Accepted Manuscript

Design and Synthesis of New Tricyclic Indoles as Potent Modulators of the $S1P_1$ Receptor

Daniel J. Buzard, Thomas O. Schrader, Xiuwen Zhu, Juerg Lehmann, Ben Johnson, Michelle Kasem, Sun Hee Kim, Andrew Kawasaki, Luis Lopez, Jeanne Moody, Sangdon Han, Yinghong Gao, Jeff Edwards, Jeremy Barden, Jayant Thatte, Joel Gatlin, Robert M. Jones

PII: DOI: Reference:	S0960-894X(14)01296-7 http://dx.doi.org/10.1016/j.bmcl.2014.11.089 BMCL 22244
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	7 November 2014
Revised Date:	26 November 2014
Accepted Date:	28 November 2014

Please cite this article as: Buzard, D.J., Schrader, T.O., Zhu, X., Lehmann, J., Johnson, B., Kasem, M., Kim, S.H., Kawasaki, A., Lopez, L., Moody, J., Han, S., Gao, Y., Edwards, J., Barden, J., Thatte, J., Gatlin, J., Jones, R.M., Design and Synthesis of New Tricyclic Indoles as Potent Modulators of the S1P₁ Receptor, *Bioorganic & Medicinal Chemistry Letters* (2014), doi: http://dx.doi.org/10.1016/j.bmcl.2014.11.089

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Design and Synthesis of New Tricyclic	Leave this area blank for abstract info.
Indoles as Potent Modulators of the S1P ₁	
Receptor	
Daniel J. Buzard, Thomas O. Schrader, Xiuwen Zhu, Juerg Lehr	nann, Ben Johnson, Michelle Kasem, Sun Hee
Kim, Andrew Kawasaki, Luis Lopez, Jeanne Moody, Sangdon H	Ian, Yinghong Gao, Jeff Edwards, Jeremy
Barden, Jayant Thatte, Joel Gatlin and Robert M. Jones	
	\mathbb{R}^2
	R ³ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	N R [*] CO ₂ H
	. 67
N CO ₂ H	X - Cr 12, C, N
H K	
cyclopenta[b]indoles	\mathbb{R}^2
	R ⁴
	\mathbb{R}^3 $\mathbb{O}_2\mathbb{H}$
	N X

Bioorganic & Medicinal Chemistry Letters

Design and Synthesis of New Tricyclic Indoles as Potent Modulators of the S1P₁ Receptor

Daniel J. Buzard,^a Thomas O. Schrader,^a Xiuwen Zhu,^a Juerg Lehmann,^a Ben Johnson,^a Michelle Kasem,^a Sun Hee Kim,^a Andrew Kawasaki,^a Luis Lopez,^a Jeanne Moody,^a Sangdon Han,^a Yinghong Gao,^a Jeff Edwards,^a Jeremy Barden,^a Jayant Thatte,^a Joel Gatlin,^a and Robert M. Jones^a

^a Arena Pharmaceuticals Inc. 6154 Nancy Ridge Drive, San Diego, CA 92121.

ARTICLE INFO

ABSTRACT

Article history: Received Revised Accepted Available online

Keywords: S1P₁ Sphingosine-1-phosphate Gilenya® Modulators of $S1P_1$ have proven utility for the treatment of autoimmune disease and efforts to identify new agents with improved safety and pharmacokinetic parameters are ongoing. Several new $S1P_1$ chemotypes were designed and optimized for potency and oral bioavailability. These new agents are characterized by a "tricyclic fused indole array" and are highly potent agonists of the $S1P_1$ receptor.

2014 Elsevier Ltd. All rights reserved.

Gilenya® (1, Figure 1) is a sphingosine 1-phosphate (S1P) receptor modulator indicated for the treatment of relapsing remitting multiple sclerosis (RRMS). *In vivo* 1 is phosphorylated to the (*S*)-monophosphate 2 which is a potent agonist of S1P₁, S1P₃, S1P₄ and S1P₅⁻¹ Sustained activation of lymphocyte expressed S1P₁ results in the internalization and degradation of the receptor.² Loss of S1P₁ from the cell surface restricts T- and B-cells to the lymphoid tissues and out of the periphery, thus limiting the auto reactive potential of these cell types. This mechanism is believed to be broadly applicable for the treatment of various autoimmune diseases, and has encouraged efforts to identify alternative S1P₁ chemotypes.³

We recently disclosed the medicinal chemistry effort leading to the discovery of a new series of cyclopenta[b]indoles (*e.g.* **3**, Figure 1) as potent and selective S1P₁ agonists.⁴ To expand upon this motif, we sought to identify alternatives to the indole-fused cyclopentane ring. We conceived of two generalized structures that are defined by a six atom carbocycle or heterocycle, wherein $X = CH_2$, O, or NH (**4** and **5**).

Compound 11 was synthesized utilizing a Fischer Indole strategy to prepare the 2,3,4,9-tetrahydro-1H-carbazole ring system (Scheme 1). Intermediate 9 was synthesized in three steps from 4-nitrophenol (6) utilizing sodium nitrite and tin chloride to introduce the hydrazine. The Fischer Indole transformation was carried out in acetic acid and was complete within one hour at 70 °C. Saponification of the resultant ester 10 with lithium hydroxide afforded the target molecule 11.

Figure 1. 1 (Gilenya®), 2 (monophosphate), 3 (cyclopenta[b]indoles), 4 and 5

Scheme 1. (a) 4-(chloromethyl)-1-cyclopentyl-2-(trifluoromethyl)benzene, K_2CO_3 , IPA, 80 °C, 72% (b) Zn, 3.0M aqueous NH₄Cl, MeCN, rt, 75% (c) NaNO₂, 12M aqueous HCl, SnCl₂, water, 0 °C to rt, 95% (d) ethyl 2-(2-oxocyclohexyl)acetate, AcOH, 70 °C, 44% (e) 1.0 M LiOH, dioxane, rt, 66%

Scheme 2. (a) 4-(chloromethyl)-1-cyclopentyl-2-(trifluoromethyl)benzene, Cs_2CO_3 , DMF, rt, 94% (b) methyl 3-methoxyacrylate, BF₃ etherate, DCM or methyl 3-oxobutanoate, TsOH, toluene, 80 °C, 56% (c) 1.0 M LiOH, dioxane, rt, 95%

Scheme 3. (a) methyl 3,3-dimethoxypropanoate, TFA, MeCN, H₂O, 80 °C, 79% (b) Pd/C, H₂, MeOH/THF, 95% (c) Boc₂O, THF, rt, 67% (d) 4-(chloromethyl)-1-cyclopentyl-2-(trifluoromethyl)benzene, Cs₂CO₃, DMF, rt (e) 4.0M HCl in dioxane, rt 62% (2 steps) (f) 1.0 M LiOH, dioxane, rt, 74%

Preparation of the 1,3,4,9-tetrahydropyrano[3,4-b]indole analogs (16, 17) was somewhat more difficult depending on the nature of the \mathbb{R}^4 substituent (Scheme 2). Both compounds were derived from 13 utilizing either methyl 3-methoxyacrylate or methyl 3-oxobutanoate to introduce the pyran ring. 16 proved the most challenging, with the ring forming step proceeding in very low yield (*i.e.* <5%). Compound 17 on the other hand, was synthesized in moderate yield (*i.e.* 56%) from methyl 3-oxobutanoate.

2,3,4,9-Tetrahydro-1H-pyrido[3,4-b]indole **22** was made by the synthetic route outlined in Scheme 3. The synthesis was relatively facile despite the need for several protecting group manipulations. A Pictet-Spengler reaction was utilized to construct the 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole ring system and proceeded in good yield (79%). Etherification of this product afforded **21** which provided the target piperidinyl carboxylic acid **22** after treatment with acid and base.

Compounds 11, 16, 17, and 22 were all obtained as racemic mixtures, thus requiring separation into their respective enantiomers. This was accomplished chromatographically for 11, 17, and 22, but due to the low yield in preparing 16, this compound was characterized as the racemic mixture. The stereochemistry of each enantiomer was not determined at this time. Human S1P₁ EC₅₀ values for these compounds were determined in a homogeneous time resolved fluorescence (HTRF) cyclase assay (Table 1). All of these analogs exhibited good activity against S1P₁, with the 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole enantiomers 22a and 22b being the most potent in this assay.

In light of the favorable potency of the 2,3,4,9-tetrahydro-1Hpyrido[3,4-b]indoles, a brief SAR effort focused on benzyl substitution was performed (Table 2). Various R^1 , R^2 , and R^3 substituents were explored and were consistent with the SAR observed for the cyclopenta[b]indoles. Larger lipophilic R^2 substituents improved potency, with isobutyl (**32**) and isopropoxy

Table 1. Human S1P1 cAMP EC50 values

Enantiomer	EC ₅₀ , nM ^a	E _{max} (%) ^b
11a	2.0	105
11b	1.4	102
rac-16	0.41	102
17a	2.2	103
17b	1.2	109
22a	0.03	92
22b	0.06	82

^a EC₅₀ values are then mean of three or more replicates.

^b % agonism relative to S1P

(33) affording racemic mixtures of comparable potency to 22a and 22b.

22a was selected for further profiling and was evaluated against mouse, rat, dog, and monkey S1P₁ (Table 3). 22a was observed to retain good potency, being in the low picomolar range across all preclinical species. Additionally, human S1P₁ selectivity was evaluated in the β -arrestin platform, and 22a was found to possess no agonist activity for S1P2 or S1P3. Discovery of S1P3sparing agonists have been a major focus in this area due to the association of this receptor with bradycardia,⁶ though this effect appears to be species dependent. 22a is an agonist of $S1P_4$ and S1P₅, though it did not produce as large a response as S1P in this assay. S1P₄ and S1P₅ may play a role in disease amelioration in MS patients,^{7,8} but they are not involved in the primary mechanism of lymphocyte trafficking. 22a was stable in mouse, rat, and human liver microsomes (Table 4), and no significant interaction with any of the major CYP p450 enzymes was Sprague-Dawley rat pharmacokinetics observed. were subsequently assessed and 22a was observed to have very low oral bioavailability (*i.e.* <2%). This is perhaps due to the zwitterionic properties of this molecule. Intravenous administration revealed a sufficiently long half-life (9.49 h) and

Table 2. Tetrahydro-1H-pyrido[3,4-b]indole Human S1P1 cAMP EC50 Values

Compound	R ¹	R ²	R ³	EC ₅₀ , nM ^a	E _{max} (%) ^b
22a	CF ₃	cyclopentyl	Н	0.03	92
23	CF ₃	Ĥ	Н	170	86
24	CF_3	CI	Н	150	102
25	Н	CF ₃	Н	400	114
26	CI	OCF3	Н	0.30	110
27	CI	CI	Н	10,000	-
28	н	Н	OCF ₃	290	106
29	CN	Н	OCF3	220	97
30	н	SO ₂ Me	н	10,000	-
31	н	tert-Butyl	Н	[´] 19	96
32	CF ₃	isobutvl	Н	0.04	78
33	ĊŇ	isopropoxy	Н	0.04	105

^a EC₅₀ values are the mean of three or more replicates. ^b % agonism relative to S1P (E_{max}).

Table 3. 22a In vitro S1P₁ Preclinical Species EC_{50} Data and Human S1P₁₋₅ EC_{50} Values

Preclinical Species S1P ₁ EC ₅₀ cAMP, nM (E _{max} %)					Human S1P ₁₋₅	; EC ₅₀ β -Arrestin,	nM (E _{max} %)		
human	mouse	rat	dog	monkey	S1P1	S1P2	S1P3	S1P4	S1P5
0.03 (92)	0.05 (104)	0.04 (102)	0.04 (83)	0.04 (82)	1.2 (104)	>10,000	>10,000	26 (77)	5.8 (82)

Table 4. 22a Sprague-Dawley Rat Pharmacokinetics and Lymphocyte Lowering (LL)

LM Stability (t _{1/2}) ^a	Sprague-Dawley Rat Pharmacokinetics (1.0 mg/kg iv/po)						SD Rat LL IC50 ^b
>60 min	Cl (L/h/kg)	V _{ss} (L/kg)	C _{max} (µg/mL)	AUC _{last} (hr*µg/mL) ^c	t _{1/2} (h)	%F	13.0 ng/mL
(m,r,h)	0.643	6.71	1.96	1.32	9.49	<2	

a. microsomal stability ^{b.} plasma lymphocyte lowering (LL) IC₅₀ value, compound delivered by intravenous infusion ^{c.} area under the curve out to the last measurement taken

prompted a lymphocyte lowering pharmacokinetic / pharmacodynamic (PK/PD) analysis. A reduction in circulating lymphocytes (lymphocyte lowering) is the primary mechanism by which S1P₁ agonists exert their immunomodulating effect. An indirect PK/PD model was created to estimate the blood concentration of the drug needed to suppress lymphocyte levels by 50% (IC₅₀). **22a** was determined to have an *in vivo* lymphocyte lowering IC₅₀ value of 13.0 ng/mL.

Several tricyclic motifs wherein the indole ring fusion is present on the opposite side were also prepared (e.g. 39, 45, 51) Preparation of indoles 39, 45 and 51 was carried out utilizing the chemistry shown in Schemes 4 and 5. The carbocyclic indole 39 was synthesized in a similar method employed previously. Alkylation of commercial 34 with ethyl 4-bromobutyrate followed by Dieckmann Condensation afforded 36. Heating this intermediate in acetic acid and water provided 37 in good yield. Horner-Emmons olefination followed by hydrogenation provided phenol 38. Etherification and subsequent saponification of the ester under basic conditions afforded the final product 39. Morpholine 45 and piperizine 51 were constructed from common intermediate 42, which was synthesized in three steps from commercially available 40. Intramolecular cyclization to generate the morpholine ring was carried out in moderate yield upon treatment of 42 with CsF in THF. Hydrogenation, alkylation, and

deprotection gave the fully elaborated compound 44. Lastly, chlorine could be optionally introduced in the 10-position by treatment with NCS (e.g. 45).

Piperiazine 47 was prepared from mesylate 46 via ammonia promoted intramolecular cyclization. Debenzylation, alkylation, and cleavage of the Boc and *tert*-butyl ester under acidic conditions gave 50. Chlorination to afford 51 was possible via treatment with *N*-chlorosuccinimide. The analogous N-methyl adducts 67 and 68 (Table 5) were prepared in a similar matter utilizing methyl amine instead of ammonia.

The chemistry described in Schemes 4 and 5 was utilized to synthesize a variety of analogs and human S1P₁ EC₅₀ values were obtained (Table 5). Disubstitution was exclusively examined and larger R² groups provided compounds of improved potency. Of the compounds prepared, morpholines **62-64** were the most potent in the cyclase assay, and appear to benefit from the chlorine in the 10-position. Racemate **63** was resolved into its respective enantiomers using chiral chromatography, and both enantiomers were very potent in the S1P₁ agonist assay (*i.e.* **63a** IC₅₀ = 0.23 nM, E_{max} = 93%; and **63b** IC₅₀ = 0.01 nM, E_{max} = 98%). **63b** was also evaluated in β-arrestin and had an EC₅₀ value of 0.83 nM (E_{max} = 112%) in this platform. Most importantly, this enantiomer was observed to be orally bioavailable in rat when dosed as a suspension in 0.5% methylcellulose in sterile water

Scheme 4. (a) ethyl 4-bromobutyrate, tetrabutylammonium iodide, NaH, DMF, rt, 97% (b) KOt-Bu, THF, rt, 96% (c) acetic acid / water, 220 °C, 80% (d) ethyl 2-(diethoxyphosphoryl)acetate, NaH, DMF, 65 °C, 45% (e) Pd(OH)₂/C, NH₄CO₂H, MeOH, THF, 60 °C, 86% (f) ArCH₂CI, Cs₂CO₃, DMF, 75 °C, 62-84% (g) 1.0 M LiOH, dioxane, rt, 91%

 $\begin{array}{l} \textbf{Scheme 5.} (a) \textit{tert-butyl 2-(triphenylphosphoranylidene)acetate, toluene, 70 °C, 63% (b) (2-bromoethoxy)(tert-butyl)dimethylsilane, NaH, DMF, 0-80 °C, 65% (c) TBAF, THF, rt, 93% (d) CsF, THF 100 °C, 33% (e) Pd(OH)_2/C, NH_4CO_2H, MeOH, 60 °C, 79% (f) ArCH_2CI, K_2CO_3, DMF, rt to 60 °C, 18-74% (g) TFA, L-cysteine, rt, 13-47% (h) NCS, DCM, 0 °C to rt, 80-100% (i) MsCI, DMAP, DCM, rt, 97% (j) 7.0 M NH_3 in MeOH, dioxane, 100 °C, 89% (k) Boc_2O, THF, rt, 82% (l) Pd(OH)_2/C, NH_4CO_2H, MeOH, THF, 60 °C, 94% (m) ArCH_2CI, K_2CO_3, DMF, rt to 60 °C, 66-81% (n) 4N HCI in dioxane, rt, 92% (o) NCS, DCM, 0 °C to rt, 80-100% \\ \end{array}$

Table 5. Human S1P1 cAMP EC50 Values

Compound	R ¹	R ²	R ³	R^4	х	EC ₅₀ , nM ^a	E _{max} (%) ^b	
52	CF ₃	Н	CF ₃	Н	CH ₂	22	103	
53	CŇ	Н	OCF ₃	Н	CH_2^{-}	25	99	
54	CF ₃	cyclopentyl	н	Н	CH_2^{-}	2.3	102	
55	CF ₃	isopropoxy	Н	Н	CH_2^{-}	3.3	105	
56	OEť	OEt	Н	Н	CH_2^{-}	170	105	
57	CN	Н	OCF ₃	Н	0	6.8	98	
58	CF ₃	cyclopentyl	н	Н	0	0.14	99	
59	CF ₃	OCH ₂ F	Н	Н	0	11	101	
60	CN	isopropoxy	Н	Н	0	1.7	104	
61	CI	OCH(CH ₂ F) ₂	Н	Н	0	0.48	94	
62	CF ₃	isopropoxy	Н	CI	0	0.04	94	
63	CŇ	isopropoxy	Н	CI	0	0.04	104	
64	CF ₃	cyclopentyl	Н	CI	0	0.04	96	
65	CF ₃	isobutyl	Н	Н	NH	2.1	101	
66	CF ₃	isopropoxy	Н	н	NH	0.67	99	
67	CŇ	н	OCF ₃	CI	NMe	1.7	101	
68	CF ₃	cyclopentyl	Н	CI	NMe	0.15	95	

^a EC₅₀ values are the mean of three or more replicates. ^b % agonism relative to S1P (E_{max}).

(%F = 39). At a 1.0 mg/kg oral dose, this molecule achieved C_{max} and AUC_{last} levels of 0.319 µg/mL and 0.973 hr·µg/mL, respectively. In addition, this molecule has an acceptable half-life (t_{1/2}) of 3.4h in rat.

In summary, we have described the synthesis of several new S1P₁ agonist series. One of these new S1P₁ chemotypes, the 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indoles (*e.g.* **22a**), was found to be highly potent; however, development of this series was limited by poor systemic exposure following oral dosing. Further exploration revealed a morpholinyl chemical series, from which several molecules were identified as low picomolar agonists of S1P₁. Moreover, a selected molecule from within this series was shown to have appreciable systemic exposure in rat after oral delivery as a suspension in 0.5% methylcellulose. Further evaluation of this new scaffold is ongoing and results from these studies will be reported in due course.

REFERENCES

1. Hale, J. J.; Yan, L.; Neway, W. E.; Hajdu, R.; Bergstrom, J. D.; Milligan, J. A.; Shei, G.-J.; Chrebet, G. L.; Thornton, R. A.; Card, D.; Rosenbach, M.; Rosen, H.; Mandala, S. Synthesis, Stereochemical Determination and Biochemical Characterization of the Enantiomeric Phosphate Esters of the Novel Immunosuppressive Agent FTY720 *Bioorg. Med. Chem.* **2004**, *12*, 4803-4807

2. Oo, M. L.; Thangada, S.; Wu, M.-T.; Liu, C. H.; Macdonald, T. L.; Lynch, K. R.; Lin, C.-Y.; Hla, T. Immunosuppressive and Anti-angiogenic Sphingosine 1-Phosphate Receptor-1 Agonists Induce Ubiquitinylation and Proteasomal Degradation of the Receptor *J. Biol. Chem.* **2007**, *282*, 9082-9289

3. Dyckman, A. J. Recent Advancements in Discovery and Development of Sphingosine-1-Phosphate-1 Receptor Agonists *Ann. Rep. Med. Chem.* **2012**, *47*, 195-207

4. Daniel J. Buzard, Sun Hee Kim, Luis Lopez, Andrew Kawasaki, Xiuwen Zhu, Jeanne Moody, Lars Thoresen, Imelda Calderon, Brett Ullman, Sangdon Han, Juerg Lehmann, Tawfik Gharbaoui, Dipanjan Sengupta, Lorene Calvano, Antonio Garrido Montalban, You-An Ma, Carleton Sage, Yinghong Gao, Graeme Semple, Jeff Edwards, Jeremy Barden, Michael Morgan, Weichao Chen, Khawja Usmani, Chuan Chen, Abu Sadeque, Ronald J. Christopher, Jayant Thatte, Lixia Fu, Michelle Solomon, David Mills, Kevin Whelan, Hussien Al-Shamma, Joel Gatlin, Minh Le, Ibragim Gaidarov, Todd Anthony, David J. Unett, Anthony Blackburn, Jaimie Rueter, Scott Stirn, Dominic P. Behan, and Robert M. Jones Discovery of APD334: Design and Characterization of a Clinical Stage Functional Antagonist of the Sphingosine-1-phosphate-1 Receptor ACS Med. Chem. Lett. **2014**, ASAP, DOI:10.1021/ml500389

5. Buzard, D. J.; Han, S.; Lopez, L.; Kawasaki, A.; Moody, J.; Thoresen, L.; Ullman, B.; Lehmann, J.; Calderon, I.; Zhu, X.; Gharbaoui, T.; Sengupta, D.; Krishnan, A.; Gao, Y.; Edwards, J.; Barden, J.; Morgan, M.; Usmani, K.; Chen, C.; Sadeque, A.; Thatte, J.; Soloman, M.; Fu, L.; Whelan, K.; Liu, L.; Al-Shamma, H.; Gatlin, J.; Le, M.; Xing, C.; Espinola, S.; Jones, R. M. Fused Tricyclic Indoles as S1P1 Agonists with Robust Efficacy in Animal Models of Autoimmune Disease *Bioorg. Med. Chem. Lett.* **2012**, *22*, 4404-4409.

6. Forrest, M.; Sun, S.-Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.; Rosenbach, M.; Shei, G.-J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.; Mandala, S. Immune Cell Regulation and Cardiovascular Effects of Sphingosine 1-Phosphate Receptor Agonists in Rodents Are Mediated via Distinct Receptor Subtypes J. Pharm. Exp. Ther. 2004, 309, 758-768

7. Van Doorn, R.; Lopes Pinheiro, M. A.; Kooij, G.; Lakeman, K.; von het hof, B.; van der Pol, S.; Geerts, D.; van Horssen, J.; van der Valk, P.; van der Kam, E.; Ronken, E.; Reijerkerk, A.; de Vries, H. E. Sphingosine 1-phosphate Receptor 5 Mediates the Immune Quiescence of the Human Brain Endothelial Barrier *J. Neuroinflamm.* **2012** 10.1186/1742-2094-9-133.

8. Schulze, T.; Golfier, S.; Tabeling, C.; Rabel, K.; Graler, M.; Witzenrath, M.; Lipp, M. Sphingosine-1-phosphate Receptor 4 (S1P4) Deficiency Profoundly Affects Dendritic Cell Function and TH17-cell Differentiation in a Murine Model *FASEB* 2011, 25, 4024-4036.