CH₂CH₃); 1.35 (s, 3H, CCH₃); 1.55 (s, 3H, CCH₃); 2.33 (ddd, 1H, OCH₂CHH, J=4.7, 8.1, 13.8 Hz); 2.50-2.67 (m, 1H, OCH₂CHH); 4.14 (q, 2H, CH₂CH₃); 4.18–4.40 (m, 1H, OCHHCH₂); 4.50 (ddd, 1H, OCHHCH₂, J=4.7, 9.0, 9.0 Hz); ¹³C NMR: 14.3, 16.4, 22.4, 25.1, 47.5, 48.3, 62.2, 64.6, 157.8, 171.7; IR: 1781, 1730 cm⁻¹ GC–MS: m/z 213 $[M^+]$ (<1%), 140 (100%). **3f**: ¹H NMR: 1.28 (t, 3H, CH_2CH_3); 1.49 (d, 3H, CHC H_3 , J=5.7 Hz); 2.17 (ddd, 1H, OCH₂CH*H*, *J*=3.4, 7.3, 13.5, Hz); 2.73–2.90 (m, 1H, OCH₂CHH); 2.87 (q, 1H, CHCH₃, J = 5.7 Hz); 4.19 (q, 2H, CH_2CH_3); 4.42 (ddd, 1H, OCHHCH₂, J=7.3, 9.2, 9.2 Hz); 4.56 (ddd, 1H, OCHHCH₂, J = 3.4, 9.2, 9.2 Hz); ¹³C NMR: 11.6, 14.3, 26.4, 44.6, 45.1, 62.8, 65.0, 159.1, 171.3; IR: 1788, 1723 cm⁻¹; GC-MS: *m*/*z* 199 [M⁺] (0.3%), 54 (100%). **3g**: ¹H NMR: 1.28 (t, 3H, OCH₂CH₃); 1.22-1.68 (m, 11H, CH₂(CH₂)₃CH₃); 2.11 (ddd, 1H, OCH₂CHH, J=3.0, 7.1, 13.3, Hz); 2.69–2.96 (m, 1H, OCH₂CHH); 4.19 (q, 2H, CH₂CH₃); 4.44 (ddd, 1H, OCHHCH₂, J=7.0, 9.2, 9.2 Hz); 4.56 (ddd, 1H, OCHHCH₂, J=3.0, 9.2, 9.2 Hz); ¹³C NMR; 13.8, 14.1, 22.1, 24.4, 26.4, 29.0, 31.1, 45.8, 46.7, 62.7, 65.0, 65.7, 159.9, 173.0; IR: 1788, 1731 cm⁻¹ GC–MS: *m*/*z* 255 [M+] (7.2%), 55 (100%).
- Tamura, Y.; Ikeda, H.; Mukai, C.; Morita, I.; Ikeda, M. J. Org. Chem. 1981, 46, 1732–1734.
- (a) Seebach, D.; Matthews, J. L. J. Chem. Soc., Chem. Commun. 1997, 2015–2022; (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180; (c) Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6,

905–925; (d) Legters, J.; Willems, J. G. H.; Thijs, L.; Zwanenburg, B. *Recl. Trav. Chim. Pays-Bas* 1992, 111, 59–68; (e) Baldwin, J. E.; Adlington, R. M.; Robinson, N. G. J. Chem. Soc., Chem. Commun. 1987, 153–155; (f) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599– 619; (g) Baldwin, J. E.; Adlington, R. M.; O'Neil, A.; Schofield, C.; Spivey, A. C.; Sweeney, J. B. J. Chem. Soc., Chem. Commun. 1989, 1852–1854; (h) Kim, D. Y.; Rhie, D. Y. Tetrahedron 1997, 13603–13608.

- 17. Takeuchi, H.; Koyama, K. J. Chem. Soc., Perkin Trans. 2 1981, 121–126.
- 18. 3a: 15 h; 3b: 45 h; 3c: 30 h; 3d: 7 h; 3e: 15 h; 3f: 95 h; 3g: 25 h.
- 19. For example: 4b: ¹H NMR: 1.24 (t, 3H, CH₂CH₃); 1.35 (d, 3H, CHCH₃, J=6.4 Hz); 2.08 (s, 3H, CH₃CO); 2.50 (ddd, 1H, OCH₂CHH, J=3.5, 7.9, 13.6 Hz); 2.61–2.85 (m, 1H, OCH₂CHH); 4.12 (q, 2H, CH₂CH₃); 4.20–4.40 (m, 1H, OCHHCH₂); 4.50 (ddd, 1H, OCHHCH₂, J=3.4, 9.2 Hz); 5.15 (q, 1H, CHCH₃, J=6.4 Hz); 5.27 (br s, 1H, NH); ¹³C NMR; 14.4, 14.7, 20.9, 29.8, 61.6, 62.0, 65.5, 70.8, 155.2, 169.5, 174.5; IR: 3421, 1794, 1755, 1723 cm⁻¹;

GC–MS: m/z 259 [M⁺] (<1%), 173 (100%). 4f: ¹H NMR: 1.25 (t, 3H, CH₂CH₃); 1.31 (d, 3H, CHCH₃, J=6.5 Hz); 2.11 (s, 3H, CH₃CO); 2.50–2.72 (m, 2H, OCH₂CH₂); 4.11 (q, 2H, CH₂CH₃); 4.19–4.35 (m, 1H, OCHHCH₂); 4.40– 4.59 (m, 1H, OCHHCH₂); 5.30 (q, 1H, CHCH₃, J=6.5 Hz); 5.60 (br s, 1H, NH); ¹³C NMR; 14.4, 15.0, 21.8, 61.5, 62.0, 66.1, 72.0, 155.2, 170.9, 175.1; IR: 3424, 1780, 1752, 1725 cm⁻¹; GC–MS: m/z 259 [M⁺] (0.2%), 173 (100%).

- 20. For example: 5d: ¹H NMR: 1.25 (t, 3H, CH₂CH₃); 2.54–2.80 (m, 2H, OCH₂CH₂), 3.05 (d, 1H, CHHPh, J=13.2 Hz), 3.17 (d, 1H, CHHPh, J=13.2 Hz), 4.12 (q, 2H, CH₂CH₃); 4.16–4.32 (m, 2H, OCH₂CH₂); 5.26 (br s, 1H, NH); 7.16–7.40 (m, 5H, CH arom.). GC–MS: *m*/*z* 263 [M⁺] (0.2%), 100 (100%).
- 21. Atkinson, R. S.; Tughan, G. J. Chem. Soc., Perkin Trans. 1 1987, 2787–2802.
- 22. **7c**: ¹H NMR: 1.27 (t, 3H, CH₂CH₃); 1.59 (s, 3H, CCH₃); 3.50 (d, 1H, OCH₂CH, J=2.6 Hz); 4.05 (q, 2H, CH₂CH₃); 4.12–4.38 (m, 2H, OCH₂CH); GC–MS: m/z 185 [M⁺] (0.2%), 68 (100%).