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Abstract A concise and efficient approach to the core of the C18/C19

diterpenoid alkaloids and phomopsterone B is reported. Both syntheses
share the same iron-catalyzed intramolecular [5+2] cycloaddition to as-
semble the tricyclo[6.3.1.01,6]]dodecane skeleton. The following
approach to the 6/5/6/7 tetracyclic core scaffold of C18/C19 diterpenoid
alkaloids features a regioselective Grignard addition/thermal Claisen re-
arrangement/RCM cyclization. Meanwhile the synthetic steps to access
the spiro 6/5/6 tricyclic subunits of phomopsterone B were character-
ized as intramolecular aldol reaction, Wacker oxidation, and Criegee
reaction.

Key words C18/C19-diterpenoid alkaloids, phomopsterone B, Iron-cat-
alyzed, [5+2] cycloaddition

C18/C19-diterpenoid alkaloids embodying the 6/5/6/7
tetracyclic skeleton have great diversity in their biological
activities.1,2 As demonstrated in Figure 1, Sepaconitine (1)3

and N-acetylsepaconitine (2)3b (Figure 1a), isolated from A.
septentrionale Koelle and A. leucostomum, respectively, pos-
sess strong antiarrhythmic activity.4 Guayewuanine A (3), a
novel C19-diterpenoid alkaloid isolated from A. hemsleva-
num, was reported to exhibit good analgesic activity.5
Although C18/C19-diterpenoid alkaloids have fascinating
structures with diverse biological activity, only a few
groups (Weisner,6 Gin,7 Sarpong,8 and Fukuyama9) have
completed the total synthesis of C18/C19-diterpenoid alka-
loids. Synthetic studies toward the skeleton of C18/C19-diter-
penoid alkaloids have been conducted by a raft of research
groups.10,11 Nevertheless, most of their work involved the
construction of fragments with an azacyclic subunit.

Meanwhile, phomopsterone B (4), a functionalized
ergostane-type steroid with spiro 6/6/5/6 tetracyclic core
scaffold, was originally isolated from the medically import-
ant plant Phyllathus glaucus (Figure 1b). Biological investi-

gations indicate that 4 functioned as an iNOS enzyme in-
hibitor that exhibits remarkable anti-inflammatory activity
(IC50 = 1.49 μM).12 Unfortunately, no group has completed
the total synthesis of phomopsterone B. Meanwhile, syn-
thetic investigation toward the scaffold of phomopsterone B
is scarce. Rajagopalan reported tin-mediated vinyl radical
cyclization to construct the spiro 6/5/6 tricyclic subunit.13

Matsuo developed ethylaluminium dichloride-promoted
intramolecular formal [4+2] cycloaddition to afford the
6/5/6 tricyclic scaffold.14 Mattay also documented oxidative
photoinduced electron transfer (PET) reactions of cyclic
cyclopropyl(vinyl) silyl ethers bearing an olefinic or acety-

Figure 1  Typical C18/C19-diterpenoid alkaloids and phomopsterone B 
and their core skeletons
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lenic side chain to give spiro 6/5/6 tricyclic compounds.
However, this reaction only delivered the product with low
yield (22%).15

Recently, we developed an efficient methodology for
accessing the tricyclo[6.3.1.01,6]dodecane skeleton via iron-
catalyzed intramolecular perezone-type [5+2] cycloaddi-
tion.16 Notably, this methodology features an inexpensive
and environmentally friendly catalyst (FeCl3), broad sub-
strate scope (>18 examples), efficient reaction conditions
(CH2Cl2, 0 °C, <10 min), good yields (up to 91%), decent dia-
stereoselectivities (up to 20:1 dr) and scalability (>2 g). To
our knowledge, utilization of intramolecular [5+2] cyclo-
addition strategy to construct the core skeleton of the
C18/C19-diterpenoid alkaloids and phomopsterone B remain
unknown. Herein, we describe our achievement in imple-
menting the [5+2] cycloadducts for the rapid and efficient
synthesis of the 6/5/6/7 tetracyclic skeleton of C18/C19-diter-
penoid alkaloids and the spiro 6/5/6 tricyclic subunit of
phomopsterone B. Thus, we could achieve divergent syn-
thesis of different core skeletons of natural products from
[5+2] cycloadducts, which will contribute to the develop-
ment of future related research projects. 

Retrosynthetically, compound 11, which embodies the
6/5/6 tricyclic subunit of phomopsterone B, could be con-
structed from 10 via Criegee reaction (Scheme 1). Com-
pound 10 was accessible from 9 through the aldol reaction.
The acetyl in 9 can be generated from 8 via Wacker oxida-
tion. Allylic alcohol 8 could be made by [5+2] adducts 5 via
regioselective Grignard addition. Meanwhile, compound 14,
which consists of the 6/5/6/7 tetracyclic skeleton of C18/C19-
diterpenoid alkaloids, could be achieved by regioselective
reduction of diketone 13 followed by protection with es-
ters. Diketone compound 13 was obtained from 12 by ther-
mal Claisen rearrangement and cross-metathesis reaction.
Compound 12 was then generated from 5 via Grignard ad-

dition and allylation. Compound 5 could be accessible from
our reported iron-catalyzed intramolecular perezone-type
[5+2] cycloaddition.16

In our previous work,16 the approach required six steps
to access the [5+2] cycloaddition precursor. So, we investi-
gated steps to shorten the synthetic route to the initial cyclo-
addition precursor. Our revised synthetic approach to [5+2]
cycloaddition substrate commenced by reacting 1,3-dime-
thoxybenzene with n-BuLi, followed by alkylation with 6-
bromo-1-hexene to provide the desired 7 in 87% yield
(Scheme 2). Monodemethylation of 7 with BBr3 afforded a
mixture of the desired phenol 17 and the doubly O-de-
methylated compound 16 (16/17 ratio 9:11, ca. 1.5:1 ratio,
93% combined yield). Chromatographic separation of 16
and 17 allowed recycling of the undesirable 16 to 7 in 95%
yield. Treatment of phenol 17 with PhI(OAc)2 under alco-
holic solvent furnished the corresponding precursor 6a
(74% yield with MeOH) and 6b (67% yield with allyl alco-
hol).17 Notably, the revised synthetic route to the cycloaddi-
tion precursor is three steps fewer than our previous syn-
thetic route.16 Compounds 6a and 6b were then subjected
to our reported iron-catalyzed intramolecular [5 + 2] cyclo-
addition conditions to give the corresponding cycloadducts
5a and 5b in good yield (83% and 79%, respectively) with
decent diastereoselectivities (>20:1).

Equipped with cycloadduct 5a, we geared up for con-
structing the spiro 6/5/6 skeleton of phomopsterone B.
Exposure of cycloadduct 5a to Grignard reagent would lead
to selective attack on the conjugated ketone, presumably
via chelation of a magnesium species with both the carbon-
yl and methoxyl group, followed by acidic hydrolysis to
afford 8 in 75% yield. Protection of the tertiary alcohol in 8
to TMS ether 18, followed by Wacker oxidation, furnished
methyl ketone 9 in 69% yield over two steps.

Scheme 1  Retrosynthetic analysis of the spiro 6/5/6 core scaffold of phomopsterone B and the tetracyclic 6/5/6/7 core skeleton of C18/C19-diterpenoid 
alkaloids
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Scheme 2  Synthesis of tricyclo[6.3.1.01,6] dodecane 5a and 5b

After that, an initial attempt to react methyl ketone 9
with KOH/MeOH only resulted in eliminated byproduct,
and no aldol product 19 was detected. Inspired by Hanes-
sian’s work,18 treatment of 9 under Mukaiyama type aldol
condensation condition [TiCl4/DIPEA/TMSCl] gave com-
pound 19 in 49% yield. Delightfully, using KHMDS as base at
–78 °C boosted the production of the product to 82% yield.

The structure of compound 19 was further confirmed by
X-ray crystallography, which showed that the aldol conden-
sation occurred site-selectively at C3 instead of C2.

We also assessed a series of conditions to forge the five-
membered ring, but the approach failed.19 Desilylation of 19
under HF·Pyr afforded alcohol 10 in 96% yield. To forge the
spiro 6/5/6 skeleton of phomopsterone B, we investigated
various conditions (NaIO4, HIO4, Pb(OAc)4, mCPBA, etc.) to
cleave the C–C bonds of α-hydroxy ketones. However, the
reaction gave rise to no reaction or led to decomposition of
the starting material. Fortunately, the target compound 11
could be acquired via LiAlH4-mediated reduction of com-
pound 10 followed by Pb(OAc)4 promoted oxidative cleav-
age in 60% yield over two steps. Notably, the stereochemis-
try of the hydroxyl group at C1 in compound 11 was identi-
fied by derivatization of compound 10 to give compound
20, the structure of which was confirmed by X-ray crystal-
lography (Scheme 3).20

Inspired by our success in construction of the spiro
6/5/6 subunit of phomopsterone B, we turned our attention
to forging the 6/5/6/7 ring system of C18/C19-diterpenoid al-
kaloids. Reaction of cycloadduct 5b with Grignard reagent
resulted in selective attack on the conjugated ketone to af-
ford 21 in 86% yield and 12 in 84% yield (Scheme 4). Ther-
mal Claisen rearrangement of 21 and 12 gave 22 and 23
with excellent facial selectivity; the resulting mixture was
subsequently subjected to ring-closing metathesis (RCM),21

which furnished 24 and 13 over two steps in 60% and 64%
yield, respectively.22 The structure of 24 was confirmed by
X-ray crystallography. Meanwhile, compound 13 could be
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transformed into 14 in a two-step derivatization. The struc-
ture of compound 14 was characterized by X-ray crystallog-
raphy, which completed our successful application of [5+2]
cycloadducts for the construction of the 6/5/6/7 ring system
of C18/C19-diterpenoid alkaloids.

In summary, we have successfully utilized iron-cata-
lyzed intramolecular perezone-type [5+2] cycloadducts to
forge the spiro 6/5/6 tricyclic subunit of phomopsterone B
and the 6/5/6/7 tetracyclic ring system of the C18/C19 diter-
penoid alkaloids. Notably, the revised pathway to the [5+2]
cycloaddition precursor has been shortened to three steps.
We look forward to further exploring these successful ap-
plications in related total synthesis campaign.
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14.0 Hz, 1 H), 1.15 (dddd, J = 2.8, 4.0, 12.4, 25.2 Hz, 1 H), 1.03
(ddt, J = 2.8, 12.8, 25.6 Hz, 1 H), 0.72 (ddd, J = 3.2, 13.2, 25.6 Hz,
1 H). 13C NMR (100 MHz, CDCl3): δ = 211.8, 211.0, 132.7, 127.9,
78.9, 60.5, 50.6, 48.5, 35.2, 34.8, 31.6, 30.6, 24.0, 22.7, 20.6. IR
(neat): 2925, 2850, 1735, 1448, 1369, 1239, 1141, 1030 cm–1.
HRMS (ESI): m/z [M+Na]+ calcd for C15H18NaO3: 269.1154;
found: 269.1151.
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