#### Y. Liu et al.

#### Letter

# Synthesis of Polycyclic Frameworks through Iron-Catalyzed Intramolecular [5+2] Cycloaddition

Α

| Yongjiang Liu<br>Yanhui Zhang                                                                                                                                                                                                                  | HOLIH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R <sup>9</sup> R <sup>8</sup>                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Xiao Wang                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |
| Shaomin Fu*                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sup>4</sup> C <sub>18</sub> /C <sub>19</sub>                                              |
| <b>Bo Liu</b> <sup>*</sup> <sup>(D)</sup><br>Key Laboratory of Green Chemistry &Technology of Ministry<br>of Education, College of Chemistry, Sichuan University,<br>Chengdu 610064, P. R. of China<br>chembliu@scu.edu.cn<br>fsm09@aliyun.com | $\begin{array}{c} RO  OR \\ O  OH \\ O  OH \\ O  OH \\ $ | <sup>1</sup> / <sub>R<sup>2</sup></sub> <sup>H</sup> R <sup>3</sup> diterpenoid<br>alkaloids |
|                                                                                                                                                                                                                                                | Spiro 6/5/6 skeleton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o phomopsterone B                                                                            |

Received: 08.07.2018 Accepted after revision: 26.07.2018 Published online: 23.08.2018 DOI: 10.1055/s-0037-1610258; Art ID: st-2018-k0423-l

**Abstract** A concise and efficient approach to the core of the  $C_{18}/C_{19}$ diterpenoid alkaloids and phomopsterone B is reported. Both syntheses share the same iron-catalyzed intramolecular [5+2] cycloaddition to assemble the tricyclo[6.3.1.0<sup>1,6]</sup>]dodecane skeleton. The following approach to the 6/5/6/7 tetracyclic core scaffold of  $C_{18}/C_{19}$  diterpenoid alkaloids features a regioselective Grignard addition/thermal Claisen rearrangement/RCM cyclization. Meanwhile the synthetic steps to access the spiro 6/5/6 tricyclic subunits of phomopsterone B were characterized as intramolecular aldol reaction, Wacker oxidation, and Criegee reaction.

Key words C18/C19-diterpenoid alkaloids, phomopsterone B, Iron-catalyzed, [5+2] cycloaddition

 $C_{18}/C_{19}$ -diterpenoid alkaloids embodying the 6/5/6/7 tetracyclic skeleton have great diversity in their biological activities.<sup>1,2</sup> As demonstrated in Figure 1, Sepaconitine (1)<sup>3</sup> and *N*-acetylsepaconitine  $(2)^{3b}$  (Figure 1a), isolated from *A*. septentrionale Koelle and A. leucostomum, respectively, possess strong antiarrhythmic activity.<sup>4</sup> Guayewuanine A (**3**), a novel C19-diterpenoid alkaloid isolated from A. hemslevanum, was reported to exhibit good analgesic activity.5 Although  $C_{18}/C_{19}$ -diterpenoid alkaloids have fascinating structures with diverse biological activity, only a few groups (Weisner,<sup>6</sup> Gin,<sup>7</sup> Sarpong,<sup>8</sup> and Fukuyama<sup>9</sup>) have completed the total synthesis of  $C_{18}/C_{19}$ -diterpenoid alkaloids. Synthetic studies toward the skeleton of C<sub>18</sub>/C<sub>19</sub>-diterpenoid alkaloids have been conducted by a raft of research groups.<sup>10,11</sup> Nevertheless, most of their work involved the construction of fragments with an azacyclic subunit.

Meanwhile, phomopsterone B (4), a functionalized ergostane-type steroid with spiro 6/6/5/6 tetracyclic core scaffold, was originally isolated from the medically important plant Phyllathus glaucus (Figure 1b). Biological investigations indicate that 4 functioned as an iNOS enzyme inhibitor that exhibits remarkable anti-inflammatory activity  $(IC_{50} = 1.49 \ \mu M)$ .<sup>12</sup> Unfortunately, no group has completed the total synthesis of phomopsterone B. Meanwhile, synthetic investigation toward the scaffold of phomopsterone B is scarce. Rajagopalan reported tin-mediated vinyl radical cyclization to construct the spiro 6/5/6 tricyclic subunit.<sup>13</sup> Matsuo developed ethylaluminium dichloride-promoted intramolecular formal [4+2] cycloaddition to afford the 6/5/6 tricyclic scaffold.<sup>14</sup> Mattay also documented oxidative photoinduced electron transfer (PET) reactions of cyclic cyclopropyl(vinyl) silyl ethers bearing an olefinic or acety-



lenic side chain to give spiro 6/5/6 tricyclic compounds. However, this reaction only delivered the product with low yield (22%).<sup>15</sup>

Recently, we developed an efficient methodology for accessing the tricyclo[6.3.1.0<sup>1,6</sup>]dodecane skeleton via ironcatalyzed intramolecular perezone-type [5+2] cycloaddition.<sup>16</sup> Notably, this methodology features an inexpensive and environmentally friendly catalyst (FeCl<sub>3</sub>), broad substrate scope (>18 examples), efficient reaction conditions (CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, <10 min), good yields (up to 91%), decent diastereoselectivities (up to 20:1 dr) and scalability (>2 g). To our knowledge, utilization of intramolecular [5+2] cvcloaddition strategy to construct the core skeleton of the C<sub>18</sub>/C<sub>19</sub>-diterpenoid alkaloids and phomopsterone B remain unknown. Herein, we describe our achievement in implementing the [5+2] cycloadducts for the rapid and efficient synthesis of the 6/5/6/7 tetracyclic skeleton of  $C_{18}/C_{19}$ -diterpenoid alkaloids and the spiro 6/5/6 tricyclic subunit of phomopsterone B. Thus, we could achieve divergent synthesis of different core skeletons of natural products from [5+2] cvcloadducts, which will contribute to the development of future related research projects.

Retrosynthetically, compound **11**, which embodies the 6/5/6 tricyclic subunit of phomopsterone B, could be constructed from **10** via Criegee reaction (Scheme 1). Compound **10** was accessible from **9** through the aldol reaction. The acetyl in **9** can be generated from **8** via Wacker oxidation. Allylic alcohol **8** could be made by [5+2] adducts **5** via regioselective Grignard addition. Meanwhile, compound **14**, which consists of the 6/5/6/7 tetracyclic skeleton of  $C_{18}/C_{19}$ -diterpenoid alkaloids, could be achieved by regioselective reduction of diketone **13** followed by protection with esters. Diketone compound **13** was obtained from **12** by thermal Claisen rearrangement and cross-metathesis reaction. Compound **12** was then generated from **5** via Grignard ad-

dition and allylation. Compound **5** could be accessible from our reported iron-catalyzed intramolecular perezone-type [5+2] cycloaddition.<sup>16</sup>

In our previous work,<sup>16</sup> the approach required six steps to access the [5+2] cycloaddition precursor. So, we investigated steps to shorten the synthetic route to the initial cycloaddition precursor. Our revised synthetic approach to [5+2] cycloaddition substrate commenced by reacting 1,3-dimethoxybenzene with *n*-BuLi, followed by alkylation with 6bromo-1-hexene to provide the desired 7 in 87% vield (Scheme 2). Monodemethylation of 7 with BBr<sub>3</sub> afforded a mixture of the desired phenol 17 and the doubly O-demethylated compound 16 (16/17 ratio 9:11, ca. 1.5:1 ratio, 93% combined yield). Chromatographic separation of 16 and **17** allowed recycling of the undesirable **16** to **7** in 95% yield. Treatment of phenol 17 with PhI(OAc)<sub>2</sub> under alcoholic solvent furnished the corresponding precursor 6a (74% vield with MeOH) and **6b** (67% vield with allvl alcohol).<sup>17</sup> Notably, the revised synthetic route to the cycloaddition precursor is three steps fewer than our previous synthetic route.<sup>16</sup> Compounds **6a** and **6b** were then subjected to our reported iron-catalyzed intramolecular [5 + 2] cycloaddition conditions to give the corresponding cycloadducts 5a and 5b in good yield (83% and 79%, respectively) with decent diastereoselectivities (>20:1).

Equipped with cycloadduct **5a**, we geared up for constructing the spiro 6/5/6 skeleton of phomopsterone B. Exposure of cycloadduct **5a** to Grignard reagent would lead to selective attack on the conjugated ketone, presumably via chelation of a magnesium species with both the carbonyl and methoxyl group, followed by acidic hydrolysis to afford **8** in 75% yield. Protection of the tertiary alcohol in **8** to TMS ether **18**, followed by Wacker oxidation, furnished methyl ketone **9** in 69% yield over two steps.



В

Scheme 1 Retrosynthetic analysis of the spiro 6/5/6 core scaffold of phomopsterone B and the tetracyclic 6/5/6/7 core skeleton of C<sub>18</sub>/C<sub>19</sub>-diterpenoid alkaloids



After that, an initial attempt to react methyl ketone **9** with KOH/MeOH only resulted in eliminated byproduct, and no aldol product **19** was detected. Inspired by Hanessian's work,<sup>18</sup> treatment of **9** under Mukaiyama type aldol condensation condition [TiCl<sub>4</sub>/DIPEA/TMSCI] gave compound **19** in 49% yield. Delightfully, using KHMDS as base at -78 °C boosted the production of the product to 82% yield.

The structure of compound **19** was further confirmed by X-ray crystallography, which showed that the aldol condensation occurred site-selectively at C3 instead of C2.

We also assessed a series of conditions to forge the fivemembered ring, but the approach failed.<sup>19</sup> Desilylation of **19** under HF·Pyr afforded alcohol **10** in 96% yield. To forge the spiro 6/5/6 skeleton of phomopsterone B, we investigated various conditions (NaIO<sub>4</sub>, HIO<sub>4</sub>, Pb(OAc)<sub>4</sub>, *m*CPBA, etc.) to cleave the C–C bonds of  $\alpha$ -hydroxy ketones. However, the reaction gave rise to no reaction or led to decomposition of the starting material. Fortunately, the target compound **11** could be acquired via LiAlH<sub>4</sub>-mediated reduction of compound **10** followed by Pb(OAc)<sub>4</sub> promoted oxidative cleavage in 60% yield over two steps. Notably, the stereochemistry of the hydroxyl group at C1 in compound **11** was identified by derivatization of compound **10** to give compound **20**, the structure of which was confirmed by X-ray crystallography (Scheme 3).<sup>20</sup>

Inspired by our success in construction of the spiro 6/5/6 subunit of phomopsterone B, we turned our attention to forging the 6/5/6/7 ring system of  $C_{18}/C_{19}$ -diterpenoid al-kaloids. Reaction of cycloadduct **5b** with Grignard reagent resulted in selective attack on the conjugated ketone to afford **21** in 86% yield and **12** in 84% yield (Scheme 4). Thermal Claisen rearrangement of **21** and **12** gave **22** and **23** with excellent facial selectivity; the resulting mixture was subsequently subjected to ring-closing metathesis (RCM),<sup>21</sup> which furnished **24** and **13** over two steps in 60% and 64% yield, respectively.<sup>22</sup> The structure of **24** was confirmed by X-ray crystallography. Meanwhile, compound **13** could be



С

 $\ensuremath{\mathbb{C}}$  Georg Thieme Verlag Stuttgart  $\cdot$  New York – Synlett 2018, 29, A–E



transformed into **14** in a two-step derivatization. The structure of compound **14** was characterized by X-ray crystallography, which completed our successful application of [5+2] cycloadducts for the construction of the 6/5/6/7 ring system of  $C_{18}/C_{19}$ -diterpenoid alkaloids.

In summary, we have successfully utilized iron-catalyzed intramolecular perezone-type [5+2] cycloadducts to forge the spiro 6/5/6 tricyclic subunit of phomopsterone B and the 6/5/6/7 tetracyclic ring system of the  $C_{18}/C_{19}$  diterpenoid alkaloids. Notably, the revised pathway to the [5+2] cycloaddition precursor has been shortened to three steps. We look forward to further exploring these successful applications in related total synthesis campaign.

## **Funding Information**

We acknowledge financial support from the NSFC (21672153).

## Acknowledgment

We would like to thank the Analytical & Testing Center of Sichuan University for X-ray diffraction work and we would be grateful to Dr. Daibing Luo for his help on single crystal analysis

## **Supporting Information**

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610258.

#### **References and Notes**

 Wang, F.-P.; Chen, Q.-H.; Liang, X.-T. In *The Alkaloids: Chemistry* and Biology; Cordell, G. A., Ed.; Elsevier Science: New York, 2009, 1–78.

- (2) (a) Wang, F.-P.; Chen, Q.-H. in *The Alkaloids: Chemistry and Biology*; Cordell, G. A., Ed.; Elsevier Science: New York, **2010**, 1–577.
  (b) Guo, R.; Guo, C.; He, D.; Zhao, D.; Shen, Y. *Chin. J. Chem.* **2017**, 35, 1644.
- (3) (a) Usmanova, S. K.; Tel'nov, V. A.; Yunusov, M. S.; Abdullaev, N. D.; Shreter, A. I.; Filippova, G. B. *Khim. Prir. Soedin.* **1987**, *23*, 879.
  (b) Tel'nov, V. A.; Yunusov, M. S.; Abdullaev, N. D.; Zhamierashvili, M. G. *Khim. Prir. Soedin.* **1988**, *24*, 556. (c) Shi, X.-W.; Lu, Q.-Q.; Zhou, J.-H.; Cui, X.-A. Acta Cryst. **2015**, *E71*, 550.
- (4) Dzhakhangirov, F. N.; Sultankhodzhaev, M. N.; Tashkhodzhaev, B.; Salimov, B. T. Chem. Nat. Compd. 1997, 33, 190.
- (5) Zhang, H. Q.; Zhu, Y. L.; Zhu, R. H. Acta Bot. Sin. 1982, 24, 259.
- (6) (a) Wiesner, K.; Tsai, T. Y. R.; Huber, K.; Bolton, S. E.; Vlahov, R. J. Am. Chem. Soc. **1974**, 96, 4990. (b) Wiesner, K. Pure Appl. Chem. **1975**, 41, 93. (c) Wiesner, K.; Tsai, T. Y. R.; Nambiar, K. P. Can. J. Chem. **1978**, 56, 1451. (d) Wiesner, K. Pure Appl. Chem. **1979**, 51, 689.
- (7) Shi, Y.; Wilmot, J. T.; Nordstrøm, L. U.; Tan, D. S.; Gin, D. Y. J. Am. Chem. Soc. **2013**, 135, 14313.
- (8) (a) Marth, C. J.; Gallego, G. M.; Lee, J. C.; Lebold, T. P.; Kulyk, S.; Kou, K. G. M.; Qin, J.; Lilien, R.; Sarpong, R. *Nature* **2015**, *528*, 493. (b) Kou, K. G. M.; Kulyk, S.; Marth, C. J.; Lee, J. C.; Doering, N. A.; Li, B. X.; Gallego, G. M.; Lebold, T. P.; Sarpong, R. *J. Am. Chem. Soc.* **2017**, *139*, 13882.
- (9) (a) Nishiyama, Y.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2016, 18, 2359. (b) Nishiyama, Y.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2017, 19, 5833.
- (10) For recent review articles, see: (a) Wang, F.-P.; Chen, Q.-H.; Liu, X.-Y. Nat. Prod. Rep. 2010, 27, 529. (b) Hamlin, A. M.; Kisunzu, J. K.; Sarpong, R. Org. Biomol. Chem. 2014, 12, 1846. (c) Zhu, G.; Liu, R.; Liu, B. Synthesis 2015, 47, 2691. (d) Liu, X.-Y.; Qin, Y. Asian J. Org. Chem. 2015, 4, 1010.
- (11) For selected research work published recently, see: (a) Mei, R.-H.; Liu, Z.-G.; Cheng, H.; Xu, L.; Wang, F.-P. Org. Lett. 2013, 15, 2206.
  (b) Cheng, H.; Zeng, F.-H.; Ma, D.; Jiang, M.-L.; Xu, L.; Wang, F.-P. Org. Lett. 2014, 16, 2299. (c) Jiang, M.-L.; Meng, Y.-J.; Xiong, W.-Y.; Xu, L. Tetrahedron Lett. 2016, 57, 1610. (d) Tabuchi, T.; Urabe, D.; Inoue, M. J. Org. Chem. 2016, 81, 10204. (e) Hagiwara, K.; Tabuchi, T.; Urabe, D.; Inoue, M. Chem. Sci. 2016, 7, 4372. (f) Zhu, M.; Li, X.; Song, X.; Wang, Z.; Liu, X.; Song, H.; Zhang, D.; Wang, F.-P.;

© Georg Thieme Verlag Stuttgart · New York – Synlett 2018, 29, A-E

D

Y. Liu et al.

Qin, Y. *Chin. J. Chem.* **2017**, *35*, 991. (g) Minagawa, K.; Urabe, D.; Inoue, M. J. *Antibiot.* **2018**, *71*, 326. (h) Liu, M.; Cheng, C.; Xiong, W.; Cheng, H.; Wang, J.-L.; Xu, L. *Org. Chem. Front.* **2018**, *5*, 1502.

- (12) (a) Hu, Z.; Wu, Y.; Xie, S.; Sun, W.; Guo, Y.; Li, X.-N.; Liu, J.; Li, H.; Wang, J.; Luo, Z.; Xue, Y.; Zhang, Y. Org. Lett. 2017, 19, 258.
  (b) Amagata, T.; Tanaka, M.; Yamada, T.; Doi, M.; Minoura, K.; Ohishi, H.; Yamori, T.; Numata, A. J. Nat. Prod. 2007, 70, 1731.
- (13) (a) Janardhanam, S.; Shanmugam, P.; Rajagopalan, K. J. Org. Chem. 1993, 58, 7782. (b) Shanmugam, P.; Srinivasan, R.; Rajagopalan, K. Tetrahedron 1997, 53, 6085.
- (14) Matsuo, J.; Sasaki, S.; Hoshikawa, T.; Ishibashi, H. Chem. Commun. 2010, 934.
- (15) Rinderhagen, H.; Mattay, J. Chem. Eur. J. 2004, 10, 851.
- (16) Liu, Y.; Wang, X.; Chen, S.; Fu, S.; Liu, B. Org. Lett. 2018, 20, 2934.
  (17) Nicolaou, K. C.; Dong, L.; Deng, L.; Talbot, A. C.; Chen, D. Y.-K.
- Chem. Commun. 2010, 70.
  (18) (a) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte, F.; DelValle, J. R.; Zhang, J.; Deschênes-Simard, B. Angew. Chem. Int. Ed. 2011, 50, 3497. (b) Hanessian, S.; Vakiti, R. R.; Dorich, S.; Banerjee, S.; Lecomte Deschênes-Simard, B. J. Org. Chem. 2012, 77, 9458.
- (19) We also tried to construct the 6/5/6/5 tetracyclic core skeleton of the  $C_{18}/C_{19}$ -diterpenoid alkaloids, but failed (Scheme 5).



(20) Reduction of compound **10** under LiAlH<sub>4</sub> gave two diastereoisomers, **20-1** and **20-2** in 49% yield and 24% yield, respectively. Compound **20-1** was further transformed into compound **20**,

the structure of which was confirmed by X-ray crystallography. The stereochemistry of hydroxyl group at C1 in target compound **11** could be identified from X-ray crystallographic analysis of compound **20** (Scheme 6).



- (21) Shen, J.; Shi, Y.; Tian, W. Chin. J. Chem. 2015, 33, 683.
- (22) Experimental Procedure and Characteristic Data for Ketone (24): Compound 21 (22.3 mg, 0.08 mmol) was added to toluene (0.5 mL) in a sealed tube and stirred at 170 °C overnight. The solvent was then removed in vacuo to afford the crude product, which was used in the next step without further purification. To a solution of Grubbs II (17.5 mg, 0.02 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.0 mL) at room temperature was added the above product in CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL) and the mixture was stirred at room temperature for 10 h. The solvent was then removed in vacuo and the crude product was purified by column chromatography (EtOAc/petroleum ether = 1:5) to afford the product 24 (12.1 mg, 60% for two steps) as a white solid: mp 119-121 °C. <sup>1</sup>H NMR (400 MHz.  $CDCl_3$ :  $\delta = 5.65-5.59$  (m, 2 H), 3.87 (s, 1 H), 2.88 (t, J = 5.2 Hz, 1 H), 2.73–2.60 (m, 2 H), 2.46 (dd, J = 5.2, 7.2 Hz, 1 H), 2.04–1.98 (m, 2 H), 1.90-1.81 (m, 2 H), 1.70 (dd, J = 5.2, 13.2 Hz, 1 H), 1.66-1.59 (m, 1 H), 1.52-1.47 (m, 1 H), 1.42 (ddd, J = 2.8, 7.6, 14.0 Hz, 1 H), 1.15 (dddd, J = 2.8, 4.0, 12.4, 25.2 Hz, 1 H), 1.03 (ddt, J = 2.8, 12.8, 25.6 Hz, 1 H), 0.72 (ddd, J = 3.2, 13.2, 25.6 Hz, 1 H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ = 211.8, 211.0, 132.7, 127.9, 78.9, 60.5, 50.6, 48.5, 35.2, 34.8, 31.6, 30.6, 24.0, 22.7, 20.6. IR (neat): 2925, 2850, 1735, 1448, 1369, 1239, 1141, 1030 cm<sup>-1</sup>, HRMS (ESI): m/z [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>18</sub>NaO<sub>3</sub>: 269.1154; found: 269.1151.