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We describe the re-assignment of configuration previously ascribed to product diastereomers resultant
from imidazolidinone-catalyzed conjugate addition of 2-trimethylsiloxyfuran to trans-crotonaldehyde.
A modified procedure that uses a diphenylprolinol catalyst was subsequently developed to selectively
provide the ‘syn’ diastereomeric product in high enantiomeric excess on decagram scales.

� 2021 Elsevier Ltd. All rights reserved.
The catalyzed conjugate addition of 2-siloxyfurans to Michael
acceptors is a valuable method to prepare c-substituted buteno-
lides – a structural motif commonly observed in natural products
and synthetic drug substances [1]. Studies by Brown and co-work-
ers [2] demonstrated that chiral imidazolidinones could catalyze
asymmetric conjugate addition of siloxyfurans to enal acceptors.
Following that report, additional organocatalysts were shown
effective for the transformation [3]. As part of studies aimed at syn-
thesizing the pro-apoptotic natural product portimine [4], we
required scalable access to the (3S, 5R) enantiomer of butenolide
1, a ‘syn’ diastereomer resultant from adding 2(5H)-furanone (or
2-trimethylsiloxyfuran) to trans-crotonaldehyde (Fig. 1A).

Of the known syntheses of 1 [3a-c], only Brown and co-workers
reported [2] isolating the molecule in high diastereomeric and
enantiomeric excess. In our hands, however, imidazolidinone cat-
alyzed addition of 2-trimethylsiloxyfuran to trans-crotonaldehyde
gave two isomeric butenolides in a ratio of ~2:1. Moreover, data
originally reported for those products were inconsistent with that
expected when using trans-crotonaldehyde. Instead, it appeared to
reflect products derived from using 4-methyl-2-pentenal in the
reaction [9]. Adding to this puzzle was the fact that 1H NMR data
for isomers 1 prepared by others were conflicting (Fig. 1B) [3a-c].
Lastly, related reactions of 2(5H)-furanone derivatives with (E)-b-
methyl Michael acceptors gave mainly anti diastereomers [3a,5]
or were non-selective [3b,3c]. For our own studies to progress,
we needed to clarify these findings and develop an efficient,
selective and scalable synthesis of (3S, 5R)-1.
We synthesized racemic 1 using a procedure developed by
Yadav and co-workers for the addition of 2-trimethylsiloxyfuran
to enones [6]. Stirring 2-trimethylsiloxyfuran with crotonalde-
hyde in the presence of catalytic I2 gave (±)-1 with exquisite
stereocontrol (76%, dr > 20:1). When that material was reduced
under Luche conditions and the incipient alcohol treated with
NaH (THF, rt), one isomer of bicyclic tetrahydropyran 3 was iso-
lated, albeit in low yield. J-couplings and NOE data (see ESI for
details) obtained for 3 supported the stereochemistry drawn in
Scheme 1, thereby implying precursor (±)-1 was ‘anti’ (as
drawn). Further support for this assignment came from hydro-
genating (±)-1, oxidizing the product under Pinnick conditions
and coupling the resultant acid with 2-oxazolidone to afford
imide (±)-4. NMR spectral data for (±)-4 were identical to those
reported by Katsuki [5a].

Having identified the anti diastereoisomer of 1, we confirmed
the identity of the syn diastereomer through regioselective
Wacker–Tsuji oxidation [7] of (3S, 5S)-c-butyrolactone 5 [8] to
afford aldehyde 6. The 1H NMR spectrum of 6 was identical to that
obtained by hydrogenating the minor isomer of 1 obtained from
the Brown catalysis (Table 1, entry 1). Thus, the 2:1 mixture of
isomers generated using the Brown procedure favors the
anti-diastereomer, not the syn as reported. Our assignments
are in agreement with those made by Yanai and co-workers [3a]
and contrary to those made by Luo and co-workers. The major
diastereomer isolated by Luo is syn, not anti as reported [3b].

Confident in our relative stereochemical assignments, we next
sought to optimize the catalytic asymmetric synthesis of (3S,
5R)-1. We screened diastereoselectivity in the addition of 2-
trimethylsiloxyfuran to trans-crotonaldehyde using several
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Scheme 1. Syntheses of syn and anti 1 by non-organocatalyzed means.a Reagents
and conditions: (a) trans-crotonaldehyde (0.7 eq.), I2 (7 mol%), Et2O (0.07 M),
�78 �C, 76%, dr > 20:1; (b) CeCl3�7H2O (2.0 eq.), NaBH4 (2.0 eq.), MeOH (0.05 M),
0 �C, 60%; (c) NaH (2.0 eq.), THF (0.05 M), rt, 25%; (d) Pd(OH)2/C (3 mol%), H2

(balloon), MeOH (0.3 M), rt; (e) NaClO2 (5.0 eq.), NaH2PO4 (6.0 eq.), tBuOH:
amylene:H2O (1.5:1:1, 0.05 M), rt; (f) EDCI�HCl (1.4 eq.), oxazolidinone (1.3 eq.),
DMAP (1.15 eq.), CH2Cl2 (0.1 M), rt; 20% from (±)-anti-1; (g) Pd(PhCN)2Cl2 (7.5 mol
%), tBuONO (20 mol%), O2 (balloon), tBuOH (0.05 M), rt, 51% brsm.

Fig. 1. A) Butenolide 1 maps cleanly onto a segment of portimine. B) Data for
isomers 1 synthesized by organocatalytic methods were missing and, in part,
conflicting; aas originally assigned; bnot reported.

Table 1
Optimization studies.a

Entry Catalyst Acid Solvent drb (syn:anti)

1c 7 DCA CHCl3 1.0:2.1
2d 7 DNBA CHCl3 1.0:3.3
3 7 TfOH CHCl3 1.0:5.2
4e 7 TFA THF 2.5:1.0
5f 8a DNBA CH2Cl2 2.5:1.0
6f 8a DNBA THF 3.0:1.0
7f,g 8a TFA THF 4.0:1.0
8f 8b TFA THF 4.0:1.0
9f 8c TFA THF 4.3:1.0
10g,h 9 TFA THF 5.0:1.0
11g,i 9 TFA THF 5.5:1.0
12g,j 9 TFA THF 8.5:1.0

a Reagents and conditions: 2 (1.0 eq.), crotonaldehyde (3.0 eq.), cat. (20 mol%),
acid (20 mol%), H2O (2.0 eq.), solvent (0.1 M), �10 �C.

b dr measured by 1H NMR.
c DCA: dichloroacetic acid, reaction was performed with 5.0 eq. of H2O in 0.5 M of

CHCl3 at �78 �C.
d DNBA: 2,4-dinitrobenzoic acid.
e Parallel reactions were carried out at �10 �C and 50 �C. Both resulted in similar

selectivity.
f (3R, 5S)-1 was the major product.
g crotonaldehyde (5.0 eq.), H2O (3.0 eq.).
h The reaction was left at �20 �C overnight after 1 h at �10 �C.
i 10 mol% of 9 and 13 mol% of TFA was used.
j TFA (26 mol%), 2 was added over 7 h at �15 �C, er > 20:1, measured on a chiral

amine derivative by 1H NMR.
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organocatalysts under varied conditions (see Table 1). Imidazolidi-
none catalyst 7 [2] in the presence of co-catalytic protic acids uni-
formly gave poor diastereoselectivities, although the major isomer
did switch from anti to syn when TFA in THF was used (Entry 4).

A set of hydroxyproline-derived catalysts 8a-c were then syn-
thesized and their performance were examined. Under the condi-
tions shown in Table 1, each formed syn-1 as the major
diastereomer, although selectivities were modest (Entries 5–9).
Improvements came when simpler diphenylprolinol catalyst 9
was employed. At �20 �C in THF, 20 mol% 9 and TFA catalyzed for-
mation of syn and anti 1 in a 5:1 ratio (Entry 10). Selectivity was
not diminished when the catalyst loading was reduced to 10 mol
% (Entry 11). When siloxyfuran 2 was added slowly (7 h) to a stir-
red THF solution of crotonaldehyde containing catalyst 9 and TFA
at �15 �C, diastereoselectivity increased to 8.5:1 (Entry 12) [9].

This last procedure could be scaled to support our total synthe-
sis studies (Scheme 2). On 0.15 mol scale (0.1 M in THF), the reac-
tion was stirred at �15 �C for 1 h after the addition of 2 was
complete. The reaction was filtered through a pad of silica gel
and concentrated. The crude material was dissolved in MeOH
and hydrogenated over Pd(OH)2/C to give c-butyrolactone 6
(12.9 g, 54%, dr = 8.5:1) following chromatography. Isolated 6
showed [a]D23 = +30.8 (c = 0.1, CHCl3) and material synthesized pre-
viously from alkene 5 (Scheme 1) gave [a]D24 = +26.7 (c = 0.1,
CHCl3), confirming absolute stereochemistry as (3S, 5S). An enan-



Scheme 2. Scalable asymmetric synthesis of butyrolactone 6.a aReagents and
conditions: (a) 2 (1.0 eq.), crotonaldehyde (5.0 eq.), cat. (20 mol%), acid (26 mol%),
H2O (3.0 eq.), THF (0.1 M), �15 �C; (b) Pd(OH)2/C (3 mol%), H2 (balloon), MeOH
(0.3 M), rt; 54% over 2 steps.
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tiomeric ratio of >20:1 in 6 was inferred from 1H NMR analysis of
the diastereomeric products derived from reductive amination
with (S)-a-methylbenzylamine (see ESI).

In summary, we have firmly assigned relative stereochemistry
to diastereomeric products derived from conjugate addition of
2-trimethylsiloxyfuran to trans-crotonaldehyde. We have devel-
oped an iodine catalyzed version of the reaction that provides
the racemic anti diastereomer with high selectivity (dr > 20:1).
The optically active syn diastereomer is produced selectively on
scale using a diphenylprolinol catalyst. Attempts to elaborate (+)-
6 to portimine are ongoing and will be reported shortly.
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Appendix A. Supplementary data
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