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Abstract: A highly enantioselective Pd-catalysed decar-
boxylative asymmetric allylic alkylation of cyclopentanone
derived a-aryl-b-keto esters employing the (R,R)-ANDEN-
phenyl Trost ligand has been developed. The product (S)-
a-allyl-a-arylcyclopentanones were obtained in excellent
yields and enantioselectivities (up to >99.9 % ee). This
represents one of the most highly enantioselective forma-
tions of an all-carbon quaternary stereogenic center re-
ported to date. This reaction was demonstrated on
a 4.0 mmol scale without any deterioration of enantiose-
lectivity and was exploited as the key enantioselective
transformation in an asymmetric formal synthesis of the
natural product (+)-tanikolide.

The catalytic asymmetric generation of quaternary carbon cen-
ters continues to be a significant challenge in synthetic organic
chemistry. In particular, the enantioselective formation of qua-
ternary centers bearing an aryl group next to a carbonyl has
seen particular interest in the past decade. Since the seminal
report by Buchwald in 1998,[1] a number of approaches have
been developed whereby the aryl group is introduced during
the enantiodetermining step, in most cases.[2]

The Pd-catalysed asymmetric decarboxylative allylic alkyla-
tion reaction (DAAA) has become a key transformation in the
toolkit of modern catalytic asymmetric reactions. In 1980, Tsuji
and Saegusa independently reported the first examples of de-
carboxylative allylation of b-keto allyl esters, using Pd catalysis,
to form allylated ketones.[3] Subsequently, Tsuji expanded the
precursors for this transformation to allyl enol carbonates,[4]

silyl enol ethers[5] and enol acetates.[6] Surprisingly, the first
enantioselective example was only reported as recently as
2004, by Stoltz, from allyl enol carbonates and silyl enol
ethers.[7] The contributions to this methodology by the groups
of Trost and Stoltz have pioneered the field.[8]

Although both the use of allyl enol carbonates and silyl enol
ethers have proved successful in the DAAA reaction, there is

a considerable problem with the regioselective preparation of
these substrates. If poor selectivity is observed for the desired
enol ether formation this will be translated into a mixture of al-
lylated products. To circumvent this problem, Stoltz, inspired
by the earlier work of Tsuji and Saegusa, looked toward b-keto
allyl esters as possible substrates.

Not only is the in situ enolate generation regiospecific but
the substrates are relatively simple to prepare and quaternary
b-keto esters are bench-stable compounds. These substrates
were successfully applied in the DAAA reaction in excellent
yields and enantioselectivities.[9]

The substrate scope of the DAAA has been expanded great-
ly since it was first reported and has been used as a key step
in the total synthesis of a number of complex natural pro-
ducts.[8b] Typically, the reaction is carried out on cyclic sub-
strates, with and without a fused aromatic ring, for the synthe-
sis of all-carbon quaternary centers. Variation of the allyl frag-
ment can be achieved with a wide variety of substituents toler-
ated whilst still giving high levels of enantioselectivity. The
final a-substituent of the quaternary center is, in the majority
of cases, a methyl or substituted methyl group. To date, the
variation of this substituent has been limited and we wished
to expand this to a variety of aryl groups, which would gener-
ate quaternary a-aryl ketones in an enantioenriched manner.

The application of the DAAA to the synthesis of quaternary
a-aryl ketones has been surprisingly limited. The potential rea-
sons for this are twofold; firstly, the difficulty in the preparation
of a-aryl-b-keto esters or their enol carbonate equivalents and,
secondly, the increased steric bulk of the aryl group, which can
have a detrimental effect on reactivity and enantioselectivity.
Previously, Taylor reported the DAAA of oxindoles in which
phenyl, ortho- and para-methoxyphenyl and ortho-nitrophenyl
examples were reported with ee values ranging from 78–
95 %.[10] Stoltz has shown an a-phenyl-a-allyl cyclohexanone
example, albeit in 50 % ee, from allyl enol carbonates using an
electron-deficient phosphinooxazoline (PHOX) ligand [Eq. (1),
Scheme 1].[11] Trost has had more success with a-phenyl as the
substituent using his P,P ligand ((R,R)-ANDEN-Trost) forming a-
phenyl-a-allyl cyclohexanone in 90.5 % ee [Eq. (2), Scheme 1].[8h]

Cyclopentanones have also been shown to be challenging sub-
strates to obtain high ee in the DAAA until a very recent report
by Stoltz for the preparation of a-alkyl/benzyl cyclopentanones
in up to 94 % ee [Eq. (3), Scheme 1].[12]

We have previously developed the catalytic asymmetric syn-
thesis of a range of tertiary a-aryl ketones by a Pd-catalysed
decarboxylative asymmetric protonation.[13] In these reports we
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overcame the difficulty in the preparation of sterically hindered
a-aryl-b-keto esters by the use of aryllead triacetates, which
have been shown to be a privileged reagent in the arylation of
b-keto esters.[14] Here, we wish to report the catalytic asymmet-
ric synthesis of a-allyl-a-aryl ketones via the DAAA of the cor-
responding a-aryl-b-keto esters with very high levels of enan-
tioselectivity [Eq. (4), Scheme 1].

We began by using cyclopentanone a-aryl-b-keto allyl ester
(1 a) bearing a 2,4,6-trimethoxyphenyl group as a model sub-
strate to optimise DAAA reaction conditions (Table 1). Previous-
ly, a number of P,N and P,P ligands were successfully utilised in
DAAA reactions and are well documented in the literature.[8]

We also chose two PHOX ligands (S)-L1, (S)-L2 and two Trost li-
gands (R,R)-L3, (R,R)-L4 to examine the feasibility of the enan-
tioselective transformation. We began by screening each
ligand (12.5 mol %) with Pd2(dba)3·CHCl3 (5.0 mol %) in 1,4-diox-
ane (0.06 m) as the solvent at 25 8C. All of the reactions went
to complete conversion and gave very good isolated yields
(86–92 %, entries 1–4, Table 1). The level of enantioselectivity
obtained when using both of the PHOX ligands was low at 25
and 31 % ee, respectively (entries 1 and 2, Table 1). The (R,R)-
DACH-phenyl Trost ligand L3 provided a much more encour-
aging result with a good level of enantioselectivity (86 % ee,
entry 3, Table 1). To our delight, the use of (R,R)-ANDEN-Trost
ligand L4 gave effectively a single enantiomer of the allylated
product (>99.9 % ee, entry 4, Table 1) in a 92 % isolated yield.

We then decided to test the tolerance of the reaction using
a variety of different solvents. In general, high levels of of
enantioselectivity were obtained (>96 % ee) using toluene, 2-
Me-THF, methyl tert-butyl ether (MTBE) and THF (entries 5–7, 9
and 10, Table 1). However, the conversions obtained were sig-
nificantly lower compared to 1,4-dioxane. For example, toluene

and THF gave conversion of 57 and 70 %, respectively with
THF giving rise to 99.8 % ee (entries 5 and 9, Table 1). In the
case of THF, when the reaction temperature was increased to
40 8C the conversion improved slightly to 76 %, maintaining
the very high level of enantioselectivity (entry 10, Table 1). We
also found that the reaction in 1,4-dioxane at 40 8C gave a com-
parable result to the reaction at 25 8C, albeit in a reduced reac-
tion time of 5 h (Entry 11, Table 1). Knowing this, we then in-
vestigated the effect of lowering the catalyst and ligand load-
ings. We found that reducing the Pd loading to 2.5 mol % and
the ligand to 6.25 mol % led to a significant reduction in con-
version to 60 % at 40 8C, maintaining the high ee (entry 12,
Table 1). Lowering the temperature to 25 8C gave a similar
result (entry 13, Table 1).

Scheme 1. Transition-metal-catalysed enantioselective decarboxylative allylic
alkylation.

Table 1. Optimisation of decarboxylative asymmetric allylic alkylation
using 1 a.

Entry[a] Ligand Solvent Time [h] Conv. [%][b] ee [%][c]

1 L1 1,4-dioxane 10 100 (86) 25
2 L2 1,4-dioxane 10 100 (89) 31
3 L3 1,4-dioxane 10 100 (90) 86
4 L4 1,4-dioxane 10 100 (92) >99.9
5 L4 Toluene 24 57 (50) 96
6 L4 2-Me-THF 24 48 (40) 98
7 L4 MTBE 24 65 (59) 97
8 L4 DME 24 50 (43) 98.6
9 L4 THF 24 70 (63) 99.8
10 L4 THF 24 76 (69) 99.4
11 L4 1,4-dioxane 5 100 (92) 99.8
12 L4 1,4-dioxane 24 60 (54) 99.8
13 L4 1,4-dioxane 24 58 (51) 99.6
14 L4 1,4-dioxane 10 100 (91) >99.9
15 L4 1,4-dioxane 10 100 (93) 99.8

[a] Entries 1–11 were carried out with Pd2(dba)3·CHCl3 (5.0 mol %), ligand
(12.5 mol %); entries 12 and 13 with Pd2(dba)3·CHCl3 (2.5 mol %), ligand
(6.25 mol %); entries 1–9 and 13–15 at 25 8C; entries 10–12 at 40 8C; en-
tries 1–13 at 0.06 m concentration; entry 14 at 0.03 m ; entry 15 at 0.09 m.

[b] Determined by 1H NMR spectroscopy of the crude reaction mixture.
Isolated yields in parentheses. [c] Determined by chiral supercritical fluid
chromatography (SFC).
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The effect of the reaction concentration was then examined.
Increasing the concentration to 0.09 m led to a very slight re-
duction in ee (entry 15, Table 1); however, diluting the reaction
concentration to 0.03 m had no effect on the ee and conver-
sion (entry 14, Table 1). Pre-complex formation prior to sub-
strate addition did not have any effect on the reaction.[15]

With the optimised reaction conditions in hand (Entry 4,
Table 1) we then explored the substrate scope through varia-
tion of the a-aryl group (Scheme 2). In general, all of the sub-
strates tested gave excellent yields (85–97 %). With di-ortho
methoxy-substitued aryl groups (1 b, 2 b and 3 b), excellent
levels of enantioselectivity (>99.9 % ee) were achieved. Other
di-substituted aryl groups (4 b, 5 b and 6 b) also gave excellent
enantioselectivity (>99.4 % ee). Two similar mono-ortho-substi-
tuted aryl groups gave large differences in enantioselectivity.
The 2,4-dimethoxyphenyl example (7 b) gave a high ee of
96.9 %, whereas, to our surprise, the 2,3,4-trimethoxyphenyl ex-
ample (8 b) gave a much reduced ee of 87.6 %. Testing sub-
strates possessing other aryl groups lacking an ortho-substitu-
ent (9 b–12 b) led to a reduction in ee to 83–84 %. It is clear

that di-ortho-substitution is necessary to obtain excellent levels
of enantioselectivity in this transformation.

We also investigated the electronic effects of the aryl sub-
stituent and found that electron-rich (9 b and 10 b), neutral
(12 b) and electron-deficient (11 b) aryl groups had no effect
on the enantioselectivity. The reaction was also tolerant of
steric hindrance at the b-position as the gem-dimethyl-substi-
tuted compound (13 b) was formed with excellent enantiose-
lectivity (99.3 %). We also demonstrated that the reaction per-
formed equally well on a larger scale (4.0 mmol) using sub-
strate 1 a.[15]

The absolute sense of stereoinduction was confirmed as (S)
by obtaining an X-ray crystal structure of product 1 b.[16] Al-
though the traditional ‘wall and flap’ model can predict the
outcome of Pd-catalysed reactions with Trost-type ligands,
Lloyd-Jones, Norrby and co-workers conclusively showed that
this model does not reflect the true structure of the cationic
[allyl-Pd-DACH] complex.[17]

Their NMR and DFT studies indicated a structure in which
the allyl unit sits in a fairly open upper-hemisphere above Pd,
with the ligand structure (including all four phenyl groups)
well away from the allyl, and even further away from the in-
coming nucleophile for an outer-sphere mechanism.

Using the N�H to guide the enolate carbon above the allyl
by hydrogen bonding leads to two possible approaches, path-
way A or B (Figure 1). In pathway A, the enolate is oriented
such that the aryl group is pointing away from the ligand
backbone allowing pro-S attack on the allyl group on Pd. In
pathway B, the aryl group experiences a large steric clash with
the ligand backbone, as the ANDEN framework provides a sub-
stantial steric bulk, so this approach is disfavoured. The [allyl-
Pd-ANDEN] complex can undergo a conformational inversion,
which locates the N�H further away from the allyl group and

Scheme 2. Scope and enantioselectivity of a-allyl-a-arylcyclopentanone syn-
thesis. Figure 1. Proposed pathways during enantiodeterming enolate addition.
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does not permit an enolate approach free from a steric clash
with the ligand backbone (not shown). Rotation of the sub-
strate aryl group becomes degenerate when it is 2,6-disubsti-
tuted, leading to very high ee values for such substrates.

With a highly enantioselective synthesis of a-allyl- a-aryl cy-
clopentanones at hand, we carried out a concise asymmetric
formal synthesis of (+)-tanikolide from 1 b (Scheme 3). Taniko-
lide is a brine shrimp toxin and antifungal marine natural prod-
uct isolated from blue green algae cyanobacterium Lyngbya

majuscula. A number of synthetic approaches have been de-
veloped for the asymmetric synthesis of (+)-tanikolide by us
and others.[18] Starting with a-allyl- a-arylcyclopentanone (1 b),
Grubbs’ cross metathesis with 1-decene furnished disubstitut-
ed alkene (1 c). Reduction of the alkene and carbonyl groups
led to alcohol (1 e, dr = 5:1) was subsequently protected as the
acetate (1 f). Cleavage of the aryl group was accomplished
under RuO4-catalysis forming carboxylic acid (1 g),[19] demon-
strating the power of possessing a functionalisable aryl group,
in contrast to previous related work with methyl or benzyl sub-
stituents.[8] Finally, reduction afforded the diol (1 h), an ad-
vanced intermediate in a previous synthesis of (+)-taniko-
lide.[20]

In conclusion, a highly enantioselective Pd-catalysed DAAA
of a-aryl-b-keto esters has been developed employing the
(R,R)-ANDEN-phenyl Trost ligand L4. Under these conditions,
substrates containing di-ortho-substituted aryl groups gave ex-
cellent enantioselectivities (>99.9 % ee) of the (S)-a-allyl-a-aryl-
cyclopentanone products. Mono-ortho-substituted aryl groups
gave good to very high levels of enantioinduction (88 to 97 %
ee). The absence of an ortho-substituent afforded the corre-
sponding products with good enantioselectivities (83 to 84 %

ee). We demonstrated that this reaction was reproducible on
a 4.0 mmol scale without any deterioration of enantioselectivi-
ty. Finally, we illustrated the application of this asymmetric
methodology as the key enantioselective step in the asymmet-
ric formal synthesis of the natural product (+)-tanikolide. We
are currently exploiting the DAAA of a range of other a-aryl-
containing substrates and the reports of these investigations
will be the subject of future reports from these laboratories.
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Highly Enantioselective Formation of
a-Allyl-a-Arylcyclopentanones via Pd-
Catalysed Decarboxylative
Asymmetric Allylic Alkylation

Grand Slam! All-Carbon 48 Centres : A
highly enantioselective Pd-catalysed de-
carboxylative asymmetric allylic alkyla-
tion of cyclopentanone derived a-aryl-b-
keto esters employing the (R,R)-ANDEN-
phenyl Trost ligand has been devel-
oped. The product (S)-a-allyl-a-arylcy-

clopentanones were obtained in excel-
lent yields and enantioselectivities (up
to >99.9 % ee). This represents one of
the most highly enantioselective forma-
tions of an all-carbon quaternary stereo-
genic center reported to date.
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