
Subscriber access provided by the University of Exeter

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Intermolecular Allene Functionalization by Silver-Nitrene Catalysis
Manuel R. Rodríguez, Maria Besora, Francisco Molina,

Feliu Maseras, M. Mar Diaz-Requejo, and Pedro J. Pérez
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.0c04395 • Publication Date (Web): 26 Jun 2020

Downloaded from pubs.acs.org on June 27, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



Intermolecular Allene Functionalization by Silver-Nitrene 
Catalysis
Manuel R. Rodríguez,a María Besora,b,c Francisco Molina,a Feliu Maseras,b,d,* M. Mar Díaz-
Requejo,a,* and Pedro J. Péreza,*
aLaboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química 
Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
bInstitute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans, 16, Barcelona Institut of Science and 
Technology, 43007 Tarragona, Spain
cDepartament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
dDepartament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

KEYWORDS : allene aziridination, allene C-N bond formation, intermolecular nitrene transfer, silver 
catalysis, azetidines, aminocyclopropanes, methylene aziridines

ABSTRACT: Under silver catalysis conditions, using [Tp*,BrAg]2 as the catalyst precursor, allenes react with 
PhI=NTs in the first example of efficient metal-mediated intermolecular nitrene transfer to such substrates. 
The nature of the substituent at the allene seems crucial for the reaction outcome since arylallenes are 
converted into azetidine derivatives whereas methylene aziridines are the products resulting from 
alkylallenes. Mechanistic studies allow proposing that azetidines are formed through unstable 
cyclopropylimine intermediates which further incorporates a second nitrene group, both processes being 
silver-mediated. Methylene aziridines from alkylallenes derive from catalytic nitrene addition to the allene 
double bonds. Both routes have resulted productive for further synthetic transformations affording 
aminocyclopropanes.

INTRODUCTION 
Among the catalytic methods developed in the last 
decades for the generation of carbon-nitrogen bonds, the 
metal-induced transfer of nitrene ligands to saturated or 
unsaturated substrates has emerged as a powerful tool 
toward that end.1 The transient metallonitrene 
intermediates2 are frequently generated in situ upon 
reaction of the metal catalyst with azide, iminoiodonane 
or a mixture of amine and an oxidant. In this manner, a 
number of compounds such as aziridines or amines, 
among others, both in inter- or intramolecular 
transformations, have been prepared (Scheme 1), as a 
consequence of the addition or insertion of the nitrene 
unit to C=C or C-H bonds, respectively.

Allenes have also been studied as substrates in this 
context, albeit to date metal-catalyzed examples are 
reduced to intramolecular processes.3 Intermolecular 
transformations are only known for free nitrene 
processes, lacking of any chemo- or regiocontrol.4 First 
examples of the former appeared in 2010 when Blakey5 
and Robertson6 independently reported the rhodium-
catalyzed amination of sulfamate-containing allenes 
leading to aminocyclopropanes (Scheme 2a), using 
PhI(OR)2 as the oxidant. The use of allenyl carbamates 
instead of sulfamates provided, under similar reaction 
conditions and rhodium catalysis, methylene aziridines 
instead of aminocyclopropanes.7 From those initial 
findings, the group of Schomaker8 has propelled this 
allene functionalization chemistry, not only with rhodium 
but also with silver-based catalysts, leading to methylene 
aziridines en route to a number of derivatives (Scheme 
2b). Inspired by these precedents, and the lack of 
intermolecular examples for allene functionalization with 
the nitrene transfer methodology, we have focused on 
such goal. Our group has investigated over the years the 

Scheme 1. The metal-catalyzed nitrene transfer 
reaction. 

R-N3

R-NH2 / Oxidant

[LnM=NR]
LnM

C=C

C-H

C C
N
R

C
N

R
H

R-N=IAr

Page 1 of 12

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



development of copper- and silver-based catalysts for the 
incorporation of nitrene units to organic substrates, 
either the addition to double9 or triple10 carbon-carbon 
bonds or the insertion into C-H bonds,11 among others.12 
Herein we report the results obtained with allenes as the 
substrates and PhI=NTs (Ts = p-toluensulfonyl) as the 
nitrene source (Scheme 2), in the first effective catalytic 
system for the functionalization of such unsaturated 
molecules by metal-induced nitrene addition. 
Interestingly, we have found that the nature of the 
substituents of the allenes exerts a decisive control in the 
reaction outcome, leading to azetidines or methylene 

aziridines from aryl- and alkyl-substituted allenes, 
respectively. A mechanistic proposal is presented based 
on experimental data and computational calculations.

RESULTS AND DISCUSSION

Functionalization of phenylallene: the probe 
reaction. We first studied the reaction of phenylallene 
with PhI=NTs in the presence of [Tp*,BrAg]2 as catalyst, 
given the already described performance of this silver 
complex in intermolecular nitrene transfer processes.9-11 
When a 1:40:400 mixture of 
[Tp*,BrAg]2:PhI=NTs:phenylallene (0.005 mmol of catalyst 

employed) was stirred at room temperature for 2 h in 
CH2Cl2, a smooth reaction took place as inferred from the 
gradual incorporation of insoluble PhI=NTs into the 
solution. After that time the volatiles were removed and 
the crude was investigated by NMR, showing deceptively 
simple spectra. The 1H NMR spectrum contained (see SI), 
in addition to two inequivalent sets of resonances typical 
of the tosyl (toluensulfonyl) groups, an ABX spin system, 
corresponding to a CH-CH2- unit, indicating a substantial 
modification of the initial 3H pattern in the starting 
allene substrate. Only when single crystals were grown 
the structure of this new compound 1 was identified by X-
ray studies as that of (E)-4-methyl-N-(4-phenyl-1-
tosylazetidin-2-ylidene)benzenesulfonamide, derived 
from the incorporation of two NTs groups to the allene 
molecule, which has undergone a shift of two H atoms 
from their initial location (Scheme 3). To our knowledge, 
there is no precedent of the formation of this type of 
compounds from allenes in the context of nitrene 
transfer.

After this finding, we performed a study toward 
catalyst screening, with phenylallene and PhI=NTs, 
employing several Cu-, Ag- and Au-complexes with Tpx 

(hydrotrispyrazolyborate) or NHC (N-heterocyclic 
carbene) ligands, among others. Additionally, we also 
selected Rh2(OAc)4 in view of the previously described 
catalytic activity in the intramolecular nitrene transfer 
reactions to allenes.5-8 The results are shown in Figure 1. 
Regarding copper-based catalysts, CuI and IPrCuCl 
revealed essentially no catalytic activity, with product 
being either not observed or within the detection limit by 
NMR. Similar behavior was observed with the 
TpMsCu(THF) catalyst, which was largely surpassed by 
complexes Tp*Cu(MeCN) and TpBr3Cu(MeCN), showing 
the TpMs < Tp*< TpBr3 activity trend. Since the order of 
electronic density at copper for the TpxCu cores is Tp* < 
TpMs< TpBr3, we interpret that (a) the steric pressure of the 
TpMs ligand does not favor this transformation and (b) the 
more electron deficient metal centers favor the 
transformation. Also, gold- and rhodium-based catalysts 
turned out to be practically inactive for this 
transformation, unlike the excellent results obtained with 
the latter in the intramolecular transformations 

Figure 1. Catalyst screening for the nitrene transfer 
reaction onto phenylallene.
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Scheme 2. Allene functionalization by metal-
catalyzed nitrene transfer reactions.
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mentioned above. Finally, among the silver-based 
catalysts selected, the [Tp*,BrAg]2 complex revealed the 
best activity. The structure of this complex is dinuclear,13 
albeit in solution it equilibrates with mononuclear 
Tp*,BrAg units available for catalysis. The perbromo 
analog [TpBr3Ag]2 was at variance inactive, in line with the 
behavior of both complexes in previous studies regarding 
alkane amidation reactions.11c 

The use of solvents previously described in rhodium 
intramolecular allene functionalization such as tBuCN or 
isopropylacetate were not useful with our silver catalysts: 
the nitrile blocked the transformation, very likely due to 
coordination to the metal center, whereas the acetate 
only led to 18% yield.

Scope of the reaction of allenes with PhI=NTs: 
substrate control of the selectivity. Under the 
optimized conditions (see SI for all variables studied), the 
scope of the reaction has been extended to different 
allenes, a first group bearing an aryl group located at C1. 
The results are displayed in Table 1. The presence of a Me 

substituent in the phenyl group led to the corresponding 
azetidines 2-4 (Table 1, entries 2-4), with yields following 
the trend para> meta>ortho, indicating some steric 
hindrance of such group in the reaction outcome. In the 
case of introducing an electron withdrawing substituent 
in the aryl ring, such as Cl- or F-, the yields in azetidines 5 
and 6 were 36% and 20%, respectively (Table 2, entries 5-
6). In line with this electronic effect, the OMe derivative 
was highly reactive, giving rise to a mixture of products 
where azetidine 7 was present only in 16% yield (Table 1, 
entry 7). 1,1-Disubstituted allenes were also screened but 
the expected azetidines were formed in very low yields. In 
all cases, except for the OMe derivative, the mass balance 
was completed with TsNH2 formed from initial 
PhI=NTs.14 

A second group of allenes investigated contains an 
alkyl substituent instead an aryl one (Scheme 4). Under 
the same reaction conditions, hexylallene showed a 
completely distinct behavior compared with the previous 
arylallenes. NMR studies of the reaction crude showed 
two sets of resonances which have been identified as the 
methylene aziridines 10a and 10b in 80:20 ratio 
respectively, and with a yield of 40% (TsNH2 accounted 
for 100% initial PhI=NTs). Both compounds 10a and 10b 

result from the respective metal-induced addition of the 
nitrene unit NTs to the internal or terminal double bond, 
respectively.

The substrate scope of this latter transformation was 
next examined with a series of aliphatic allenes (Scheme 
4). Moderate to good yields (30-70%) were obtained for 
the array of substrates selected. Using a symmetric allene 
(R1 = R2 = nPr), the methylene aziridine 11 was obtained 
with a yield of 65%. The benzyl derivative was less 

Table 1. Scope of the reaction of PhI=NTs and aromatic 
allenes using [Tp*,BrAg]2 as catalyst.a
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aReactions carried out at room temperature with 0.005 mmol of 
catalyst, 40 equiv of PhI=NTs and 400 equiv of allene in 6 mL of 
CH2Cl2. Reaction time: 2 h. bDetermined by NMR using 1,3,5-
trimethoxybenzene as internal standard. TsNH2 accounted for 
100% of initial PhI=NTs not converted in azetidine. cStructure 
confirmed by X-ray studies (see SI). dLow yield precluded full 
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Scheme 4. Scope of the reaction of PhI=NTs and 
aliphatic allenes using [Tp*,BrAg]2 as catalyst.[a]
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reactive whereas the cyclic symmetrical cyclonone-1,2-
diene led to the cyclic methylene aziridine 13, for which 
single crystal were grown allowing the determination of 
the solid-state structure by X-ray studies (Scheme 4). 
However, disubstitution at C1 or substitution with an 
electron withdrawing group such as CO2Et inhibited this 
transformation. These conversions of allenes into 

azetidines and methylene aziridines are the first examples 
of metal-catalyzed routes leading to such compounds in 
an intermolecular fashion. 

Mechanistic precedents and proposal. Previous work 
from our group9,15 with the TpxAg core (from dinuclear 
[TpxAg]2)13 in olefin aziridination reactions has shown that 
the process starts with the formation of a triplet nitrene 
TpxAg-NTs which further interacts with the olefin en 
route to the formation of the aziridine, in a 
stereoretentive transformation. In view of these 
precedents and the related work from the group of 
Schomaker,3,8 it seems reasonable proposing the 
formation of a mixture of methylene aziridines as the 
result of the Ag-catalyzed transfer of the NTs group to 
both inequivalent C=C bonds in the allenes (Scheme 5a). 
These results are in agreement with the reaction outcome 

for alkyl-substituted allenes, either mono or disubstituted 
(Scheme 4), but not with that observed for arylallenes 
(Scheme 3), where azetidines have been generated. 
However, we must recall independent work by Risler16 
and Shipman17 on the stability of methylene aziridines. 
Risler demonstrated that N-alkyl methylene aziridines 
thermally convert into cyclopropylimines at high 
temperatures (Scheme 5b). Also, isomerization of 
methylene aziridines occurs under the reaction 
conditions. Shipman later demonstrated that N-aryl 
methylene aziridines undergo such conversion at lower 
temperatures (Scheme 5c), but the presence of alkyl 
groups in the alkenyl fragment blocks the formation of 
the cyclopropylimine. The effect of the N-substituent and 
the C-substituent can be explained by the stabilization 
induced by R and R’ in the either diradical or zwiterionic 
nature of the intermediate (Scheme 5d).

Based on the pieces of information available, we 
believe that Scheme 6 contains a reasonable initial, yet 
incomplete explanation of the reaction of allenes and 
PhI=NTs. In a first step, mixtures of methylene aziridines 
are formed similarly to already described olefin 
aziridination with this family of catalysts.9,15 Those formed 
from alkylallenes should be stable at room temperature, 
according with literature precedents. However, the 
presence of aryl substituents, along with the Ts group 
located at nitrogen could favor the formation of 
cyclopropylimines in this case. Thus, such 
cyclopropylimines should be available at room 
temperature and trapping with nucleophiles such as 
alcohols could be observable (vide infra). Finally, the 
formation of the azetidines from arylallenes should be 
explained along a pathway involving cyclopropylimine 
intermediates and another NTs group transferred through 
the silver center.

Scheme 5. Mechanistic considerations.
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Trapping of cyclopropylimines intermediates. 
Following the previous reasoning, we studied the reaction 
of 1-arylallenes with PhI=NTs, under the same conditions 
commented for the generation of azetidines (see Table 1) 
but using one equiv of an alcohol relative to the allene. 
Azetidines were no longer observed, but the series of 
aminocyclopropanes 14-23 instead (Scheme 7). 

Substitution at aryl group as well as several alcohols 
such as methanol, ethanol or propargyl alcohol verified 
this transformation. On the contrary, phenol or 2-
bromoethanol did not provide any conversion. The 
molecular structures of several aminocyclopropanes were 
determined by X-ray studies (Scheme 7), demonstrating 

that the aryl and amide groups occupy mutually cis 
positions in all cases except for the tetrasubstituted 17. 1H 
NMR data show nearly identical chemical shifts for the 
methylene protons of the cyclopropane rings, the only 
distinct pattern being observed for compound 17. 

When moving to alkylallenes, we first employed 1-
hexylallene and cyclonone-1,2-diene as substrates, 
operating under the same reaction conditions than those 
leading to methylene aziridines, but in the presence of 
additional MeOH. NMR studies of the reaction mixtures 
carried out after PhI=NTs consumption revealed the 
formation of the methylene aziridines. It seems that at 
variance with the aryl system, the methylene aziridines 
derived from alkylallenes do not suffer isomerization into 
cyclopropylimines at room temperature. Taking advantage 
of the availability of methylene aziridine 13 as an isolated 
compound, we found that the corresponding 
aminocyclopropane 20 could be formed upon heating at 
75 °C in the presence of methanol. Several nucleophiles 
(Scheme 8) such as alcohols, water, sulfides and amines 
could be incorporated into the aminocyclopropanes 24-28 
in very good yields (80-95%).

We interpret the formation of aminocyclopropanes 14-
28 as an evidence of the formation of cyclopropylimines 
from the methylene aziridine precursors. Data collected 
at this stage supports the proposal in Scheme 6 that the 
methylene aziridines from arylallenes are not stable at 
room temperature and convert into cyclopropylimines 
whereas when using alkylallenes the methylene aziridines 
are stable at room temperature and require heating to 
induce cyclopropylimine formation. 

DFT studies. We first analyze computationally the 
reaction of arylallene and alkylallene and PhI=NTs 
induced by the silver catalyst Tp*,BrAg. Calculations 
presented in this section are done with the B3LYP-D3 
functional including dichloromethane solvent effects 
through a continuum model. We have previously used a 
similar methodology with this type of catalysts achieving 

Scheme 8. Aminocyclopropanes from methylene 
aziridine 13.a
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Scheme 7. Direct Synthesis of Amino-
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good results.18 All reported energies correspond to Gibbs 
free energies in kcal mol-1. Further data on the method for 
the calculations are supplied in the Computational 
Details.

The silver fragment Tp*,BrAg is known to react with 
PhI=NTs to form metallonitrenes.9a,b,19 The ground state 
of the metallonitrene complex R1 (Scheme 9) is a triplet, 
located 5.9 kcal mol-1 below the corresponding singlet, 
and 16.5 kcal mol-1 below Tp*,BrAg and NTs as separate 
molecules.9a,b

The initial reactivity of complex R1 is outlined in 
Scheme 9. The nitrene center in R1 can attack the 
phenylallene R2 at three different positions: a) at the less 
substituted terminal carbon (=CH2), b) at the phenyl 
substituted terminal carbon (=CHPh), and c) at the 
phenylallene central carbon (=C=). We have computed 
the transition states corresponding to each of the attacks: 
TS1a, TS1b and TS1c, respectively. The barriers 
corresponding to the attack to terminal carbons are quite 
low (9.4 and 8.0 kcal mol-1 from adduct I1cT to TS1aT and 
TS1bT) but cannot compete with the attack to the central 
carbon of the allene, which is clearly the preferred 
process. Transition state TS1cT has an associated barrier 
of only 1.4 kcal mol-1. 

Transition states TS1aT, TS1bT and TS1cT evolve 
through multistep processes, see Scheme 9. The triplet 

intermediates with the new C-N bond formed (I2aT, I2bT 
and I2cT) will cross to the singlet energy surface through 
the corresponding MECPs (MECP1a, MECP1b and 
MECP1c ) and form intermediates I2aS, I2bS and I2cS. I2aS 

and I2bS present already a new C-C bond and correspond 
to the metal-coordinated forms of products P1 and P2, 
respectively. For I2cS, located in the lowest barrier favored 
path, several steps must take place before product P3 is 
reached. A very low energy transitions state leads to the 
I3S intermediate, containing a 5-member ring which 
involves the three carbons in the starting allene and the 
Ts group attached to the nitrene center. The cleavage of 
this ring leads to the formation of a new C-C bond and 
ultimately to the P3 product. These are very exergonic 
processes, thus completely irrerversible. At variance with 
the proposal shown in Scheme 6 where the 
cyclopropylimine species would appear because of the 
thermal rearrangement of the methylene aziridines, 
calculations show that the presence of the silver catalyst 
offers a reaction pathway favoring its formation without 
the intermediacy of the three member rings.

Scheme 9. Computationally postulated early steps for the reaction of phenylallene. Free energies in kcal mol-1.
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Products P1-P3 are not observed in the reaction 
mixture of phenylallene and PhI=NTs. However, 
cyclopropylimine P3 may evolve to the final product upon 
reaction with a second metallonitrene complex R1, as 
shown in Scheme 10. A new C-N bond is formed between 
the nitrogen of the second silver-nitrene and the 
cyclopropylimine P3 through TS6T with a barrier of only 
11.3 kcal mol-1. As the N-C bond is formed, one of the C-C 
bonds of the cyclopropane is broken, which results in 
species I7T. Through MECP2 the system crosses to the 

singlet surface, that is 25 kcal mol-1 more stable than the 
triplet. A second N-C bond is formed through TS7S, 
generating the four membered cycle I8S. Product 1, which 
is the only one experimentally observed, is delivered after 
silver decoordination, an energetically disfavored step but 
easily compensated by ulterior coordination of other 
species to the silver center. 

We next shifted our attention to the behavior of 
alkylallenes, which have been experimentally shown to 
produce methylene aziridines rather than azetidines. We 
notice that the mechanism reported above in Scheme 11 
may lead to aziridine products P1 and P2, though they are 
kinetically disfavored with respect to the azetidine 
emerging from P3. We computed a similar mechanism for 
ethylallene as our model alkylallene system. To our initial 
disappointment the resulting profile (fully described in 
the SI, key step in Scheme 11) yielded the same selectivity, 
which would favor the azetidine. Additional calculations 
on the ulterior evolution of the azetidine products were 
also unable to provide a satisfying explanation for the 
different behavior of alkyl and arylallenes. The problem 
was finally solved by the characterization of an alternative 

mechanism where the transition from the triplet to the 
singlet spin state takes place through an MECP before the 
formation of the first new nitrogen-carbon bond. We 
label this alternative mechanism as “early spin-
transition”, to differentiate it from the previously reported 
one where the transition took place after the bonds has 

been formed and the selectivity has been decided. Both 
mechanisms could be characterized for ethyl-allene, the 
corresponding selectivity-determining steps are shown in 
Scheme 11. The two mechanisms differ in the associated 
selectivity, the new mechanism reproducing the 
experimental observation in which the major product is 
methylene aziridine emerging from the blue pathway. 
Remarkably, this alternative mechanism is absent in the 
phenylallene system, which must then react through the 
“late spin-transition” mechanism reported above, leading 
to the azetidine through the black pathway in Scheme 9.

Scheme 10. Postulated computational mechanism 
for the formation of compound 1 from 
cyclopropylimine. Free energies in kcal mol-1.
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We notice there is a minor problem in the computed 
energetics, as the free energy for HMECP0b is still 2.6 kcal 
mol-1 above that of HTScT. We view this as a minor 
discrepancy as the reproduction of singlet/triplet energy 
gaps has been shown to be particularly challenging for 
DFT methods. More encouragingly, this alternative 
mechanism provides satisfactory qualitative explanations 
for the reactivity of alkylallenes. The “early spin-crossing” 
path was absent in the arylallene system because of the 
larger triplet/spin gap associated to the stabilization of 
the triplet state associated to the spin delocalization to 
the aryl ring. Additionally, the “early spin-crossing” path 
favors the attack on the terminal substituted carbon since 
it gives more weight to inductive effects than to the 
delocalization effects that favor the central carbon in the 
“late spin-crossing” mechanism. A detailed analysis of 
spin densities in provided in the SI.

Global mechanistic proposal. From collected 
experimental and computational data the global 
mechanistic picture is shown in Scheme 12. A silver-
nitrene intermediate is formed from the TpxAg core and 
PhI=NTs, which transfers the nitrene group to the allene 
C=C bond leading to methylene aziridines for R = alkyl 
and azetidines for R = aryl. The latter takes place through 
the formation of a cyclopropylimine intermediate in a 
silver-catalyzed route, which is kinetically more favorable 
than the formation of the corresponding methylene 
aziridines. For alkylallenes, a different selectivity has been 
calculated due to an earlier transition from the triplet to 
the singlet spin states.

The presence of the cyclopropylimine intermediate 
when employing arylallenes explains the formation of 
aminocyclopropanes when the reaction is carried out in 
the presence of alcohols, which add to the C=N bond as 
previously described by Shipman or Blakey, among 

others.5,17 In their absence, cyclopropylimine reacts with a 
second silver-nitrene intermediate en route to the 
observed azetidine compounds. 

At variance with the above, the methylene aziridines 
generated from alkylallenes are stable under the reaction 
conditions, and the presence of alcohol does not influence 
the reaction outcome. Only when they are heated, in the 
absence of any catalyst and with added nucleophiles, they 
provide aminocyclopropanes because of the in situ 
formation of a cyclopropylimine intermediate, which 
traps the nucleophile.

CONCLUSIONS

We have discovered the catalytic capabilities of a silver 
complex toward the intermolecular functionalization of 
allenes toward azetidines or methylene aziridines, 
depending of the nature (aryl or alkyl) of the substituents 
in the allene reactant. The azetidines are formed by a 
sequential process involving silver-mediated 
cyclopropylimine formation followed by the 
incorporation of a second, also silver-mediated, nitrene 
unit. At variance with that, alkylallenes are transformed 
into methylene aziridines. Aminocyclopropanes can be 
readily accessed from both alkyl- and arylallenes. This is 
the first example of efficient modification of allenes by 
metal-catalyzed nitrene transfer in an intermolecular 
manner. 

EXPERIMENTAL SUMMARY

General Procedure for the reaction of allenes and 
PhI=NTs. The [Tp*,BrAg]2 complex13 (0.005 mmol) was 
dissolved in deoxygenated DCM (6 mL) and the allene (2 
mmol) was added before PhI=NTs (74.4 mg, 0.2 mmol) was 
incorporated in one portion to the stirred solution. The flask 
was covered with aluminum foil to protect the reaction 

Scheme 12. Mechanistic proposal for the different behavior of aryl- and alkylallenes.
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mixture from light. After 4h, the solvent was removed under 
reduced pressure and the crude was analyzed by NMR 
spectroscopy and/or purified by column chromatography 
(see SI). For aminocyclopropane synthesis the procedure was 
identical also adding 2 mmol of the alcohol before addition 
of PhI=NTs.

Derivatizations of the methylene aziridine 13. (E)-
10-tosyl-10-azabicyclo[7.1.0]dec-1-ene (58.2 mg, 0.2 mmol) 
was dissolved in acetonitrile (2 mL) and the 
corresponding nucleophile was added (2-10 mmol). The 
reaction mixture was heated at 75 °C for 2 h, and then 
solvent was removed under reduced pressure. The crude 
was analyzed by NMR spectroscopy and/or purified by 
column chromatography.
Computational Details. The presented computational 
mechanistic study has been performed by optimization of 
minima and transition states with the B3LYP-D3 functional20 
including the D3 correction developed by Grimme and co-
workers21 and as implemented in Gaussian 09.22 The 
6-31g(d)23 basis set was used for all atoms except for silver, 
for which the Stuttgart-Dresden (SDD) basis set with 
effective core potential (ECP) was used instead. 24 Frequency 
calculations were carried out at the same level to obtain the 
free energies and assure the nature of each stationary point. 
Solvent effects were taken into account by using the SMD25 
solvation model and default options for dichloromethane. 
For the location of MECPs (Minimum Energy Crossing 
Points) we used the code provided by Prof. Jeremy Harvey.26 
The geometries of all species relevant for this study are 
included in a data set collection of computational results 
available in the ioChem-BD repository.27

Supporting Information. 
All procedures and characterization data for new 
compounds, computational data and Cartesian coordinates 
of the optimized structures. The Supporting Information is 
available free of charge on the ACS Publications website.
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