

Subscriber access provided by Gothenburg University Library

Construction of Sulfonyl Oxabenzo[3.3.1]bicyclic Core via Cyclocondensation of #-Ketosulfones and o-Formyl Allylbenzenes

Nai-Chen Hsueh, Hsing-Yin Chen, and Meng-Yang Chang

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02425 • Publication Date (Web): 22 Nov 2017 Downloaded from http://pubs.acs.org on November 22, 2017

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

9

10 11

12 13

14

15 16

17 18 19

20 21 22

23

24

25

26 27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57 58 59

60

Construction of Sulfonyl Oxabenzo[3.3.1]bicyclic Core via Cyclocondensation of β-Ketosulfones and *o*-Formyl Allylbenzenes

Nai-Chen Hsueh,^a Hsing-Yin Chen^{*a} and Meng-Yang Chang^{*a,b}

^aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan ^bDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

Supporting Information Placeholder

NH₄OAc mediated domino Knoevenagel / Diels-Alder cyclocondensatio

ABSTRACT: NH₄OAc mediated domino Knoevenagel/Diels-Alder cyclocondensation of β -ketosulfones 1 and *o*-formyl allylbenzenes 2 provides sulfonyl oxabenzo[3.3.1]bicyclic core 4 in a cosolvent of toluene and HOAc (v/v =1/1) at reflux for 3 h. The intermediate 3 contains a chalcone motif. The uses of various ammonium salts and solvent systems are investigated for facile and efficient transformation. The plausible mechanisms have been proposed and the DFT calculations have been included.

Introduction

Recently, we developed a one-pot easy-operational route for the synthesis of diversified carbocyclic or heterocyclic benzofused frameworks by functionalization of β -ketosulfones $(\alpha$ -sulfonyl ketones, **1**)¹ or *o*-formyl allylbenzenes (*o*-allyl benzaldehydes, 2) building blocks under a series of domino benzannulation processes.² With receiving significant results, we wanted to investigate the possibility of the construction of novel core systems by the combination of two scaffolds via a single-step domino transformation. The domino reaction can reduce human effort, avoid reagent waste, combine multiple reactions, and save reaction time and cost.³ In accordance with the powerful route, Knoevenagel condensation of active α methylene compounds (for β -ketosulfones 1) with carbonyl compounds (for *o*-formyl allylbenzenes 2) in the presence of ammonium salts has been reported.^{4,5} In particular, due to carbonyl compounds associating with an o-allyl arm such that the resulting intermediate (E)-3 has a chalcone motif we can proceed with further intramolecular annulation to provide the bridged with unexpected skeleton 4 the oxabenzo[3.3.1]bicyclic core under single vessel conditions via a sequential intramolecular Diels-Alder cycloaddition (Scheme 1).

Scheme 1. Combination of β -Ketosulfones and *o*-Formyl Allylbenzenes

However, Knoevenagel condensations have been associated with Diels-Alder cycloadditions, Michael additions, and/or ene reactions for the preparation of highly multi-functionalized heterocycles.⁶⁻⁷ Although developed synthetic protocols have been extensively explored for diversified skeletons, most 1,3dicarbonyl compounds of the reported molecules were focused on β-ketoesters, β-diketones, and β-diesters. Among the present scaffolds derived from domino Knoevenagel condensation and the Diels-Alder cycloaddition route, a core structure having other β -carbonyl synthons is relatively rare, especially those with a sulforyl substituent $(Y = RSO_2)$.⁸ Herein, we describe a highly effective synthesis of the bridged benzofused heterocyclic core system 4 bearing a rigid conformer of (E)- β oxyvinyl sulfone with an electronic "push-pull" characteristic by a domino cyclocondensation route from readily available βketosulfones 1 and o-formyl allylbenzenes 2, as shown in Scheme 2.

Scheme 2. Cyclocondensation Route of 4

Results and Discussion

The initial study commenced with the treatment of model substrates **1a** (Ar = Ph, R = Tol, 0.5 mmol) and **2a** (Y = 1-HO-3-MeO, $Z^1 = Z^2 = H$, 0.5 mmol) with stoichiometric amounts of NH₄OAc (1.0 and 2.0 equivalents) in toluene at room temperature for 3 h as shown in Table 1. However, two conditions were unsuccessful (entries 1-2). When the reaction tempera-

ture was increased to reflux, 56 % and 42% yields of 4a were provided under Dean-Stark distillation conditions, respectively (entries 3-4). With the results in hand, by controlling 1.0 equivalent of NH₄OAc at reflux temperature (111 °C), elongating reaction times (3 \rightarrow 5 and 10 h, entries 5-6) did not provide better yields. Uncyclized 3a was isolated in a range of 16%-24% yields under a boiling toluene condition. However, when HOAc was added to the reaction mixture, the isolated vield of 4a was increased to 90% (entry 7). The result shows that this domino reaction proceeded well in the presence of HOAc. Using a cosolvent of toluene and HOAc (v/v, 1/1, 10 mL), we surveyed the effect of ammonium salts in constructing a bridged core structure, such as Et₄NOAc, Et₄NCl, nBu₄NF, NH₄F, and NH₄I. However, none of them obtained higher yields of **4a** than NH₄OAc. Elongating the alkyl chains (NH₄OAc \rightarrow Et₄NOAc), the yield of **4a** was decreased (68%, entry 8). Furthermore, after adjusting the anion from acetate to halide, no desired products were produced (entries 9-12). Next, other reactions (dioxane and xylene) were examined; however, the isolated yields were similar (72% and 79%) (entries 13-14). In entries 15-16, the concentrated (4 mL) and diluted (20 mL) solutions of toluene and HOAc produced lower yields (82% and 70%) than entry 7 (90%). From these observations, we conclude that NH₄OAc (1.0 equiv) provides optimal conditions (refluxing toluene/HOAc, 3 h) for one-pot cyclocondensation.

 Table 1. Reaction Conditions^a

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

54

55

56

57 58 59

60

Ph O Tol S	+ OH conc OMe	alts Tol So	OH Tol	Ph S O H	ОН
1	la 2a	4a	,	(<i>E</i>)-3a	
entry	ammonium salts (equiv)	solvent	temp (°C)	time (h)	4a $(\%)^{b}$
1	NH ₄ OAc (1.0)	toluene	25	3	C
2	NH ₄ OAc (2.0)	toluene	25	3	
3	NH ₄ OAc (1.0)	toluene	111	3	56 ^d
4	NH ₄ OAc (1.0)	toluene	111	3	42^{d}
5	NH ₄ OAc (1.0)	toluene	111	5	55^d
6	NH ₄ OAc (1.0)	toluene	111	10	50^d
7	NH ₄ OAc (1.0)	toluene/HOAc	118	3	90
8	Et ₄ NOAc (1.0)	toluene/HOAc	118	3	68
9	Et ₄ NCl (1.0)	toluene/HOAc	118	3	<i>c</i>
10	<i>n</i> Bu ₄ NF (1.0)	toluene/HOAc	118	3	
11	NH ₄ F (1.0)	toluene/HOAc	118	3	
12	NH ₄ I (1.0)	toluene/HOAc	118	3	
13	NH ₄ OAc (1.0)	dioxane/HOAc	118	3	72^e
14	NH ₄ OAc (1.0)	xylene/HOAc	145	3	79 ^f
15	NH ₄ OAc (1.0)	toluene/HOAc	118	3	82^g
16	NH ₄ OAc (1.0)	toluene/HOAc	118	3	70^h
^a Tł	ne reactions were	run on a 0.5 mmol	l scale v	with 1a .	2a (1.0

"The reactions were run on a 0.5 mmol scale with **1a**, **2a** (1.0 equiv), solvents (10 mL). ^{*b*}Isolated yields. ^{*c*}No reaction. ^{*d*}**3a** was isolated in a range of 16%-24% yields. ^{*e*}10% of **3a** was isolated. ^{*f*}Complex mixture was isolated (~8%). ^{*g*}4 mL of toluene/HOAc (v/v = 1/1). ^{*b*}20 mL of toluene/HOAc (v/v = 1/1).

To study the scope and limitations of this approach, 1 and 2were reacted with NH₄OAc to afford diversified 4, as shown in Table 2. With optimal conditions established (Table 1, entry 7), we found that this route allowed a direct dehydration/[4+2]annulation under mild conditions in moderate to good yields (73%-90%). Among entries 1~20, the efficient formation of 4a-4t showed that these substituents (for 1a-1n, Ar and R; for 2a-2f, Y and Z) did not affect the yield changes. For the electronic nature of aryl substituents (Ar) of 1, not only electronneutral but also electron-withdrawing and electron-donating groups were appropriate. For sulfonyl substituents (R) of 1, both aliphatic (Me and nBu) and aromatic groups were welltolerated. Different oxygenated groups (Y) and olefinic groups (Z) on 2 were also suitable to form core structures 4. For the overall domino Knoevenagel/Diels-Alder cyclocondensation process, we envisioned that the electronic effect played a very important facor for affecting the construction of oxabenzo[3.3.1]bicyclic core because a stronger electrondonating group (Y = 3-OH and 4-MeO) could increase the reactivity of allylbenzaldehyde skeleton such that the intramolecular Diels-Alder cycloaddition was triggered easily. Furthermore, the relative stereochemical structures of 4a, 4b, 4p and 4s were determined by single-crystal X-ray crystallography.

Table 2. Synthesis of 4^a

	$Ar_{0} + Original Constraints} + Original Constraint$	NH4OAC toluene / HOAC (1 / 1) reflux, 3 h	Z J Y
entry	1 , Ar =, R =	2 , Y =, Z =	$4, (\%)^{b}$
1	1a, Ph, Tol	2a , 3-HO-4-MeO, H	4a , 90
2	1b , 4-FC ₆ H ₄ , Tol	2a , 3-HO-4-MeO, H	4b , 83
3	1c, Tol, Tol	2a , 3-HO-4-MeO, H	4c , 84
4	1d , 4-MeOC ₆ H ₄ , Tol	2a , 3-HO-4-MeO, H	4d , 83
5	1e , 4-CF ₃ C ₆ H ₄ , Tol	2a , 3-HO-4-MeO, H	4e , 86
6	1f , 4-NO ₂ C ₆ H ₄ , Tol	2a , 3-HO-4-MeO, H	4f , 83
7	1g, 4-PhC ₆ H ₄ , Tol	2a , 3-HO-4-MeO, H	4g , 82
8	1h, 2-naphthyl, Tol	2a , 3-HO-4-MeO, H	4h , 84
9	1i , 3,4-Cl ₂ C ₆ H ₃ , Tol	2a , 3-HO-4-MeO, H	4i , 80
10	1 j, Ph, Ph	2a , 3-HO-4-MeO, H	4j , 87
11	1k , Ph, $4\text{-FC}_6\text{H}_4$	2a , 3-HO-4-MeO, H	4k , 83
12	11 , Ph, 4-MeOC ₆ H ₄	2a , 3-HO-4-MeO, H	41 , 87
13	1m , Ph, Me	2a , 3-HO-4-MeO, H	4m , 73
14	1n , Ph, <i>n</i> Bu	2a , 3-HO-4-MeO, H	4n , 76
15	1a , Ph, Tol	2b , 3,4-(MeO) ₂ , H	40 , 86
16	1c, Tol, Tol	2b , 3,4-(MeO) ₂ , H	4p , 89
17	1a , Ph, Tol	2c , 3- <i>n</i> BuO-4-MeO, H	4q , 84
18	1a , Ph, Tol	2d , 3- <i>c</i> C ₅ H ₉ O-4-MeO, H	4r , 88
19	1a , Ph, Tol	2e , 3,4-(MeO) ₂ , Me	4s , 80
20	1a, Ph, Tol	2f , 3-HO, H	4t , 78

^{*a*}The reactions were run on a 0.5 mmol scale with **1**, **2** (1.0 equiv), NH₄OAc (1.0 equiv), toluene/HOAc (v/v = 8/2, 10 mL), 3 h, reflux. ^{*b*}Isolated yields.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

As an extension of the one-pot route, cyclocondensations of β -diketones **10-1p** with **2a** were investigated next (Scheme 3). Treatment of 10 (R = Ph) with 2a provided sole 4u in a 57% yield. However, reaction of unsymmetrical 1p (R = Me) with 2a produced only one isomer 4v (62%) along with one uncyclized 3v (10%) due to less repulsion between acetyl and o-allylaryl groups on 3v. Another pair of 4v-1 and 3v-1 was not detected. By the steric effect, 3v was genrated as (E)configuration and was cyclized to 4v becuase phenylketone was a bulkier group than methylketone. For the phenomenon of steric hindrance, our experimental results were also similar to Swenson and Zhang reports.^{8b} The related configuration was confirmed through ¹H NMR spectrum analysis. The methyl group of 4v-1 (a α -methyl ketone signal) should exhibit one singlet at nearly δ 2.40-2.70. However, in the methyl group of 4v (a vinylic signal) one singlet appeared at δ 1.58. From the two positions of two methyl group signals, we concluded that the predicted structure of 4v was reasonable. For the β -ketoester **1q**, only a 26% yield of **4w** was generated since the ester group was unstable under refluxing acidic conditions.

Scheme 3. Synthesis of 4u, 4v, 3v and 4w

2a

1a. R = OE1

NH₄OA0

toluene / HOAc (1 / 1) reflux, 3 h

OMe

Þh

(Z)-3v-1 (not observed) (E)-3v (10%, preferred)

4v (62%)

repulsion

4u, R = Ph (57%) 4v-1, R = Me (ND

4w, R = OEt (26%)

As shown in Scheme 4, by changing 2-allyl to 2-vinyl group, a one-pot domino reaction was studied. Using a boiling NaOH methanolic solution, olefin migration of **2b** was furnished to **2g**.¹⁰ In particular, when **1a** was reacted with **2g** by the above conditions, only a 78% yield of ynone **4x-1** was generated and the predicted oxabenzo[3.2.1]bicyclic core **4x** was not produced via the NH₄OAc mediated domino Knoevenagel condensation and dehydrosulfonylation under refluxing conditions.¹¹

Scheme 4. Synthesis of 4x-1

After changing NH₄OAc to *t*-BuOK, no desired bridged skeleton **4** was observed. Unexpectedly, a pair of isomers, **5a** and **5b**, with a dihydronaphthalene skeleton was isolated in 30% and 28% yields, respectively via a *t*-BuOK promoted reaction of **1a** with **2b** in refluxing toluene for 3 h (Scheme 5).¹² The initial event should show that **3b** was formed by

Knoevenagel condensation of 1a with 2a. After deprotonation of the benzylic proton on 3b by the *t*-butoxide ion, two isomers, 5a and 5b were obtained in a ratio of 1:1 via an intramolecular tandem deprotonation/olefin migration/Michael addition sequence.

Scheme 5. Synthesis of 5a-5b

Furthermore, when NaOAc was chosen as the base for a one-pot reaction of **1m** with **2a**, the chalcone skeleton **3c** was isolated in a 60% yield along with two starting materials **1m** and **2a**, and trace amounts of **4m** (Scheme 6). The results showed that **3c** was produced as the major product in the presence of the buffer solution of the NaOAc/HOAc system. The structure of **3c** was determined by single-crystal X-ray crystal-lography.⁹

Scheme 6. Synthesis of 3c

In contrast, the domino reaction of **1a** with **2h** (P = Me) or **2i** (P = Ph) provided the tricyclic *cis*-fused **6a** and **6b** via a highly regioselective process in 83% and 82% yields, respectively under NH₄OAc mediated conditions (Scheme 7). The structural frameworks of **6a** and **6b** were determined by single-crystal X-ray crystallography.⁹ The results are in agreement with Tietze reports.¹³

Scheme 7. Synthesis of 6a-6b

Density functional theory (DFT) calculations were performed to provide the rationale behind the different reaction behavior induced by the terminal substitution on the dienophile moiety (P group). The endo- and exo-cycloaddition of **1a** with **2a** (P = H), with **2h** (P = Me), and with **2i** (P = Ph) starting from the corresponding benzylidene intermediates were calculated (Figure 1). The results show that the endocycloaddition product (i.e., bridged product) is thermodynamically more stable than the exo-cycloaddition product (i.e., tricyclic fused product) for all three systems. However, from a kinetic point of view, the reaction **1a** + **2a** favors endocycloaddition path whereas the reactions **1a** + **2h** and **1a** + **2i** favor exo-cycloaddition path. In other words, the observed

Figure 2. The optimized geometries of the transition states and the frontier molecular orbitals of diene and dienophile moieties. The red wave line indicates the bond at which the molecule is divided into diene and dienophile moieties.

Figure 1. DFT calculated free energy profile. The unit is kcal/mol.

regioselectivity is a consequence of kinetic control. Molecular orbital analysis reveals that the cycloaddition reaction is conducted through the interaction between the LUMO of diene and the HOMO of dienophile, namely the electron flow is from dienophile to diene. The energy gap between the HOMO of diene and the LUMO of dienophile is relatively large and, therefore, the role of the corresponding interaction in the cycloaddition reaction is excluded. The LUMO of diene moiety and the HOMO of dienophile moiety fixed at the transition state geometry are depicted in Figure 2. It can be seen that the LUMO of diene always has the largest distribution on C_c atom (36-37%). In contrast, the HOMO distribution of dienophile is affected by the terminal substitution. Without substitution (P = H), the terminal C_e atom possesses a larger HOMO coefficient (50%). As a consequence, the relative orientation between diene and dienophile at the transition state TS_{endo} maximizes the orbital overlap through the $C_{\text{c}}{\cdots}C_{\text{e}}$ interaction. On the contrary, the introduction of electron donating groups at terminal Ce pushes the HOMO distribution towards the Cd atom, leading to a larger HOMO coefficient on the C_d atom (44% for P = Me and 32% for P = Ph). Under this circumstance, the optimal orbital overlap between the LUMO of diene and the HOMO of dienophile occurs at the transition state TS_{exo} (C_c...C_d interaction) rather than at TS_{endo} . These computational results suggest that the substitution at the terminal carbon of dienophile moiety (P group) is a key factor for the product distribution.

Scheme 8. Reaction of 1m with 2j and synthesis of 4aa

After adjusting aldehyde group to ketone group, a one-pot domino reaction was examined (Scheme 8). However, when 1m was treated with 2j, no condensed product 3d was detected under similar conditions. Ever after elongating the time to 30 h, no reactions were observed. The results show that the carbonyl motif of ketone 2j possessed poor reactivity for 1m such that the Knoevenagel condensation could not be triggered. For the present optimal cyclocondensation condition, the o-allyl benzoketone substrate was the limitation. Furthermore, after exchanging the methyl group (R, methanesulfonyl) and the phenyl (Ar, phenylketone) group on β -arylketo alkylsulfone 1m, 1r with the benzenesulfonyl group and the methylketone group was examined. By the one-pot reaction of 1r and 2a, 4aa was produced in an 80% yield. From the results, we understand that β-alkylketo arenesulfone is well-applied to domino Knoevenagel/Diels-Alder cyclocondensation.

In summary, we have developed a NH₄OAc promoted onepot route for the synthesis of sulfonyl oxabenzo[3.3.1]bicyclic core **4** by a domino Knoevenagel condensation/Diels-Alder cycloaddition of β -ketosulfones **1** and *o*-formyl allylbenzenes **2** in a cosolvent of toluene and HOAc (v/v =1/1) at reflux for 3 h in moderate to good yields. Chalcones **3** were the key intermediates. The one-pot process provides a series of multifunctionalized **4** via a cascade pathway of one C-C and two C-C bond formations. The structures of the key products were confirmed by X-ray crystallography. The plausible mechanisms have been proposed and the density functional theory (DFT) calculations have been included. Further investigations regarding the synthetic application of β -ketosulfones **1** and *o*formyl allylbenzenes **2** will be conducted and published in due course.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Experimental Section

General. All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

A representative synthetic procedure of skeleton 2 is as follows: Sodium sulfinates (RSO₂Na, 6.0 mmol) was added to a solution of substituted 2-bromoacetophenones (5.0 mmol) in a cosolvent of 1,4-dioxane and water (20 mL, v/v = 1:1) at rt. The reaction mixture was stirred at reflux for 6 h. The reaction mixture was cooled to rt, concentrated, and partitioned with CH2Cl2 (3 x 30 mL) and water (30 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude β -ketosulfones under reduced pressure. Crude β -ketosulfones 2 were recrystallized from EtOAc in nearly quantitative yields. β -Ketosulfones 2 are known compounds and the analytical data are consistent with those in previous literature.¹⁴

A representative synthetic procedure of skeleton 4 is as follows: NH₄OAc (39 mg, 0.5 mmol) was added to a solution of 1 (0.5 mmol) in a cosolvent of toluene and HOAc (v/v = 1/1, 10 mL) at rt. The reaction mixture was stirred at rt for 10 min under Dean-Stark distillation apparatus. 2 (0.5 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $8/1 \sim 4/1$) afforded 4.

5-Methoxy-11-phenyl-12-(toluene-4-sulfonyl)-10-oxa-

 $tricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol$ (4a). Yield = 90% (202 mg); Colorless solid; mp = 201-203 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆ $H_{25}O_5S$ 449.1423, found 449.1424; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.24 (m, 2H), 7.17-7.13 (m, 2H), 7.05-7.03 (m, 2H), 6.88 (s, 4H), 6.78 (d, J = 8.0 Hz, 1H), 5.77 (s, 1H), 5.09-5.06 (m, 1H), 4.43-4.41 (m, 1H), 3.90 (s, 3H), 3.18 (dd, J = 5.2, 19.6 Hz, 1H) 3.10 (d, J = 19.6 Hz, 1H), 2.26(s, 3H), 2.19-2.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 144.7, 143.4, 142.3, 134.0, 133.6, 133.1, 129.6 (2x), 129.1, 128.6 (2x), 127.3 (2x), 126.8 (2x), 120.1, 119.3, 117.9, 108.4, 70.7, 56.1, 32.6, 30.4, 27.7, 21.3. Single-crystal X-Ray diagram: crystal of compound 4a was grown by slow diffusion of EtOAc into a solution of compound 4a in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, a = 10.3973(5) Å, b = 11.4451(5) Å, c = 18.3533(9) Å, V = 2161.19(18) Å³, Z = 4, $d_{\text{calcd}} = 1.378 \text{ g/cm}^3$, F(000) = 944, 2θ range 2.103~26.408°, R indices (all data) R1 = 0.0382, wR2 = 0.0879.

3-(2-Allyl-3-hydroxy-4-methoxyphenyl)-1-phenyl-2-

(toluene-4-sulfonyl)propenone (**3a**). For Table 1, entry 3: Yield = 16% (37 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₅O₅S 449.1423, found 449.1430; ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 7.79-7.76 (m, 4H), 7.45-7.41 (m, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.28-7.25 (m, 2H), 6.60 (d, J = 8.4 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 6.02-5.92 (m, 1H), 5.73 (br s, 1H), 5.16 (dq, J = 1.6, 10.0 Hz, 1H), 5.10 (dq, J = 1.6, 17.2 Hz, 1H), 3.74 (s, 3H), 3.63 (d, J = 5.6 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.7, 148.2, 144.5, 143.5, 140.2, 138.8, 137.3, 135.8, 135.3, 133.9, 129.7 (4x), 128.6 (2x), 128.4 (2x), 125.5, 124.5, 122.0, 116.0, 108.1, 55.8, 30.4, 21.6.

11-(4-Fluorophenyl)-5-methoxy-12-(toluene-4-sulfonyl)-10oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraen-6-ol (**4b**). Yield = 83% (193 mg); Colorless solid; mp = 176-178 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H_{1}^{+} calcd for $C_{26}H_{24}FO_5S$ 467.1329, found 467.1332; ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, J = 8.0 Hz, 1H), 7.06-7.01 (m, 2H), 6.93-6.88 (m, 4H), 6.87-6.81 (m, 2H), 6.77 (d, J = 8.4 Hz, 1H), 5.79 (br s, 1H), 5.09-5.06 (m, 1H), 4.41-4.40 (m, 1H), 3.90 (s, 3H), 3.18 (dd, J = 5.2, 19.2 Hz, 1H), 3.08 (d, J = 19.2 Hz, 1H), 2.28 (s, 3H), 2.22-2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.1 (d, J = 247.9 Hz), 160.7, 144.7, 143.4, 142.5, 139.9, 132.9, 131.8 (d, J = 8.3 Hz, 2x), 129.6 (d, *J* = 3.8 Hz), 128.7 (2x), 126.7 (2x), 120.1, 119.7, 117.8, 114.3 (d, J = 21.2 Hz, 2x), 108.4, 70.8, 56.1, 32.6, 30.4, 27.7, 21.3.Single-crystal X-Ray diagram: crystal of compound 4b was grown by slow diffusion of EtOAc into a solution of compound 4b in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 2/c, a = 24.9437(14) Å, b = 8.7955(5) Å, c = 11.5489(6) Å, V= 2526.1(2) Å³, Z = 2, d_{calcd} = 1.338 g/cm³, F(000) = 1060, 2θ range $0.819 \sim 26.408^{\circ}$, R indices (all data) R1 = 0.0444, wR2 = 0.1185.

5-Methoxy-12-(toluene-4-sulfonyl)-11-p-tolyl-10-

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (**4**c). Yield = 84% (194 mg); Colorless solid; mp = 152-154 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₇H₂₇O₅S 463.1579, found 463.1578; ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.4 Hz, 1H), 6.99-6.89 (m, 8H), 6.77 (d, *J* = 8.4 Hz, 1H), 5.86 (s, 1H), 5.07-5.04 (m, 1H), 4.40-4.38 (m, 1H), 3.87 (s, 3H), 3.16 (dd, *J* = 4.8, 19.2 Hz, 1H), 3.09 (d, *J* = 18.8 Hz, 1H), 2.32 (s, 3H), 2.28 (s, 3H), 2.16-2.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.9, 144.6, 143.3, 142.2, 140.0, 139.1, 133.0, 130.7, 129.3 (2x), 128.4 (2x), 127.8 (2x), 126.7 (2x), 119.9, 118.7, 117.9, 108.3, 70.5, 56.0, 32.5, 30.4, 27.6, 21.2 (2x).

5-Methoxy-11-(4-methoxyphenyl)-12-(toluene-4-sulfonyl)-10-oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (4d). Yield = 83% (198 mg); Colorless solid; mp = 158-160 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ for C₂₇H₂₇O₆S 479.1528, found 479.1530; ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.92-6.87 (m, 4H), 6.77 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 8.8 Hz, 2H), 5.79 (s, 1H), 5.07-5.04 (m, 1H), 4.41-4.39 (m, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.17 (dd, J = 5.2, 19.2 Hz, 1H), 3.08 (d, J = 19.2 Hz, 1H), 2.26 (s, 3H), 2.172.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 160.3, 144.6, 143.4, 142.2, 140.1, 133.2, 131.1 (2x), 128.5 (2x), 126.7 (2x), 125.9, 120.0, 119.0, 117.9, 112.6 (2x), 108.4, 70.6, 56.1, 55.2, 32.6, 30.5, 27.7, 21.3.

5-Methoxy-12-(toluene-4-sulfonyl)-11-(4-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

58 59

60

trifluoromethylphenyl)-10-oxatricyclo[7.3.1.0^{2.7}]*trideca*-2,4,6,11-*tetraen-6-ol* (*4e*). Yield = 86% (222 mg); Colorless solid; mp = 203-205 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for $C_{27}H_{24}F_{3}O_{5}S$ 517.1297, found 517.1302; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 1H), 5.90 (s, 1H), 5.09 (s, 1H), 4.40 (s, 1H), 3.88 (s, 3H), 3.18 (dd, *J* = 5.2, 19.6 Hz, 1H), 3.11 (d, *J* = 19.6 Hz, 1H), 2.27 (s, 3H), 2.19-2.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 144.8, 143.5, 142.7, 139.5, 137.1, 132.5, 130.9 (q, *J* = 32.6 Hz), 130.0 (2x), 128.7 (2x), 126.7 (2x), 124.1 (q, *J* = 3.7 Hz, 2x), 123.7 (d, *J* = 270.7 Hz), 120.1, 119.9 (2x), 108.4, 71.0, 56.0, 32.6, 30.2, 27.5, 21.2.

5-*Methoxy*-11-(4-*nitrophenyl*)-12-(*toluene*-4-*sulfonyl*)-10oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (4f). Yield = 83% (205 mg); Colorless solid; mp = 204-206 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₆H₂₄NO₇S 494.1274, found 494.1277; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.8 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.82 (br s, 1H), 5.12-5.10 (m, 1H), 4.34-4.32 (m, 1H), 3.90 (s, 3H), 3.21-3.08 (m, 2H), 2.30 (s, 3H), 2.12 (t, *J* = 2.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 148.0, 144.8, 143.5, 143.2, 140.0, 139.5, 132.2, 130.8 (2x), 129.0 (2x), 126.7 (2x), 122.4 (2x), 120.2, 120.0, 117.6, 108.5, 71.3, 56.1, 32.6, 30.5, 27.5, 21.4.

11-Biphenyl-4-yl-5-methoxy-12-(toluene-4-sulfonyl)-10oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (**4g**). Yield = 82% (215 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for $C_{32}H_{29}O_5S$ 525.1736, found 525.1733; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.64 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.51-7.42 (m, 5H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.10 (dd, *J* = 1.6, 8.4 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 5.81 (s, 1H), 5.12 (d, *J* = 1.6 Hz, 1H), 3.15 (d, *J* = 18.8 Hz, 1H), 2.63-2.20 (m, 1H), 2.17 (s, 3H), 2.14-2.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 144.7, 143.4, 142.3, 139.9, 133.2, 133.1, 132.1, 130.8, 129.8 (2x), 128.4 (2x), 128.3 (2x), 127.5, 126.9, 126.8 (3x), 126.3, 126.0, 120.1, 119.8, 117.9, 108.4, 70.8, 56.1, 32.7, 30.4, 27.8, 21.2.

47 5-Methoxy-11-naphthalen-2-yl-12-(toluene-4-sulfonyl)-10oxa-tricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraen-6-ol 48 (4h). Yield = 84% (209 mg); Colorless solid; mp = 167-169 °C 49 (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) 50 m/z: [M + H]⁺ calcd for C₃₀H₂₇O₅S 499.1579, found 499.1577; 51 ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.0 Hz, 1H), 7.63 52 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.51-7.42 (m, 53 3H), 7.29 (d, J = 8.0 Hz, 1H), 7.10 (dd, J = 1.6, 8.4 Hz, 1H), 54 6.80 (d, J = 8.4 Hz, 2H), 6.79 (s, 1H), 6.68 (d, J = 8.4 Hz, 2H), 55 5.81 (s, 1H), 5.13-5.11 (m, 1H), 4.49 (q, J = 2.8 Hz, 1H), 3.91 56 (s, 3H), 3.22 (dd, J = 5.2, 19.6 Hz, 1H), 3.15 (d, J = 19.2 Hz, (a, 31), 5.22 (a, 3 = 5.2, 12.6 m, 11), 1.6 (a, 3 = 12.4, 11), 1.1, 57

CDCl₃): δ 161.6, 144.7, 143.5, 142.3, 139.9, 133.2, 133.1, 132.1, 130.8, 129.8, 128.4 (2x), 128.3, 127.5, 126.9, 126.81, 126.78 (2x), 126.3, 126.0, 120.1, 119.8, 118.0, 108.4, 70.8, 56.1, 32.7, 30.4, 27.8, 21.2.

11-(3,4-Dichlorophenyl)-5-methoxy-12-(toluene-4-

sulfonyl)-10-oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6ol (4i). Yield = 80% (206 mg); Colorless solid; mp = 194-196 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₃Cl₂O₅S 517.0643, found 517.0648; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.06 (dd, J = 2.0, 8.4 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.83 (d, J =2.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.81 (s, 1H), 5.09-5.07 (m, 1H), 4.40 (q, J = 1.6 Hz, 1H), 3.90 (s, 3H), 3.17 (dd, J =5.2, 19.2 Hz, 1H), 3.08 (d, J = 19.2 Hz, 1H), 2.31 (s, 3H), 2.13 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 144.8, 143.5, 143.1, 139.5, 133.5, 133.2, 132.5, 131.6, 131.1, 129.4, 129.3, 128.8 (2x), 126.8 (2x), 120.6, 120.0, 117.7, 108.5, 71.1, 56.1, 32.6, 30.3, 27.6, 21.3.

12-Benzenesulfonyl-5-methoxy-11-phenyl-10-

oxatricyclo[7.3.1.0^{2,7}]*trideca*-2,4,6,11-*tetraen*-6-*ol* (**4***j*). Yield = 87% (189 mg); Colorless solid; mp = 210-212 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₅H₂₃O₅S 435.1266, found 435.1269; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.15-6.98 (m, 8H), 6.78 (d, *J* = 8.4 Hz, 1H), 5.78 (s, 1H), 5.10-5.08 (m, 1H), 4.45 (q, *J* = 2.8 Hz, 1H), 3.91 (s, 3H), 3.19 (dd, *J* = 5.6, 19.2 Hz, 1H), 3.10 (d, *J* = 19.2 Hz, 1H), 2.22-2.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 144.7, 143.5, 142.8, 133.4, 133.1, 131.6, 129.6 (2x), 129.2, 128.0 (2x), 127.3 (2x), 126.7 (2x), 120.1, 119.1, 117.9, 108.4, 70.8, 56.1, 32.6, 30.3, 27.7.

12-(4-Fluorobenzenesulfonyl)-5-methoxy-11-phenyl-10oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraen-6-ol (**4**k). Yield = 83% (188 mg); Colorless solid; mp = 181-183 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m*/z: [M + H]⁺ calcd for C₂₅H₂₂FO₅S 453.1172, found 453.1174; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.18-7.15 (m, 2H), 7.04-7.02 (m, 2H), 6.94-6.90 (m, 2H), 6.78 (d, *J* = 8.4 Hz, 1H), 6.74-6.69 (m, 2H), 5.82 (s, 1H), 5.11-5.09 (m, 1H), 4.45 (q, *J* = 3.2 Hz, 1H), 3.90 (s, 3H), 3.20 (dd, *J* = 5.6, 19.6 Hz, 1H), 3.10 (d, *J* = 19.6 Hz, 1H), 2.24-2.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 164.3 (d, *J* = 252.4 Hz), 162.1, 144.7, 143.5, 138.8, 133.3, 133.0, 129.6 (2x), 129.4 (d, *J* = 9.1 Hz, 2x), 129.3, 127.4 (2x), 119.9, 119.3, 117.9, 115.0 (d, *J* = 22.0 Hz, 2x), 108.3, 70.8, 56.1, 32.6, 30.3, 27.7.

5-Methoxy-12-(4-methoxybenzenesulfonyl)-11-phenyl-10oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (**4**). Yield = 87% (202 mg); Colorless solid; mp = 199-201 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₅O₆S 465.1372, found 465.1372; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.23 (m, 2H), 7.17-7.13 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 8.8 Hz, 2H), 6.00 (br s, 1H), 5.04 (d, *J* = 1.6 Hz, 1H), 4.41 (d, *J* = 1.6 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.17 (dd, *J* = 5.2, 19.6 Hz, 1H), 3.08 (d, *J* = 19.2 Hz, 1H), 2.17-2.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.8, 161.2, 144.5, 143.3, 134.4, 133.4, 132.9, 129.4 (2x), 128.9

32

33

34

35

36

37

38

39

40

41

58 59

60

128.6 (2x), 127.1 (2x), 119.7, 119.3, 117.8, 113.0 (2x), 108.2, 70.4, 55.8, 55.2, 32.4, 30.2, 27.5.

12-Methanesulfonyl-5-methoxy-11-phenyl-10-

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (4m). Yield = 73% (136 mg); Colorless solid; mp = 203-205 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₁O₅S 373.1110, found 373.1112; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.33 (m, 5H), 7.07 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.82 (br s, 1H), 5.15-5.12 (m, 1H), 4.35 (q, J = 3.2 Hz, 1H), 3.88 (s, 3H), 3.24 (dd, J = 5.2, 19.6 Hz, 1H), 3.16 (d, J = 19.2 Hz, 1H), 2.37 (s, 3H), 2.24 (dt, J = 3.2, 13.2 Hz, 1H), 2.13-2.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5, 144.7, 143.6, 133.9, 133.2, 129.6, 129.2 (2x), 127.7 (2x), 119.0, 118.2, 117.8, 108.3, 70.7, 56.0, 45.0, 32.6, 30.3, 27.4.

12-(Butane-1-sulfonyl)-5-methoxy-11-phenyl-10-

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-6-ol (**4n**). Yield = 76% (157 mg); Colorless solid; mp = 156-158 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₃H₂₇O₅S 415.1579, found 415.1580; ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.33 (m, 5H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 5.79 (s, 1H), 5.15-5.12 (m, 1H), 4.31 (q, *J* = 3.2 Hz, 1H), 3.87 (s, 3H), 3.23 (dd, *J* = 5.2, 19.2 Hz, 1H), 3.16 (d, *J* = 19.2 Hz, 1H), 2.41-2.34 (m, 1H), 2.29-2.20 (m, 2H), 2.13-2.09 (m, 1H), 1.29-1.19 (m, 2H), 1.11-1.02 (m, 2H), 0.66 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 144.7, 143.5, 133.8, 133.2, 129.7, 129.4 (2x), 127.7 (2x), 119.5, 117.9, 117.1, 108.3, 70.6, 56.0, 55.4, 32.6, 30.2, 27.5, 23.9, 21.2, 13.3.

5,6-Dimethoxy-11-phenyl-12-(toluene-4-sulfonyl)-10-

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraene (**4o**). Yield = 86% (199 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₇H₂₇O₅S 463.1579, found 463.1580; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.4 Hz, 1H), 7.30-7.25 (m, 1H), 7.17-7.13 (m, 2H), 7.05-7.02 (m, 2H), 6.88 (s, 4H), 6.83 (d, *J* = 8.4 Hz, 1H), 5.07-5.04 (m, 1H), 4.40 (q, *J* = 3.2 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.22 (dd, *J* = 5.2, 19.6 Hz, 1H), 3.13 (d, *J* = 19.6 Hz, 1H), 2.26 (s, 3H), 2.18-2.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 150.9, 146.9, 142.3, 139.9, 133.5, 132.7, 129.5 (2x), 129.1, 128.6 (2x), 127.2 (2x), 126.7 (2x), 125.6, 124.5, 119.2, 110.3, 70.8, 59.8, 55.7, 32.9, 30.4, 27.6, 21.2.

5,6-Dimethoxy-12-(toluene-4-sulfonyl)-11-p-tolyl-10-

42 $oxatricyclo[7.3.1.0^{2.7}]$ trideca-2,4,6,11-tetraene (**4p**). Yield = 43 89% (212 mg); Colorless solid; mp = 179-181 °C (recrystal-44 lized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + 45 H_{29}^{+} calcd for $C_{28}H_{29}O_5S$ 477.1736, found 477.1735; ¹H NMR 46 (400 MHz, CDCl₃): δ 7.41 (d, J = 8.4 Hz, 1H), 6.99-6.88 (m, 47 8H), 6.82 (d, J = 8.4 Hz, 1H), 5.05-5.03 (m, 1H), 4.37-4.35 (m, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.20 (dd, *J* = 5.2, 19.2 Hz, 1H), 48 3.12 (d, J = 19.2 Hz, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 2.15-2.0549 (m, 2H); 13 C NMR (100 MHz, CDCl₃): δ 162.0, 150.9, 146.9, 50 142.3, 140.1, 139.3, 132.8, 130.7, 129.4 (2x), 128.6 (2x), 51 127.9 (2x), 126.8 (2x), 125.7, 124.5, 118.8, 110.3, 70.7, 59.9, 52 55.8, 33.0, 30.5, 29.69, 21.33 (2x). Single-crystal X-Ray dia-53 gram: crystal of compound **4p** was grown by slow diffusion of 54 EtOAc into a solution of compound 4p in CH₂Cl₂ to yield 55 colorless prisms. The compound crystallizes in the monoclinic 56 crystal system, space group P 21, a = 11.0102(3) Å, b =57 9.1251(2) Å, c = 11.4970(3) Å, V = 1154.80(5) Å³, Z = 2, d_{calcd}

= 1.371 g/cm^3 , F(000) = 504, 2θ range $1.772 \sim 26.373^\circ$, R indices (all data) R1 = 0.0359, wR2 = 0.0760.

6-Butoxy-5-methoxy-11-phenyl-12-(toluene-4-sulfonyl)-10oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraene (**4q**). Yield = 84% (212 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₃₀H₃₃O₅S 505.2049, found 505.2047; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.4 Hz, 1H), 7.29-7.25 (m, 1H), 7.17-7.13 (m, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.87-6.81 (m, 5H), 5.06-5.04 (m, 1H), 4.41 (q, J = 1.6 Hz, 1H), 4.06-4.00 (m, 1H), 3.95-3.90 (m, 1H), 3.86 (s, 3H), 3.22 (dd, J = 5.2, 7.6 Hz, 1H), 3.15 (d, J = 19.2 Hz, 1H), 2.25 (s, 3H), 2.19-2.08 (m, 2H), 1.78-1.70 (m, 2H), 1.55-1.46 (m, 2H), 0.97 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 151.0, 146.2, 142.2, 139.9, 133.4, 132.7, 129.5 (2x), 129.1, 128.5 (2x), 127.2 (2x), 126.7 (2x), 125.7, 124.2, 119.3, 110.3, 72.0, 70.8, 55.8, 33.2, 32.4, 30.4, 27.6, 21.2, 19.2, 13.9.

6-*Cyclopentyloxy*-5-*methoxy*-11-*phenyl*-12-(*toluene-4-sulfonyl*)-10-oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraene (*4r*). Yield = 88% (227 mg); Colorless solid; mp = 134-136 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₃₁H₃₃O₅S 517.2049, found 517.2044; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 8.4 Hz, 1H), 7.29-7.24 (m, 1H), 7.16-7.12 (m, 2H), 7.00-6.98 (m, 2H), 6.84-6.79 (m, 5H), 5.04-5.01 (m, 1H), 4.99-4.95 (m, 1H), 4.40 (q, *J* = 3.2 Hz, 1H), 3.85 (s, 3H), 3.18 (dd, *J* = 5.2, 19.2 Hz, 1H), 3.09 (d, *J* = 19.2 Hz, 1H), 2.24 (s, 3H), 2.20-2.07 (m, 2H), 1.84-1.69 (m, 6H), 1.65-1.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 150.8, 144.9, 142.1, 139.9, 133.4, 132.7, 129.5 (2x), 129.0, 128.4 (2x), 127.2 (2x), 126.6 (2x), 126.1, 123.8, 119.4, 110.4, 83.5, 70.8, 55.7, 33.6, 33.0, 32.7, 30.5, 27.6, 23.62, 23.56, 21.2.

5,6-Dimethoxy-8-methyl-11-phenyl-12-(toluene-4-sulfonyl)-10-oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraene (**4**s). Yield = 80% (190 mg); Colorless solid; mp = 147-149 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H_{28}^{+} calcd for $C_{28}H_{29}O_5S$ 477.1736, found 477.1741; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.4 Hz, 1H), 7.29-7.25 (m, 1H), 7.17-7.13 (m, 2H), 7.04-7.99 (m, 4H), 6.94-6.91 (m, 2H), 6.83 (d, J = 8.4 Hz, 1H), 4.57 (dd, J = 2.0, 3.6 Hz, 1H), 4.37 (br s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.41 (q, J = 7.2 Hz, 1H), 2.40 (ddd, J = 0.8, 3.6, 12.8 Hz, 1H), 2.29 (s, 3H), 1.99-1.94 (m, 1H), 1.26 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 151.3, 147.9, 142.4, 140.1, 133.7, 131.2, 131.0, 129.4 (2x), 129.2, 128.7 (2x), 127.3 (2x), 126.8 (2x), 124.4, 119.5, 110.8, 77.8, 60.7, 55.7, 37.4, 31.0, 24.0, 21.4, 19.4. Single-crystal X-Ray diagram: crystal of compound 4s was grown by slow diffusion of EtOAc into a solution of compound 4s in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, a = 12.0995(7) Å, b = 11.0442(6) Å, c =18.1654(10) Å, V = 2385.7(2) Å³, Z = 4, $d_{calcd} = 1.327$ g/cm³, $F(000) = 1008, 2\theta$ range 1.874~26.413°, R indices (all data) R1 = 0.0503, wR2 = 0.1051.

11-Phenyl-12-(toluene-4-sulfonyl)-10-oxa-

tricyclo[7.3.1.0^{2,7}]*trideca*-2,4,6,11-*tetraen*-6-ol (**4***t*). Yield = 78% (163 mg); Colorless solid; mp = 157-158 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₅H₂₃O₄S 419.1317, found 419.1315; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.26 (m, 3H), 7.17-7.13 (m, 2H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.04-7.02 (m, 2H), 6.90-6.85 (m, 3H), 6.87 (br s, 1H), 6.66 (dd, J = 0.8, 8.0 Hz, 1H), 5.10-5.08 (m, 1H), 4.47 (dd, J = 3.2, 4.8 Hz, 1H), 3.14 (dd, J = 5.6, 19.2 Hz, 1H), 3.05 (d, J = 19.2 Hz, 1H), 2.26 (s, 3H), 2.19-2.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.2, 154.0, 142.4, 141.1, 139.8, 133.5, 129.6 (2x), 129.2, 128.7 (2x), 127.3 (2x), 126.83, 126.80 (2x), 121.5, 119.0, 118.4, 113.2, 71.0, 32.7, 30.8, 27.5, 21.3.

(6-Hydroxy-5-methoxy-11-phenyl-10-

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraen-12yl)phenylmethanone (**4u**). Yield = 57% (113 mg); Purple gum; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₃O₄ 399.1596, found 399.1562; ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.15 (m, 2H), 7.10-6.90 (m, 8H), 6.66 (d, J = 8.0 Hz, 1H), 6.53 (d, J =8.4 Hz, 1H), 5.85 (br s, 1H), 5.24-5.22 (m, 1H), 4.38 (dd, J =1.2, 4.4 Hz, 1H), 3.78 (s, 3H), 3.39 (dd, J = 5.6, 19.2 Hz, 1H), 3.29 (d, J = 19.2 Hz, 1H), 2.25 (dt, J = 3.2, 12.8 Hz, 1H), 2.11 (dt, J = 2.0, 12.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 158.9, 144.3, 143.4, 140.0, 135.4, 134.6, 130.8, 129.4 (2x), 129.1, 128.8 (2x), 127.4 (2x), 127.3 (2x), 118.2, 117.7, 116.9, 108.3, 70.2, 55.9, 32.5, 32.3, 26.9.

(6-Hydroxy-5-methoxy-11-methyl-10-

oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraen-12-

yl)phenylmethanone (4v). Yield = 62% (104 mg); Colorless gum; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{21}H_{21}O_4$ 337.1440, found 337.1442; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.31 (m, 5H), 6.62 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 8.4Hz, 1H), 5.76 (br s, 1H), 5.03-5.00 (m, 1H), 4.16 (d, J = 1.6Hz, 1H), 3.81 (s, 3H), 3.13 (d, J = 3.6 Hz, 2H), 2.12 (dt, J =3.6, 12.8 Hz, 1H), 2.02 (dt, J = 1.6, 12.8 Hz, 1H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 160.1, 144.2, 143.5, 141.6, 134.9, 131.3, 128.30 (2x), 128.27 (2x), 118.1, 117.9, 116.4, 108.4, 69.8, 56.0, 32.4, 31.3, 26.8, 20.8.

2-(2-Allyl-3-hydroxy-4-methoxybenzylidene)-1-

phenylbutane-1,3-dione (**3v**). Yield = 10% (17 mg); Colorless gum; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for $C_{21}H_{21}O_4$ 337.1440, found 337.1446; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.84-7.81 (m, 2H), 7.50-7.45 (m, 1H), 7.36-7.32 (m, 2H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.47 (d, *J* = 8.4 Hz, 1H), 6.03-5.93 (m, 1H), 5.74 (s, 1H), 5.12 (dq, *J* = 1.6, 10.0 Hz, 1H), 5.01 (dq, *J* = 1.6, 17.2 Hz, 1H), 3.77 (s, 3H), 3.60 (dt, *J* = 1.6, 6.0 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 195.8, 147.9, 143.5, 139.9, 139.1, 136.2, 135.7, 133.7, 129.1 (2x), 128.6 (2x), 125.9, 125.1, 121.9, 115.6, 108.3, 55.8, 30.4, 27.2.

6-Hydroxy-5-methoxy-11-phenyl-10-

oxatricyclo[7.3.1.0^{2.7}]trideca-2,4,6,11-tetraene-12-carboxylic acid ethyl ester (**4**w). Yield = 26% (48 mg); Colorless gum; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₃O₅ 367.1546, found 367.1548; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.29 (m, 5H), 6.94 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 5.82 (s, 1H), 5.14-5.12 (m, 1H), 4.18-4.16 (m, 1H), 4.01-43.95 (m, 1H), 3.93-3.86 (m, 1H), 3.85 (s, 3H), 3.26 (dd, J = 5.6, 19.2 Hz, 1H), 3.15 (d, J = 19.6 Hz, 1H), 2.19-2.13 (m, 1H), 2.04-2.00 (m, 1H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 161.6, 144.3, 143.3, 137.1, 134.9, 128.6, 128.3 (2x), 127.4 (2x), 118.34, 118.31, 108.2, 108.1, 70.2, 59.6, 55.9, 32.4, 30.4, 26.8, 13.5.

3-(3,4-Dimethoxy-2-propenylphenyl)-1-phenylpropynone (*4x-1*). Yield = 78% (119 mg); Colorless solid; mp = 97-99 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₀H₁₉O₃ 307.1334, found 307.1335; ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.03 (m, 2H), 7.90 (d, J =8.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.52-7.48 (m, 2H), 7.01 (s, 1H), 6.80 (d, J = 1.6 Hz, 1H), 6.49 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 2.17 (d, J = 1.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 154.7, 151.0, 141.7, 139.8, 138.5, 136.8, 133.1, 129.5, 128.7 (2x), 128.6 (2x), 127.4, 122.9, 120.3, 108.1, 61.4, 55.9, 13.1.

12-Benzenesulfonyl-5-methoxy-11-methyl-10-

oxatricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11-tetraen-6-ol (4aa). Yield = 80% (149 mg); Colorless solid; mp = 204-205 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₀H₂₁O₅S 373.1110, found 373.1112; ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.56 (m, 2H), 7.47-7.43 (m, 1H), 7.38-7.33 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.56 (br s, 1H), 4.97-4.94 (m, 1H), 4.15 (br s, 1H), 3.82 (s, 3H), 3.11-2.99 (m, 2H), 2.03 (s, 3H), 1.99-1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 144.6, 143.6, 143.4, 132.9, 132.0, 128.6 (2x), 126.2 (2x), 119.4, 117.7, 114.9, 108.2, 70.2, 56.0, 32.3, 30.3, 27.5, 19.0.

2-(5,6-Dimethoxy-1,2-dihydronaphthalen-1-yl)-1-phenyl-2-(toluene-4-sulfonyl)ethanone (**5a**). and 2-(5,6-Dimethoxy-1,2dihydronaphthalen-1-yl)-1-phenyl-2-(toluene-4-

sulfonyl)ethanone (5b). t-BuOK (225 mg, 2.0 mmol) was added to a solution of 1a (137 mg, 0.5 mmol) in toluene (10 mL) at rt. The reaction mixture was stirred at rt for 10 min. 2b (103 mg, 0.5 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $8/1 \sim 4/1$) afforded **5a** and **5b.** For **5a**: Yield = 30% (69 mg); Colorless gum; HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₇H₂₇O₅S 463.1579, found 463.1577; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.4 Hz, 2H), 7.32-7.28 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 7.2 Hz, 2H), 6.97 (dd, J = 3.2, 9.6 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 6.24-6.20 (m, 1H), 5.46 (d, J = 10.4 Hz, 1H), 3.65 (s, 3H), 3.62 (s, 3H), 3.33-3.27 (m, 1H), 2.54-2.42 (m, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.1, 152.0, 144.9, 144.8, 137.5, 135.4, 132.9, 129.6 (2x), 129.4 (2x), 127.9 (2x), 127.6 (2x), 127.5, 127.4, 125.4, 125.2, 121.9, 110.5, 69.0, 61.0, 55.6, 37.7, 26.3, 21.5. For **5b**: Yield = 28% (65 mg); Colorless gum; HRMS (ESI, M⁺+1) calcd for C₂₇H₂₇O₅S 463.1579, found 463.1573; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.47-7.43 (m, 1H), 7.28-7.25 (m, 2H), 7.19 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 9.6 Hz, 1H), 5.71-5.66 (m, 1H), 5.29 (d, J = 6.0 Hz, 1H), 4.09-4.06 (m, 1H), 3.86 (s, 3H), 3.55 (s, 3H), 2.44-2.42 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 152.3, 144.5, 144.5, 137.3, 136.1, 133.5, 129.3 (2x), 129.2 (2x), 128.32 (2x), 128.25 (2x), 127.33, 127.27, 126.8, 124.9, 122.4, 110.9, 72.6, 60.9, 55.8, 37.2, 26.0, 21.5.

3-(2-Allyl-3-hydroxy-4-methoxyphenyl)-2-methanesulfonyl-1-phenylpropenone (**3c**). NaOAc (82 mg, 1.0 mmol) was add-

2

36

37

38

39

40

59

60

ed to a solution of **1m** (99 mg, 0.5 mmol) in toluene (10 mL) at rt. The reaction mixture was stirred at rt for 10 min. 2a (96 mg, 0.5 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $8/1 \sim 4/1$) afforded 3c. Yield = 60% (112 mg); Colorless solid; mp = 156-158 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₂₀H₂₁O₅S 373.1110, found 373.1112; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 7.81 (dd, J = 1.2, 8.4 Hz, 2H), 7.43 (dt, J = 1.2, 8.4 Hz, 1H), 7.28 (t, J = 8.0 Hz, 2H), 6.66 (d, J = 8.8 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 5.99-5.89 (m, 1H), 5.80 (br s, 1H), 5.13 (dd, J = 1.6, 10.0 Hz, 1H), 5.06 (dd, J = 1.6, 16.8 Hz, 1H), 3.74 (s, 3H), 3.59 (d, J = 6.0 Hz, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 148.4, 143.6, 141.3, 137.4, 135.4, 135.1, 134.1, 129.7 (2x), 128.5 (2x), 125.5, 124.1, 122.1, 116.1, 108.1, 55.8, 43.6, 30.3. Single-crystal X-Ray diagram: crystal of compound 3c was grown by slow diffusion of EtOAc into a solution of compound 3c in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group C 2/c, a = 10.3098(6) Å, b = 19.1132(9) Å, c = 19.3897(10) Å, $V = 3769.6(3) \text{ Å}^3$, Z = 8, $d_{\text{calcd}} = 1.312 \text{ g/cm}^3$, F(000) = 1568, 2θ range 2.129~26.381°, R indices (all data) R1 = 0.0446, wR2 = 0.0885.

A representative synthetic procedure of skeleton **6** is as follows: NH₄OAc (39 mg, 0.5 mmol) was added to a solution of **1a** (137 mg, 0.5 mmol) in co-solvent of toluene and HOAc (v/v = 1/1, 10 mL) at rt. The reaction mixture was stirred at rt for 10 min under Dean-Stark distillation apparatus. **2m-2n** (0.5 mmol) was added to the reaction mixture at rt. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to rt and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = $8/1 \sim 4/1$) afforded **6**.

6,7-Dimethoxy-1-methyl-3-phenyl-4-(toluene-4-sulfonyl)-41 1,4a,9,9a-tetrahydro-2-oxafluorene (**6a**). Yield = 83% (198) 42 mg); Colorless solid; mp = 210-212 °C (recrystallized from 43 hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd 44 for C₂₈H₂₉O₅S 477.1736, found 477.1737; ¹H NMR (400 MHz, 45 CDCl₃): δ 7.56 (s, 1H), 7.30-7.25 (m, 1H), 7.18 (d, *J* = 8.4 Hz, 46 2H), 7.17-7.13 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 47 8.0 Hz, 2H), 6.77 (s, 1H), 4.53 (d, J = 6.0 Hz, 1H), 3.96 (s, 48 3H), 3.87 (s, 3H), 3.86-3.78 (m, 1H), 3.23 (dd, J = 6.8, 15.6 49 Hz, 1H), 2.73 (dd, J = 2.0, 15.6 Hz, 1H), 2.44-2.38 (m, 1H), 2.31 (s, 3H), 1.38 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, 50 CDCl₃): δ 163.2, 148.5, 148.4, 142.5, 140.2, 137.2, 133.9, 51 131.5, 129.5 (2x), 129.2, 128.7 (2x), 127.4 (2x), 126.9 (2x), 52 117.1, 109.8, 107.9, 73.3, 56.1, 56.0, 43.4, 42.7, 34.5, 21.4, 53 19.0. Single-crystal X-Ray diagram: crystal of compound 6a 54 was grown by slow diffusion of EtOAc into a solution of 55 compound 6a in CH₂Cl₂ to yield colorless prisms. The com-56 pound crystallizes in the monoclinic crystal system, space 57 group P 21/n, a = 9.2620(5) Å, b = 29.1519(15) Å, c =58

10.0839(5) Å, V = 2719.9(2) Å³, Z = 4, $d_{calcd} = 1.371$ g/cm³, F(000) = 1176, 2θ range 1.397~26.722°, R indices (all data) R1 = 0.0446, wR2 = 0.0895.

6,7-Dimethoxy-1,3-diphenyl-4-(toluene-4-sulfonyl)-

1,4a,9,9a-tetrahydro-2-oxafluorene (6b). Yield = 82% (221) mg); Colorless solid; mp = 186-188 °C (recrystallized from hexanes and EtOAc); HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₃₃H₃₁O₅S 539.1892, found 539.1895; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (s, 1H), 7.39-7.23 (m, 6H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.16-7.12 (m, 4H), 6.98 (d, J = 8.8 Hz, 2H), 6.78 (s, 1H), 4.68 (d, J = 6.0 Hz, 1H), 4.61 (d, J = 10.0 Hz, 1H), 4.00 (s, 3H), 3.89 (s, 3H), 3.10 (dd, J = 6.4, 15.6 Hz, 1H), 2.83-2.78 (m, 1H), 2.56 (d, J = 15.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 148.54, 148.48, 142.6, 140.0, 138.3, 137.4, 133.5, 131.3, 129.4 (2x), 129.1, 128.71 (2x), 128.67, 128.5 (2x), 127.8 (2x), 127.3 (2x), 127.0 (2x), 117.5, 109.8, 108.1, 79.4, 56.1, 56.0, 43.5, 42.2, 33.9, 21.4. Singlecrystal X-Ray diagram: crystal of compound 6b was grown by slow diffusion of EtOAc into a solution of compound 6b in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group C 2/c, a =21.8205(14) Å, b = 11.6934(6) Å, c = 22.0291(15) Å, V =5596.1(6) Å³, Z = 8, $d_{\text{calcd}} = 1.279 \text{ g/cm}^3$, $F(000) = 2272, 2\theta$ range $1.857 \sim 26.365^{\circ}$, R indices (all data) R1 = 0.0455, wR2 = 0.1083.

DFT calculation: Geometry optimizations and frequency calculations were carried out by using B3LYP hybrid functional¹⁵ in combination with 6-31+G(d) basis set. Empirical dispersion corrections were included in the calculations with Grimme's D3 method.¹⁶ The optimized geometries have been confirmed to be local minima (all positive vibrational frequencies) or transition states (one imaginary vibrational frequency). Free energy corrections were performed at 1 atm and 384.15 K. All calculations were accomplished by Gaussian 09 program.¹⁷

ASSOCIATED CONTENT

Supporting Information

Scanned photocopies of NMR spectral data for all compounds, DFT theoretical calculations data and X-ray analysis data of **3c**, **4a**, **4b**, **4p**, **4s**, **6a**, and **6b**. This information is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Email: hychen@kmu.edu.tw, mychang@kmu.edu.tw

ORCID

Meng-Yang Chang: 0000-0002-1983-8570

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science and Technology of the Republic of China for financial support (MOST 106-2628-M-037-001-MY3).

REFERENCES

 (a) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 1682. (b) Chang, M.-Y.; Cheng, Y.-C. Org. Lett. 2016, 18, 608.

- (2) (a) Chan, C.-K.; Tsai, Y.-L.; Chang, M.-Y. Org. Lett. 2017, 19, 1358. (b) Chan, C.-K.; Tsai, Y.-L.; Chang, M.-Y. Org. Lett. 2017, 19, 1870. (c) Chang, M.-Y.; Wu, M.-H.; Chen, Y.-L. Org. Lett. 2013, 15, 2822. (d) Chang, M.-Y.; Wu, M.-H.; Tai, H.-Y. Org. Lett. 2012, 14, 3936.
- (3) For reviews on domino reactions, see: (a) Hussian, M. M.; Patrick, J. W. Acc. Chem. Res. 2008, 41, 883. (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (c) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (d) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703. (e) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. (f) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
- (4) Majumdar, K. C.; Taher, A.; Nandi, R. K. *Tetrahedron* **2012**, *68*, 5693.
- (5) (a) Winkler, J. D. Chem. Rev. 1996, 96, 167. (b) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137. (c) Tietze, L. F. Chem. Ind. 1995, 453. (d) Tietze, L. F.; Modi, A. Med. Res. Rev. 2000, 20, 304.
- (6) Selected examples on domino reactions bearing Knoevenagel condensation, see: (a) Hong, B.-C.; Dange, N. S.; Ding, C. F.; Liao, J.-H. Org. Lett. 2012, 14, 448. (b) Tietze, L. F.; Bohnke, N.; Dietz, S. Org. Lett. 2009, 11, 2948. (c) Chen, W.; Cai, Y.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 4910. (d) Chang, Y.-P.; Gurubrahamam, R.; Chen, K. Org. Lett. 2015, 17, 2908. (e) Nandaluru, P. R.; Bodwell, G. J. Org. Lett. 2012, 14, 310. (f) Berini, C.; Sebban, M.; Oulyadi, H.; Sanselme, M.; Levacher, V.; Briere, J.-F. Org. Lett. 2015, 17, 5408. (g) Martin-Acosta, P.; Feresin, G.; Tapia, A.; Estevez-Braun, A. J. Org. Chem. 2016, 81, 9738 and references cited therein.
- (7) Selected examples on synthesis of functionalized molecules by the use of Knoevenagel condensation, see: (a) Kumpf, J.; Schwaebel, S. T.; Bunz, U. H. F. J. Org. Chem. 2015, 80, 5159.
 (b) Polander, L. E.; Barlow, S.; Seifried, B. M.; Marder, S. R. J. Org. Chem. 2012, 77, 9426. (c) Srinivas, V.; Koketsu, M. J. Org. Chem. 2013, 78, 11612. (d) Meyer, T.; Ogermann, D.; Pankrath, A.; Kleinermann, K.; Muller, T. J. J. J. Org. Chem. 2012, 77, 3704. (e) Lakshmi, V.; Ravikanth, M. J. Org. Chem. 2013, 78, 4993. (f) Yang, D.-S.; Ke, S.; Du, X.; Gao, P.; Zhu, H.-T.; Fan, M. J. Tetrahedron 2017, 73, 5522 and references cited therein.
- (8) (a) Bogdanowicz-Szwed, K.; Palasz, A. *Monatsh. Chem.* 2001, 132, 393. (b) Swenson, R. E.; Sowin, T. J.; Zhang, H. Q. J. Org. Chem. 2002, 67, 9182.
- (9) CCDC 1569720 (3c), 1569721 (4a), 1569722 (4b), 1569723 (4p), 1569724 (4s), 1569725 (6a) and 1569726 (6b) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).
- (10) Chang, M.-Y.; Wu, M.-H. Curr. Org. Synth. 2017, 14, 721.
- (11) (a) Pruger, B.; Hofmeister, G. E.; Jacobsen, C. B.; Alberg, D. G.; Nielsen, M.; Jorgensen, K. A. *Chem Eur. J.* **2010**, *16*, 3783. (b) Zhang, M.; Jia, T.; Wang, C. Y.; Walsh, P. J. J. Am. Chem. Soc. **2015**, *137*, 10346.
 - (12) (a) De Koning, C. B.; Michael, J. P.; Rousseau, A. L. *Tetrahedron Lett.* **1997**, *38*, 893. (b) De Koning, C. B.; Michael, J. P.; Rousseau, A. L. *J. Chem. Soc., Perkin Trans. 1* **2000**, 787.
 - (13) (a) Tietze, L. F.; Stegelmeier, K.; Harms, K.; Brumby, T. Angew. Chem. Int. Ed. 1982, 21, 863. (b) Tietze, L. F.; Ott, C.; Haunert, F. Can. J. Chem. 2001, 79, 1151.
- (14) Selected examples on the preparation of β-ketosulfones, see: (a) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 1443. (b) Samakkanad, N.; Katrun, P.; Techajaroonjit, T.; Hlekhlai, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. Synthesis 2012, 44, 1693. (c) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.;

Wang, H. *Chem. Commun.* 2013, 49, 10239. (d) Wei, W.; Wen,
J.; Yang, D.; Wu, M.; You, J.; Wang, H. *Org. Biomol Chem.*2014, 12, 7678. (e) Xia, Y.; Chen, X.; Qu, L.; Sun, K.; Xia, X.;
Fu, W.; Chen, X.; Yang, Y.; Zhao, Y. Li, C. *Asia J. Org. Chem.*2016, 5, 878 and references cited therein.

- (15) (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785. (b) Becke, A. D. *J. Chem. Phys.* 1993, *98*, 5648.
- (16) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. *Gaussian 09*, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.