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A B S T R A C T   

Inosine-5′-monophosphate dehydrogenase (IMPDH) is a potential target for microorganisms. However, identi
fying inhibitor design determinants for IMPDH orthologs continues to evolve. Herein, a series of mycophenolic 
anilide inhibitors of Cryptosporidium parvum and human IMPDHs are reported. Furthermore, molecular docking 
of 12 (e.g. SH-19; CpIMPDH Ki,app = 0.042  ±  0.015 µM, HsIMPDH2 Ki,app = 0.13  ±  0.05 µM) supports 
different binding modes with the two enzymes. For CpIMPDH the inhibitor extends into a pocket in an adjacent 
subunit. In contrast, docking suggests the inhibitor interacts with Ser276 in the NAD binding site in HsIMPDH2, 
as well as an adjacent pocket within the same subunit. These results provide further guidance for generating 
IMPDH inhibitors for enzymes found in an array of pathogenic microorganisms, including Mycobacterium tu
berculosis.    

Inosine-5′-monophosphate dehydrogenase (IMPDH) catalyzes the 
nicotinamide adenine dinucleotide (NAD)-dependent oxidation of in
osine 5′-monophosphate (IMP) to xanthosine 5′-monophosphate (XMP) 
as the rate-limiting step in the biosynthesis of guanine nucleotides.1 

Therefore, IMPDH regulates intracellular guanine nucleotide pools and 
is critical for cell proliferation in both eukaryotes and prokaryotes.2 

IMPDH inhibition has recently gained momentum as a potential 
treatment of microbial infections. For example, blocking prokaryotic 
IMPDH could provide a strategy for growth inhibition of bacteria such 
as Mycobacterium tuberculosis (Mtb) and Staphylococcus aureus (Sa).3,4 In 
addition, this enzyme has been targeted in the protozoan Cryptospor
idium parvum (Cp), which has a similar IMPDH to some prokaryotes, 
likely resulting from lateral gene transfer from bacteria.5,6 These pro
karyotic IMPDHs are structurally distinct from their human counter
parts.2 The most dramatic difference is in the adenosine subsite (A-site) 
of the NAD binding site7,8, and several inhibitor scaffolds (e.g. 1 – 6 in  
Fig. 1A) exploit this divergence.9–17 

Mycophenolic acid (MPA, 7, Fig. 1B) is a prototypic human (Hs) 
IMPDH inhibitor18,19 (e.g. HsIMPDH1 Ki = 33 nM and HsIMPDH2 
Ki = 7 nM)20 used clinically as an ester prodrug (e.g. mycophenolate 
mofetil) for immunosuppression in preventing rejection following 
organ transplantation.21,26 Interestingly, MPA (7) binds in the 

nicotinamide subsite, but is a poor inhibitor of prokaryotic and C. 
parvum IMPDHs (e.g. CpIMPDH Ki = 9.3 μM).22 Mycophenolic anilides 
have also been found to inhibit HsIMPDH2, 23–25 but their activities 
against CpIMPDH and bacterial orthologs have not been described. 

Herein, we report a structure–activity relationship study for a series 
of mycophenolic anilides that incorporate a molecular fragment 
common to several classes of CpIMPDH inhibitors (Fig. 1C). Further
more, an analysis of these anilides was conducted to elucidate addi
tional structural determinants required for selective inhibition of 
CpIMPDH and related prokaryotic orthologs versus HsIMPDHs. 

An initial set of MPA-anilide derivatives 8 – 16 were prepared via 
EDC-mediated coupling (Scheme 1). In addition, 10 was further mod
ified by phenol alkylation or alkene reduction to provide derivatives 17 
and 18, respectively.28 

Replacement of the alkene with a cyclopropane bioisostere was also 
pursued. The synthesis of both enantiomers is illustrated in Schemes 2 
and 3. MPA (7) was converted to aldehyde 19,23 which was protected 
and then reduced to provide alcohol 21 (Scheme 2). A chiral auxiliary 
was attached generating key intermediate 23a using the methodology 
of Charette et al.29,30 Finally, anomerization generated a second crucial 
intermediate 23b. Both of these intermediates were partially de-pro
tected generating 24a and 24b, which were subjected to 
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cyclopropanation conditions to give 25a and 25b, respectively (Scheme 
3).31,32 These two materials were then subjected to a similar series of 
transformations (Scheme 4).33,34 The chiral auxiliary was removed 

followed by alcohol oxidation, Horner–Wadsworth–Emmons reactions 
and alkene reduction to produce 29a and 29b. Finally, ester hydrolysis 
and EDC-mediated aniline coupling provided 31a and 31b. 

Several other derivatives were prepared that incorporated addi
tional changes to the linker region of the hybrid molecules. MPA (7) 
was cleaved to aldehyde 32, which was reduced and protected to give 
34 (Scheme 5). Alkylation of the primary alcohol, ester hydrolysis, 
aniline coupling and deprotection produced the ether linked derivative 
38.35 MPA (7) was also converted to aldehyde 40a, which via a Wittig 
reaction with 4-ClPhNH(C]O)CH2P+Ph3Cl- gave 41a (Scheme 6).36,37 

Similarly, 34 was oxidized to aldehyde 40b, which was converted into 
41b. These two intermediates were de-protected or reduced/de-pro
tected to provide 42a and 42b, respectively. Finally, intermediate 32 
was oxidized to carboxylic acid 43, which was coupled to 4-chlor
oaniline to give the truncated derivative 44 (Scheme 7). 

Recombinant CpIMPDH and HsIMPDH2 were purified from E. coli.38 

Enzyme activity was determined by monitoring the production of 
NADH.39 For CpIMPDH, enzyme (10 nM) and inhibitor (1 nM to 5 μM) 
were incubated in the presence of 50 mM Tris-HCl, pH 8.0, 100 mM 
KCl, 3 mM EDTA, 1 mM dithiothreitol at 25 °C for 5 min prior to ad
dition of substrates NAD (300 μM) and IMP (250 μM). For HsIMPDH2, 
enzyme (20 nM) and inhibitor (1 nM to 5 μM) were incubated in the 
presence of 50 mM Tris-HCl, pH 8.0, 100 mM KCl, 3 mM EDTA, 1 mM 
dithiothreitol at 25 °C for 5 min prior to addition of substrates NAD 
(60 μM) and IMP (250 μM).41 Production of NADH was monitored by 
fluorescence. Ki,app values were determined for each inhibitor against 

Fig. 1. (A) Six structurally distinct CpIMPDH inhibitors (CpIMPDH IC50 = 12 – 
64 nM).27 The fragments found in these inhibitors that interact with the ade
nosine subsite (A-site) of the NAD binding site are highlighted in red. This is 
based on co-crystal structures of 1, 2, 4 and 5 with CpIMPDH and 6 with 
Clostridium perfringens IMPDH (ClpIMPDH). The interactions of inhibitor 3 are 
assumed based on structural similarity since it has not been co-crystalized with 
an IMPDH. (B) Structure of mycophenolic acid (MPA, 7). (C) Mycophenolic 
anilides with three regions explored herein shown in boxes. 
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CpIMPDH and HsIMPDH2 using Dynafit.40 

Introducing an anilide as the common fragment to MPA improved 
CpIMPDH inhibition. For example, 8, which incorporated the anilide 
from 4 with MPA, potently inhibited CpIMPDH with Ki,app value of 
0.046 µM (Table 1). Interestingly, the compound also inhibited 

HsIMPDH2 (Ki,app = 0.35 µM), in contrast to all prior reported 
CpIMPDH inhibitors. Since electron withdrawing groups were preferred 
in previously developed CpIMPDH inhibitors, the methoxy group in 8 
was replaced with a chloro (9). This compound showed similar in
hibitory potency as 8 for both enzymes. However, replacing with a 
trifluoromethyl (10) increased potency against both enzymes. Trans
posing the para-chloro to the ortho-position (11) resulted in loss of 
CpIMPDH inhibitory activity. This was consistent with the SAR of other 
CpIMPDH inhibitors, possibly resulting from a clash with Y358′ and loss 
of a halogen bond with G357′.9 A survey of various electron with
drawing groups at the 4-position demonstrated that chloro (12) pro
vided potent and balanced CpIMPDH and HsIMPDH2 inhibition. 
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Reminiscent of other CpIMPDH inhibitors, methylation of the anilide 
(16) resulted in loss of activity. Similarly, methylation of the phenol 
(17), known to eliminate MPA inhibition of HsIMPDH,41 also resulted 

in loss of CpIMPDH inhibition. 
Next, the central linker was explored using various bioisosteres and 

by truncation (Table 2). 3-Trifluoromethyl-4-chloro or 4-chloro sub
stituted anilides were chosen based on 10 and 12. Reduction of the 
alkene (18) resulted in some loss of potency for CpIMPDH inhibition, 
which was more dramatic for HsIMPDH2. Bioisosteric replacement of 
the alkene with a cyclopropane revealed that one enantiomer (31b) 
retained potent CpIMPDH inhibitory activity (Ki,app = 0.066 µM), al
though HsIMPDH2 inhibition was reduced (Ki,app = 0.46 µM). The 
eudysmic ratios of 31b and 31a for CpIMPDH and HsIMPDH inhibitions 
were 8.6 and 3.1, respectively. Several additional changes to the linker 
connecting the two aryl groups resulted in reduced CpIMPDH and 
HsIMPDH2 inhibitory activities. 

Two critical differences between HsIMPDH2 and CpIMPDH are in a 
loop structure of the NAD binding region and a proximal site in the 
adjacent subunit. The A-site of HsIMPDH2 is largely within the same 
monomer as the IMP site, but for CpIMPDH and related prokaryotic 
IMPDHs, a portion of the A-site is located in the adjacent subunit.7,8 

This hydrophobic pocket is absent in HsIMPDH.42 As illustrated in the 
sequence alignments of HsIMPDH2 and CpIMPDH (Fig. 2), the NAD 
loop of HsIMPDH contains a hydrophilic serine at residue 276, while 
CpIMPDH has a hydrophobic alanine at the equivalent position (residue 
165′; note that CpIMPDH lacks an approximately 100 residue reg
ulatory domain present in most IMPDHs). For the A-site, there are also 
distinct residue differences with aspartic acid (e.g. 470′) in HsIMPDH 
corresponding to tyrosine (e.g. Y358′) in CpIMPDH.42 Interaction with 

Table 1 
CpIMPDH and HsIMPDH2 inhibitory activities of 8–17   

O

N
OR3

MeO
O

O
R1

R2

Compound R1 R2 R3 CpIMPDH 
Ki,app (µM) 

HsIMPDH2 
Ki,app (µM)  

8 3-OMe, 4-Cl H H 0.046 ( ± 0.013)σ 0.35 ( ± 0.09)σ 

9 3,4-di-Cl H H 0.041 ( ± 0.010)σ 0.34 ( ± 0.11)σ 

10 3-CF3, 4-Cl H H 0.016 ( ± 0.007)σ 0.23 ( ± 0.08)σ 

11 2,3-di-Cl H H 0.681 (0.143)r ND* 
12 4-Cl H H 0.042 ( ± 0.02)σ 0.13 ( ± 0.05)σ 

13 4-F H H 0.180 ( ± 0.06)r 0.27 
14 4-CF3 H H 0.151 ( ± 0.04)r 0.40 
15 4-CN H H 0.11 0.35 
16 4-Cl Me H 0.87 ( ± 0.13)r ND* 
17 3-CF3, 4-Cl H Me 1.7 ND* 

*ND: Not Determined. 
σ: Standard deviation. 
r: Range.  

Table 2 
CpIMPDH and HsIMPDH2 inhibitory activities of 18, 31a, 31b, 38, 42a, 42b and 44.  

X
OH

O
O

O
R1

Me

O

H
N

Compound R1 X CpIMPDH 
Ki,app (µM) 

HsIMPDH2 
Ki,app (µM)  

18 3-CF3, 4-Cl 0.060 ( ± 0.01)r ND* 

31a 3-CF3, 4-Cl 0.57 1.40 

31b 3-CF3, 4-Cl 0.066 ( ± 0.023)σ 0.46 ( ± 0.28)σ 

38 4-Cl 
O

0.405 ( ± 0.176)r 0.87 

42a 4-Cl 0.48 0.55 

42b 4-Cl 0.45 ( ± 0.13)r 0.29 

44 4-Cl 2.8 0.8 

*ND: Not Determined. 
σ: Standard deviation. 
r: Range.  

Fig. 2. Sequence alignment of IMPDH enzymes from human, C. parvum and several bacteria highlighting the NAD loop and A-site. aY358′ is based on numbering for 
CpIMPDH and the ’ denotes the adjacent subunit. 
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this tyrosine residue has previously been shown to be critical for 
achieving selective CpIMPDH inhibitors.9–17, 27 Interestingly, a number 
of other microorganisms, including several pathogenic Gram-(+) and 
Gram-(-) bacteria listed in Fig. 2, also have alanine and tyrosine re
sidues in these two positions and are inhibited by CpIMPDH in
hibitors.27 

In order to understand potential binding modes of MPA-anilides to 
CpIMPDH and HsIMPDH, molecular docking studies were conducted 
using Autodock Tools. Docking of 12 into CpIMPDH (PDB: 3KHJ) 
provided a low energy pose that satisfied the three key interactions of 
previously co-crystalized selective CpIMPDH inhibitors. Specifically, 
the phenol portion of MPA had a π-π interaction with the hypoxanthine 
of IMP, the anilide NH formed a hydrogen bond with Glu329 and the 
anilide extended into the adjacent subunit forming a π-π interaction 
with Tyr358′ (Fig. 3A). Additionally, the phenol OH formed an ionic- 
dipole interaction with Glu329. This binding mode is also consistent 
with several of the observed structure–activity relationship features, 
such as alkylation of the anilide or phenol disrupting interactions with 
Glu329. In addition, truncation of the linker would result in an inability 
of the inhibitor to extend into the other subunit to provide the critical π- 
π interaction with Tyr358′. Overlay of this docking model with the co- 
crystal structure of CpIMPDH•IMP•5 (PDB: 4RVB) further illustrates 
that 12 can readily be accommodated in a binding mode similar to 
selective CpIMPDH inhibitors (see Supporting Information, Fig. S1A).10 

Docking of 12 into hamster IMPDH2 (PDB: 1JR1), which has only 
eight non-binding site amino acid differences43 compared to 
HsIMPDH2, provided a low energy pose with similar interactions as 
MPA (7), including H-bonding of the anilide NH and phenol to Ser276 
in the NAD binding site and Gln441, respectively (Fig. 3B; for an 
overlay of the docked structure of 12 with hamster IMPDH2•IMP•7 see  
Supporting Information, Fig. S1B). The para-chlorophenyl occupies a 
modestly large pocket created by Thr252, His253, Phe282 and Ser275, 
as well as being within 3.2 Å of the methylene portion of this later 
residue’s side-chain. Interestingly, attempts to dock a CpIMPDH selec
tive inhibitor (e.g. 5) into hamster IMPDH2 did not produce reasonable 
binding modes with low binding energies (data not shown). This could 
result from the compound being less flexible and not being able to form 
a productive interaction with Ser276 in the NAD site. Collectively, these 
data elucidated an additional structural criterion for achieving 
CpIMPDH inhibitor selectivity: the inability to form interactions with 
Ser276. 

Since MPA anilides inhibit CpIMPDH, we also assessed inhibition of 
Mycobacterium tuberculosis (Mtb) IMPDH2 that likewise has alanine in 
the NAD loop and tyrosine in the A-site (Fig. 2). Similar to other 
active CpIMPDH inhibitors, compound 10 potently blocked 
MtbIMPDH2 (Ki,app = 0.060 µM). 

In conclusion, mycophenolic anilides were found that inhibit both 
CpIMPDH and HsIMPDH2 by incorporation of a molecular fragment 
from previously reported CpIMPDH inhibitors. Prior studies combined 
with molecular docking assessments revealed that selectivity for mi
croorganism IMPDHs (e.g. those with alanine in the NAD loop and 
Y358′ in the adjacent subunit) requires two distinct design elements: 1) 
interaction with the adjacent subunit via π-π interactions with Y358′ 
and 2) lack of interactions with Ser276 in the NAD binding site of 
HsIMPDH2. These two features provide further guidance for generating 
selective IMPDH inhibitors for a subset of susceptible microorganisms. 
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