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Abstract

An operationally simple reaction between quinaceémone and aniline derivatives in the
presence of triethylamine at room temperature dédrl-(indol-2-yl)-phenoxazine hybrids in
good yields. This unique transformation proceeds sequential aza-Michael attack and
imine formation to yield 1-(indol-2-yl)-phenoxazirte/brids. The most plausible reaction
mechanism was established based on the mechasisities carried out with Mass
spectrometry.The synthesized molecules were swijecto in-vitroanti-proliferative
evaluation on various cancer cell lines by MTT gsshere compoun8was found to display
signifiacnt 1Gp value of3.71+ 0.57uM on A-549 cell line. The ability of compoun8 to
intercalate DNA was also confirmed by DNA Nanodraopthod and viscosity experimental

studies.

KeywordsQuinacetophenone, Aza-Michael attack, Phenoxazrbeds, DNA intercalation.



Introduction

Quinacetophenone (2,5-dihydroxyacetophenone) iseasily accessible precursor for the
syntheses of different pharmacologically active pommds: Quinacetophenone is an
important scaffoldfrom the viewpoints of both syedis and chemical reactivity that is
inherent in the hydroxyl, methyl ketone, carbonyhda aromatic moieties. Thus
guinacetophenone has been used as a precursdoito pfivileged motifs of various kinds

viz., chalcones, chromones, flavonoids, coumagnsones, phenazines and azdles.

In presence of various oxidants, quinacetophensmidized to give 2-acetyl-[1,4]-
benzoquinoned,*** which is most prominently, attacked by nucleophiéelectively at C-6
providing 6-substituted quinacetophenone, driventh®y resonance stabilization associated
with the intermediaté as shown irFigure.1.* The 1-acetyl group is also known for its high
reactivity which could be attributed to proton dboa to the carbonyl group from the

adjacent 2-hydroxy group and resonance of the ogtgwoup with the aromatic ring®

0) HO @)
A | Q

Figure 1.2-acetyl 1,4- benzoquinone (A); Intermediéfeand formation of 6-substituted quinacetophen@e (

by rearomatization

We have earlier reported the synthesis of benzord?i and benzoxazol&§rom 2,5-
dihydroxy benzaldehyde by a novel one pot synthesisg manganese dioxide an oxidant.

Further, we have recently reported a methodologg fiacile synthesis of phenoxazines from



guinacetophenone precursor and anilines in theepoesof an oxidizing agent and absence of
any additive’Benzoxazines/phenoxazines have been studied imédnsas important
heterocyclic system for the synthesis of herbigidaagicides and therapeutically usable
drugs®® Several benzoxazine derivatives are currentljpéndevelopment phase as potential
new drugs-*Indole is a prominent constituent of flower perfanpharmacologically active
alkaloids, therapeutics, drug candidates and hoest8nSome naturally occurring indole
alkaloids including vincristine, vinblastine andchglesine for anti-tumor activity have gained
FDA approval™® In view of the potential pharmacological effect§ indoles and
phenoxazines and recognizing the enhanced synergffects that the pharmacophore
hybrids offer'**?!3ve presumed that hybrids containing indole and pkazine in a single
heteroaromatic framework might offer potential gmbliferative effect. Further, our goal

was to evaluate their ability as DNA intercalatovsing to their typical structural features

DNA intercalators are molecules capable of fittingtween nucleic acid base pairs in a
reversible action. The intercalation procéésinvolves the transfer of the intercalating
molecule from an aqueous environment to the hydsbghspace between two adjacent DNA
base pairs. DNA undergoes conformational changeshimg an increase in the vertical
separation in order to accommodate the ligand kextwiee base pairs. Once the ligand gets
sandwiched between the DNA base pairs, the stalmfitthe complex is optimized by a
number of non-covalent interactions, ionic intei@tws and hydrogen bondifdgrhis
intercalation prevents DNA replication, leadingpossible cell death and anti-cancer action
in rapidly growing cancer cells.

The characteristic features of the synthesized ocomgs like fused ring structure of
phenoxazine chromophore, presence of two basiggrthat can be protonated easily and the
relatively planar geometry of the compounds aretyipecal features of DNA intercalating

agents. These features impart DNA intercalatinditpbio these chemical structures, as



cationic species are more efficient DNA intercalgtbecause they interact better with the
negatively charged DNA sugar—phosphate backbonerupldysiological conditions. The
planar geometry allows the DNA to accommodate tbé&oule between the base pairs. Thus
we embarked on a journey to synthesize these bi{wyl)-phenoxazine hybrids from an
operationally simple reaction between quinacetopherand aniline derivatives and further

evaluate their ability to intercalate DNA.

Results and discussion

Optimization conditions

As a sequel to the synthesis of phenoxazihese wished to arrive at phenoxazine-indole
hybrids by extending the same methodology by amtditf an additive. In this context, we
reasoned that triethylamine might activate the @aybfor imine formation and a probable

cyclization to indoles to afford our much desirgdbiids.

Thus triethylamine was added as an additive to Stigate its effect on activating the
carbonyl group to validate our reasoning. As exgaca mere addition of 0.5 equiv. of
triethylamine to the reaction mixture containingr@cetophenone, manganese dioxide and

aniline in toluene, led to the formation of 1-(imdsyl)-phenoxazine hybrid Scheme. 1)
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phenoxazine 1-(indol-2-yl)-phenoxazine
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Scheme 1Synthesis of phenoxazines and 1-(indol-2-yl)-ph@&aine from quinacetophenone



Table 1.Optimization of reaction conditiofs

OH (¢}
+ @ Conditions O j@
—— > HO N
HO N
07 “CH, NH; N7
| " Y
1

S.No| Oxidant| Additivd Solvent| Temp| Yiel®

1 MnGO, TEA Toluene| r.t 22%

2 MnGO, TEA Toluene| Reflux| 12%

3 MnGO, TEA Dioxane| r.t. 27%

4 MnGO;, TEA DCE r.t. 45%

5 MnO, TEA® | CHCl3 r.t. 62%

6 AgO TEA CHCE r.t. 30%

7 MnO, - CHCk rt. 3096

8 PIDA - CHCl, | r.t. 1596

9 PIDA TEA CHCl, r.t. 13%

10 PIDA TEA DCE r.t. 09%

11 | Pb(OAc)| TEA | CHCL | rt | 19%

12 AgO - CHCE | r.t. 1096

®Reaction condition: Quinacetophenone (I, 1.0 mmaiiijine (I, 2.0 mmol), Oxidant (10.0 mmol), sole(10
mL), b: The yields were 11% when | and Il were take 1:1 ratio which increased to 22% when takef:ih

ratios, c: 0.5 equivafforded optimum yields, d: Bienphenoxazine was obtain&d

Our optimization studies of the reaction startedubingl andll in 1:1 ratioas the starting
materials in presence of manganese dioxide as mixigatoluene, in the presence of 1

equivalent of triethylamine, wherein we obtainediridol-2-yl)-phenoxazine hybrid]l in



11% yields Table 1, entry 1). The yields have increased to 22% whemdll were takenin
1:2 ratios. Thus we continued usihg@ndll in 1:2 ratios and 0.5 equiv. of triethylamine for
further optimization. Increase in the amount oéttrylamine had no positive effect on the
yields or reaction times. Encouraged by the foramatf 1-(indol-2-yl)-phenoxazine hybrids,
we have tried other oxidants such as silver (Iexphenyl iodine diacetate (PIDA) and lead
acetate in different solvents like toluene, dioxatiehloroethane and chloroform to improve
the yields. Reaction using silver (1) oxide in mese of triethylamine in chloroform showed
slight improvement in yieldsT@ble 1, entry 6). In the absence of triethylamine, PIDA, silver
() oxide and manganese dioxide afforded simplenpkazine in 30% vyieldsT@able 1,
entries 7, 8 and 12°° When we performed reaction with PIDA, the prodletas obtained

in 13% and 9% respectively in dichloromethane amtildroethane respectivelyféble 1,
entries 9and10). Lead acetate afforded the prodich 19% vyields Table 1, entry 11).

While dioxane showed no improvement in yielchble 1, entry 3), dichloroethane showed
improvement in yields to 45% éble 1, entry 4). Higher temperatures led to drastic decline
in the yields Table 1, entry 2). Among all, manganese dioxide and 1 equivalent of
triethylamine in chloroform as solvent offered thest yields ofl in 62 % (Table 1, entry

5). The yields remained the same when the amountiethylamine was reduced to 0.5
equiv. The vyields ofl were dropped drastically when the amount of tyiketimine was
decreased any further.

The versatility/limitations of this method were &wted by examining substrate scope by
reacting a varied set of substituted anilines wjitimacetophenonel &ble 2, isolated yields
listed) using the conditions outlined above. Theuls show that R-group substitution can
have a significant effect on product yield. Fortamee, electron-donating methoxy and
methyl substituents at 2, 3, 4 positions with respe the anilineTable 2, entries 4-12 are

well tolerated by this reaction. The enhancememufieophilicity of carbonyl by electron



donating character of the methoxy/ methyl grouplifating the imine formation could be a
plausible explanation for such OMe and methyl grtalprance ino, m andp-positions. It
was reported earlier that trimethoxyphenyl moietyone of the important structural units
present in several known natural antimitotic agdikts combretastatin A-4, colchicine and
podophyllotoxin. The trimethoxyphenyl moiety appdhg binds at the colchicine site of
tubulin*®We believed that incorporation of such a crucialctural feature of lead anticancer
compounds into our 1-(2ndolyl)-phenoxazines may result in a potent atmer compound.
Thus 12 (entry 12) was synthesized with trimethoxy susbstituentscivhwvas obtained in
similar yields.

It is also interesting to note that when G is abah (Cl or F), €ntries 2-3 the yield drops
substantially (40%; the inductively withdrawing caeter of Cl and F may have had the
opposite effect of the -OMe group). However, preseaf Br has not yielded any product
(entry 13, 14. Not surprisingly, when G is an electron withdnagvgroup, the reaction did
not afford any product. Thus, anilines with sulostitts like nitro, cyano and ester afforded no
products éntries 15-23. If nucleophilicity of nitrogen is the criteriomhen aryl amines like
adenine and 2-amino pyridine (due to electroneggatdf nitrogen) must also either not react
or afford product in low yields. Thus, we have expt the reaction of quinacetophenone
with adenine and 2-amino pyridine to validate oasuanption. As expected, no product
formation was seen frota (not shown inTable 1).

Table 2.0One step synthesis of 1-(indol-2-yl)-phenoxaziylerids from quinacetophenone
and substituted anilines

0
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HO: £ u ;
13 2-Br o Br 48
13
/©/H O]@/Br
14 4-Br Br Hojgu 52
O
14
15 4-CH;3-NO, NR -
16 2-CH;4-NO, NR -
17 2-NQ NR -
18 3-NG NR -
19 4-NG NR -
20 3-Ckh NR -
21 4-COOMe NR -
22 2-CN NR -

NR: no reaction
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Plausible mechanism
To study the mechanism of the reaction we have rB&1eMS spectrometry as techniques of

our choice, in order to establish the most plaesibéchanism. NMR spectroscopy alone was
useful only in validating the products formemyure 2 (A-E) shows the mass spectra of the
reaction at different intervals. We have capturedction intermediates by spectroscopic
techniques and established the most probable oegaathway.

In presence of manganese dioxide, quinacetopheromidized to give 2-acetyl-[1,4]-
benzoquinoné\,** 3which is most prominently, attacked by nucleophsgetectively at C-6
providing 6-substituted quinacetophenone, Thusjrifollowing the addition of aniline, the
presence of a prominent peak at m/z 244. 0977 amasponding t¢B-1 +H]" in Figure 2A
provided key information on the composition of mtediate B-1, thus allowing the
intermediate to be associated with the formationhef aza-Michel addition product for the

eventual formation of the desired prodtftt.
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due to species [P +Hlare encircled
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Figure 2C. ESI-MS of the reaction mixture, 5h after the additof aniline to quinacetophenone. The signals
due to [B-l +H]" and [P + HJare encircled
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The peak at m/z 244.0977 amu [B-l +Hjas found to coexist with the second molecular ion
peak at m/z 242.0820 amu corresponding to [P+ Which is indicative of rapid cyclization

of aza-Michael adduct to phenoxazine P in accomamith the mechanism proposed in
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Scheme 1(Figure 2A)Further, ESI-MS of sample after 1.5 h showing lagaak at m/z
242.0821 confirmed the formation of P(Phenoxazinebhe reaction mixturéFigure 2B)
The sample taken after 5 h showed the less inte@askes corresponding to [B-1 + And [P

+ Na] * indicating a decreasing concentration of the mtatiategFigure 3C). The ESI-MS
of the reaction mixture after 5 h also showed tiseng of peak at m/z 317.1284 amu
corresponding to [D + HJ indicating the initiation of imine formatiogFigure 2D). The
strong peak at m/z 333.1247 amu corresponding Ite: J,0O +H] * after 5h is indicative of
the formation of P{Figure 2E). There are peaks detected by ESI-MS, which maybeiss
that may have formed during the ionization procasd may be slightly different from the

true species present in the reaction.

The most plausible mechanism deline&dethe reaction to account for the formation
of product is shown irscheme 2 The initial event may be considered as the nytidic
attack of amine in an aza-Michael fashion on liydcbenzoquinone A, to generate an
intermediate B-I. Intermediate B-I undergoes subsat electro cyclization to form C and
undergoes eventual rearomatization to form theaingthenoxazine P. P in the presence of
triethylamine reacts with a second molecule ofiaaito form a phenolic Schiff base D. D
on oxidation in the presence of Map@rms a transient enamine E, which furtherundesgoe
1,5-H shift to form a cyclization precursor F. F annulation forms an exocyclic imine G

which finally rearomatizes to the final productPignoxzine-Indole).
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Scheme 1Plausible mechanism

Biological activity
The newly synthesized indolyl phenoxazine derivegll+12were screened for their

cytotoxicity against various human cancer cell $ir8549 (human lung cancer), MG-63
(human bone cancer), BT-474 (human brest cancep@2 (human hepatic cancer), HCT-
116 (human colon cancer), along with normal lunghegial tissue cells (L-132) purchased
from American Type Culture Collection (ATCC) USAy btilizing 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assdy.The G (uM) values from then
vitro cytotoxic evaluation of the synthesized derivatitel2as well as standard drugs are
reflected in Table 3.Remarkably, the tested dekeatshowed good to moderate cytotoxicity
on the selected cancer cell lines. Preliminary Itesindicated that among all the

derivativess,7andB showed significant antiproliferative activities aus the tested cancer

15



cell linespointing towards hydrophobicity which debes the tendency towards participation
in the London dispersion forceswhich are quite img@ for hydrophobicsubstances
tointeract within themselves and other neighbounmaeties. Compoun8 possessing 4-iso-
propyl substituent was most active with ansg@alue of 3.71+0.57uM, followed by
compound  6(4.43% 0.64uM)with 3,4-dimethyl substituent and compound
7(6.08£ 0.78uM)with 2,5-dimethyl substituent against A-549. Compad 7was also found
to be fairly active against HCT-116.09+ 0.19uM).compound, 3and9 with the F, Cl and
2-methoxy respectively displayed weak antiprolifiea activities with the 16, values >
30.0uM. Since halogen substituents increase the lipotyilithe molecule might probably
assume a bigger size.Compofind4, 5 which areeither unsubstitutedwith hydrophobic

substituents on 2-, 3-, and 4- positipasdLO, 1lwith methoxy substitutionswere found to be

inactive.Thus, steric bulk at4-, andfositions of phenoxazine seem crucial for acti\ityt

shown)

Table 3. In vitro anticancer activity of compoundsl2

Compounds A549 MG-63F BT-474 HepGZ HCT-116 L1322
2 >30 >30 >30 >30 >30 >30
3 >30 >30 >30 >30 >30 >30
8 3.71+0.57 19.19+0.17 | 15.94+1.42 >30 12.04+ 18 24.1M%
12 11.08 £1.02 14.25. + 1.14 >30 19.52+1/09 2@&D0.08| 10.23 +0.32
9 >30 25.55+1.02| 28.56+1.04 2533+052 181901 | 15.36+1.2(
7 6.08 +0.78 21.04+0.95| 7.13+0.78 | 16.15+1.06| 9.19+0.19 | 10.29 +0.12
6 4.43 +0.64 19.15+0.97 | 25.48+0.94 13.55+0.18 18.55 0.4%3.96 + 0.51
Doxorubicir 1.08 £0.28 0.78+155| 281+1.1F 244+017 68&0.11 | 0.95+0.84

[a] 50% Inhibitory concentration after 72 of drug treatment, [b] human lung cancer, [c] Bnmbone

cancer, [d] human brest cancer, [e] human hepaiwer, [f]| human colon cancer, [glhuman lung epighe

16



cells, [i] Reference compound. All the values arpressed as MeanSEM in which each treatment was

performed in triplicate wells.

DNA-Nanodrop method
DNA intercalation is determined by nanodrop spgataiometric analysis which measures

the absorbance and calculates the concentrationaéic acids (260 nm). The blue and red
shifts, hypo and hyperchromic effects, are spegi@perties of DNA-drug interaction, which
are closely related with the double helix structdf®. The possibility of interaction of
ligands to DNA can be investigated according tongles in the absorption spectra before and
after the reaction. In general, an intercalatioduires the hyperchromicity at 26mm. !
Such a rise in the absorbance on intercalatiobsewed owing to the possible enhancement
of axial length of the DNA. Hypochromicity at theaxsimum absorption of DNA indicates
the compaction of DNA due to the electrostaticriatéion whereas binding of certain groove

binders cause little or no change in the absorb&icES

In our present experiment, the CT-DNA concentratieas fixed at 50 x I8 M, in TAE
buffer and incubated it with test compound (5uMjhi&ium Bromide (1 uM) for ten
minutes. TAE buffer was used as blank and absodehaves determined by using Nano
Drop™ 2000/2000c Spectrophotometer (Thermo fisher sfient/SA). We have observed
that in comparison to the control DNA, Ethidium Brole, a known intercalator and
compound3 haveshown an increase in the intensity of absorban@&@tm, indicating their

binding ability to bind to DNA thereby validatinge possibility of DNA intercalation.
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Figure 2. DNA intercalation studies A) Spectrophotometric lgsis by nanodrop spectrophotometer for
determination of absorbance: EtBr and Compo8iféve enhanced DNA absorptivity compared to conBpl
Relative viscosity measurements to determine thé Ditercalation: Hoechst-33258 and EtBr used asregfce

standards.

DNA intercalation using viscosity measurements
We have performed viscosity measurements to traekchanges of DNA viscosity in the

presence of compour@in order to validate the internal binding to DNA.héh a ligand
binds externally either in the major grove or mimgwove, a slight bending of DNA helix
leads to decrease in relative length of DNA as olesk by a decrease in its viscosity.
However, when the ligand intercalates between tN& Dases, it results in local unwinding
and lengthening of DNA leading to an increase scesity. Here, we have used EtBr, an
intercalator as a positive control along with Hase€B3258, a known DNA minor groove
binder and compoun8lin our viscosity measurements to compare the agimgviscosity on
their reaction with DNA. In the viscosity experimenve have conducted, although the
viscosity of compound was not as high as that of Ethidium bromide (EtBng DNA
showed higher viscosity as compared to Hoechst &324scosity measurements were
conducted using a Lovis 2000 M/ME Rolling-ball asteter (Anton Paar GmbH, Graz,
Austria), based on the falling ball principle. CTNB concentration was fixed at 50 x £0
M, in 100 mMTris-HCI (pH 7.4). Compoundwas added at various concentrations to CT-
DNA solution. A calibrated 1.59 mm glass capillapntaining a steel ball was filled with the
sample and viscosity was measured by measuringathdalling time at angles in the range

from 2@ to 70. Ethidium bromide, Hoechst-33258 were used asrontData was
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13 ys. the ratio of the concentration of the hybldGT-

represented graphically ag/tfp)
DNA, wheren is the viscosity of CT-DNA in the presence of therivative andyo is the
viscosity of CT-DNA solution.

Conclusion

In conclusion, we have demonstrated the utilitythed versatile, easily accessible building
block quinacetophenone, for the synthesis of lel#adyl)-phenoxazines via C-N formation
as a key step. ESI-MS was used as a tool to igahif intermediates in order to establish the
mechanism. The method is tolerant of electron dogajroupdn vitro cytotoxic evaluation
for these derivatives were screened against tie¢eskpanel of human cancer cell lines, from
preliminary screeing data it was clear thatcompo8rdisplyaed signifiacntCsg value of
3.71+£0.57uM on A-549 cell line. DNA nanodrop method and viscosity expents have

ben conducted to study the changes in absorbamtksiscosity of DNA to confirm the

DNA intercalating ability of compound

Experimental section
General Methods: All reactions were carried outesrah inert atmosphere with dry solvents

unless otherwise stated. Reactions were monitoyetthib layer chromatography (TLC) on
silica gel plates (60 F254), using UV light detentiVisualization of the spots on TLC plates
was achieved either by UV light or by staining fhlates in 2, 4-Dinitro phenyl hydrazine/
Ninhydrin stains and charring on a hot plate. Flelstomatography was performed on silica
gel (200-400 mesh) using distilled hexane, ethgtate, dichloromethan&d NMR and**C
NMR spectra were recorded in CRGblution by using Bruker 500 MHz NMR spectrometer.
Chemical shifts are reported asvalues relative to internal CDLb 7.26 or TMSS 0.0,
DMSO-ds § 2.5 for'H NMR and CDC4 § 77.0, DMSO#ds & 39.52 for'®C NMR. 'H NMR
data were recorded as follows: chemical shift [iplitity, coupling constant(s) (Hz),

relative integral] where multiplicity is defined &s (singlet), d (doublet), t (triplet), g
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(quartet), dd (doublet of doublet), m (multiplebs (broad singlet). FT-IR spectra were
recorded on PerkinElmer spectrometer. High-resmiuthass spectra (HR-MS) [ESIwere

obtained using Agilent Q-TOF mass spectrometer &&4i@s instrument
General procedure for the synthesis of 1-(indol-24+phenoxazine derivative. (1-14):

A suspension of quinacetophenone | (0.152 g, 1 maoad MnQ (0.860g, 10 mmol) is
cooled in an ice bath to 0 °C under constant sgrrAnilines 11 (0.182 mL, 2.0 mmol) in
anhydrous chloroform and triethylamine (0.068 ml5 thhmol) were added and stirred at rt
for 6h. The mixture was filtered through celite. nieval of the solvent under reduced
pressure followed by column chromatography (5% Et®#exane) yielded pure 1-(indol-2-
yl)-phenoxazines (PIl) in moderate to good yields.
1-(3H-indol-2-yl)-10H-phenoxazin-2-oL)Y

Orange solid, Yield (45%), m. p. = 165-167 °G,05 (30:70 Ethyl acetate: Hexarté);
NMR (500 MHz, CDCY): & 8.19 (s, 1H), 7.43-7.35 (m, 4H), 7.30-7.21 (m,,4H)3 (dJ =
7.5 Hz, 2H), 6.04 (s, 1H), 2.65 (s, 2HJC NMR (125 MHz, CDGJ): § 178.58, 177.88,
146.43, 139.22, 137.06, 129.71, 129.05, 127.05,1¥26124.28, 122.79, 107.80, 99.14,
32.61. IR (neat, Cfﬁ: 3291, 3046, 2804, 1649, 1626, 1615, 1509, 123586. HRMSm/z
calculated for GgH14N203[M + H,O + H] *: 333.1239 found: 333.1238.
7-chloro-1-(5-chloro-3H-indol-2-yl)-10H-phenoxaziel (2)

Orange solid, Yield (40%), m. p. = 203-205 °G, (R4 (30:70 Ethyl acetate: Hexané
NMR (500 MHz, CDCJ): & 8.12 (s, 1H), 7.38 (dl = 8.7 Hz, 2H), 7.32 (d] = 8.65 Hz, 2H),
7.17 (d,J = 8.7 Hz, 2H), 7.04 (d] = 8.61 Hz, 2H), 5.89 (s, 1H), 2.59 (s, 2C NMR (125
MHz, CDCk): 6 178.42, 177.72, 162.35, 161.66, 160.38, 159.68,8D4 134.74, 132.84,
126.04, 125.97, 125.07, 125.01, 119.08, 166.62,0068.15.90, 107.38, 32.63. IR (neat, cm
1): 3289, 3076, 2954, 2849, 2917, 1652, 1615, 15939, 1170, 753. HRM8/z calculated

for CooH12CIN,03 [M + H,0 + Na]:423.0279 found: 423.02609.
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7-fluoro-1-(5-fluoro-3H-indol-2-yl)-10H-phenoxazrol (3)

Orange coloured solid, Yield (40%), m. p = 200-2@2 R 0.5 (30:70 Ethyl acetate:
Hexane);!H NMR (500 MHz, CDCJ): & 8.08 (s, 1H), 7.26—7.03 (m, 8H), 5.86 (s, 1H)42.6
(s, 2H).»*C NMR (125 MHz, CDG): § 178.42, 177.72, 162.35, 161.36 Jd= 247.23 Hz),
160.67 (dJ = 247.67 Hz), 158.48, 146.88, 135.12, 132.87,A29126.01 (d,) = 8.37 Hz),
125.05 (d,J = 8.26 Hz), 122.05, 119.63, 116.80 Jc 23.16 Hz), 116.01 (d} = 23.16 Hz),
107.76, 98.96, 32.66. IR (neat, &m3304, 3081, 2923, 2852, 1651, 1615, 1289, 1188,
HRMS m/zcalculated for ggH15F2N-O3 [M + H,O + H]:369.1051 found: 369.1051.
7-methyl-1-(5-methyl-3H-indol-2-yl)-10H-phenoxa2io! (4)

Orange solid, Yield (52%), m. p. = 198-263, R 0.5, (30:70 Ethyl acetate: Hexarte);
NMR (500 MHz, CDCY): 5 8.16 (s, 1H), 7.21 (d, = 10 Hz, 2H), 7.16-7.11 (m, 4H), 7.01 (d,
J = 10 Hz, 2H), 5.98 (s, 1H), 2.65 (s, 2H), 2.3548H). °C NMR (125 MHz, CDGJ): 5
178.45, 177.83, 146.70, 136.95, 136.20, 134.40,2430129.67, 123.97, 122.76, 32.62,
21.11, 20.99. IR (neat, C'ﬁl 3316, 2922, 2852, 1743, 1645, 1621, 1287, 1HRMS m/z
calculated for GH1gN,03 [M + H,O + H] *: 361.1552 found: 361.1552.
1-(6,7-dimethyl-3H-indol-2-yl)-8,9-dimethyl-10H- grfoxazin-2-0l %)

Orange solid, Yield (35%), m. p. = 169-1%3, R0.5 (30:70 Ethyl acetate: Hexarlé);NMR
(500 MHz, CDC}): § 8.00 (s, 1H), 7.15-7.04 (m, 5H), 6.85 Jc& 7.5 Hz, 1H), 5.50 (s, 1H),
2.72 (s, 2H), 2.31 (s, 6H), 2.16 (s, 6HJC NMR (125 MHz, CDGCJ): & 178.14, 177.84,
148.18, 138.69, 137.94, 138.02, 135.01, 130.94,0832128.94, 128.86, 126.35, 125.82,
122.80, 122.44, 107.37, 99.14, 32.60, 20.41, 143198. IR (neat, ci): 3314, 2919, 1737,
1651, 1614, 1515, 1386, 1217. HRMz calculated for @H2,N,O3 [M + H,O + H]

*:389.1865 found: 389.1862.

1-(5,7-dimethyl-3H-indol-2-yl)-7,9-dimethyl-10H- groxazin -2-0lq)
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Orange solid, Yield (52%), m. p. = 202-207 R 0.5, (30:70 Ethyl acetate: Hexarfe);
NMR (500 MHz, CDC)): § 7.89 (s, 1H), 7.03 (d] = 8.5 Hz, 2H), 6.97 (d] = 8.0 Hz, 2H),
6.89 (d,J = 8.0 Hz, 1H), 6.80 (d] = 7.5 Hz, 1H), 5.51 (s, 1H), 2.64 (s, 2H), 2.24)¢d 4.5
Hz, 6H), 2.15 (d,J = 8.0 Hz, 6H)C NMR (125 MHz, CDGJ): § 178.15, 177.81, 147.85,
137.10, 132.85, 132.50, 132.03, 131.46, 127.63,162724.45, 99.99, 32.62, 21.03, 20.95,
17.93, 17.61. IR (neat, ¢ht 3313, 2922, 2652, 1731, 1560, 1515. HRM& calculated for
C24H22N203 [M + H,0 + H] ™ 389.1865 found: 389.1865.
1-(4,7-dimethyl-3H-indol-2-yl)-6,9-dimethyl-10H-ptaxazin -2-0l 7)

Orange solid, Yield (40%), m. p. = 188-£83 R 0.3 (30:70 Ethyl acetate: Hexarlé):NMR
(500 MHz, CDC}): & 8.00 (s, 1H), 7.16 (d] = 10.0, 7.5 Hz, 1H), 7.12 (d,= 15 Hz, 1H),
7.05 (s, 1H), 7.00 (dl = 7.5 Hz, 2H), 6.81 (s, 1H), 5.66 (s, 1H), 2.702(d), 2.32 (dJ = 15
Hz, 6H), 2.23 (d, 13.5 Hz, 6H}’C NMR (125 MHz, CDGJ): & 178.27, 177.83, 147.56,
138.39, 137.00, 136.96, 136.28, 135.03, 131.21,530129.75, 129.26, 128.14, 127.91,
125.10, 124.86, 107.32, 99.96, 32.56, 20.93, 2018%7, 17.25. IR (neat, cm-1): 3254,
3218, 2922, 2853, 1695, 1615, 1471, 1238, 1121. BRIk calculated for gsH2:N203 [M +
H.O + H]": 389.1865 found: 389.1867.
7-isopropyl-1-(5-isopropyl-3H-indol-2-yl)-10H-phexarin-2-ol g)

Orange solid Yield (42%), m. p. = 148-151°G, .4, (30:70 Ethyl acetate: Hexan&
NMR (500 MHz, CDC)): § 8.11 (s, 1H), 7.18 (d] = 4.0 Hz, 2H), 7.17 (d] = 8.5 Hz, 2H),
7.09 (d,J = 8.5 Hz, 2H), 6.98 (d] = 8.5 Hz, 2H), 5.94 (s, 1H), 2.87-2.81 (m, 2HB&(s,
2H), 1.18 (dd,) = 2.0, 2.0 Hz, 12H):3C NMR (125 MHz, CDGJ): 5 178.49, 177.82, 147.81,
147.17, 146.68, 136.82, 134.66, 127.62, 127.03,0624.22.79, 107.70, 99.15, 33.72, 32.60,
23.87. IR (neat, cif): 3218, 2960, 2868, 1739, 1693, 1610, 1635, 14365, 1417, 1261,

1149. HRMSm/zcalculated for GsH26N2O3 [M + H,O + H]™: 417.2178 found: 417.2175.
9-methoxy-1-(7-methoxy-3H-indol-2-yl)-10H-phenor&ziol ©)
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Orange solid, Yield (50%), m. p. = 150-£65 R 0.5,(30:70 Ethyl acetate: Hexarlé);NMR
(500 MHz, CDC}): & 8.53 (s, 1H), 7.30 (dl = 8.75 Hz 1H).7.27 (m, 2H), 7.16 (d) = 8.35

Hz 1H), 7.10-7.02 (m, 2H), 6.93-6.83 (m, 4H), 6(861H), 3.85 (s, 3H), 3.74 (s, 3H), 2.59
(s, 2H).**C NMR (125 MHz, CDGJ): §178.31, 177.72, 158.49, 158.02, 156.36, 131.96,
129.66, 125.33, 125.04, 124.68, 119.34, 119.05,5P15114.94, 114.29, 113.64, 107.42,
98.89, 55.52, 55.44, 32.64. IR (neat, 9nB318, 2924, 2853, 1689, 1639, 1590, 1462, 1211.
HRMS m/zcalculated for gH1gN>0s [M + H,0 + H] *: 393.1450 found: 393.1452.
7-methoxy-1-(5-methoxy-3H-indol-2-yl)-10H-phenor&24ol (10)

Orange solid, Yield (45%), m.p 172-176°C;, (R4(30:70 Ethyl acetate: Hexarfé); NMR
(500 MHz, DMSO-@): 5 8.05 (s, 1H), 7.09 (dl = 8.5 Hz, 2H), 6.98 (d] = 8.0 Hz, 2H), 6.86

(d, J = 9.0 Hz, 2H), 6.80 (d] = 8.5Hz, 2H), 5.81 (s, 1H), 3.74 @@= 6.5 Hz, 6H), 2.62 (s,
2H). 3¢ NMR (125 MHz, DMSO-g): 6 178.28, 178.11, 152.68, 147.00, 128.37, 128.07,
127.62, 126.29, 125.72, 124.20, 121.32, 120.78,681212.21, 97.78, 56.32, 56.12, 32.51.
IR (neat, crif): 3217, 2923, 2840, 1688. HRM®/z calculated for GH1gN,Os [M + H,0 +

H] " 393.1450 found: 393.1448.
1-(5,6-dimethoxy-3H-indol-2-yl)-7,8-dimethoxy-10Hepoxazin -2-ol11)

Orange coloured solid, Yield (60%), m. p. = 192°195R 0.5 (30:70 Ethyl acetate:
Hexane)H NMR (500 MHz, DMSO-g): § 9.38 (s, 1H), 7.01 (d] = 9.0 Hz, 2H), 6.90 (d

= 8.5 Hz, 2H), 6.81 (s, 1H), 6.70 @@= 7.5 Hz, 1H), 5.73 (s, 1H), 3.77 — 3.71 (m, 12M26

(s, 2H).**C NMR (125 MHz, CDGJ): & 178.63, 178.47, 149.60, 149.06, 148.49, 147.73,
147.48, 132.60, 130.95, 116.87, 112.55, 111.91,4109.09.23, 109.16, 96.27, 79.64, 56.23,
56.15, 56.10, 56.02, 32.43. IR (neat,']c)n8292, 2927, 2837, 1647, 1605, 1594, 1557, 1513,
1295, 1262, 1162. HRMB\/zcalculated for gH,,N,07 [M + H,O + H] *: 453.1662 found:

453.1665.
6,7,8-trimethoxy-1-(4,5,6-trimethoxy-3H-indol-2-1)H-phenoxazin-2-ol (12)
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Orange solid, Yield (62%), m. p. = 125-130, R 0.5 (30:70 Ethyl acetate: Hexané}
NMR (500 MHz, CDC})): & 8.12 (s, 1H), 6.46 (s, 2H), 6.35 (s, 2H), 6.021¢d), 3.85-3.82
(m, 18H), 3.82 (s, 6H), 2.64 (s, 2HfC NMR (125 MHz, CDGJ): $178.94, 178.57, 153.72,
153.68, 153.27, 148.04, 136.32, 136.10, 135.92,4135133.79, 124.33, 123.10, 119.76,
109.79, 109.37, 108.72, 102.76, 102.44, 102.39®&®062, 60.57, 56.57, 56.44, 32.36. IR
(neat, crit): 3258, 2924, 2852, 1586, 1452, 1416, 1228, 11823, 1042. HRMSn/z
calculated for GgH26N20g [M + H,0O + H] ©513.1873 found: 513.1871.
1-(9-bromo-3-((2-bromophenyl)amino)-2-hydroxy-10kkpoxazin-1-yl)ethan-1-on&J)
Brown Solid; Yield- 48%, m. p. = 202-202 °C; B.3 (30:70 Ethyl acetate: Hexané)y
NMR (500 MHz, DMSO-dg): & 12.34 (s, 1H), 9.39 (s, 1H), 7.80 (t= 8.0 Hz, 1H), 7.68 (d,

J = 8.0 Hz, 1H), 7.51 () = 8.0 Hz, 1H), 7.46 (d] = 6.5 Hz, 1H), 7.37 () = 7.6 Hz, 1H),
7.32 (d,J = 7.0 Hz, 2H), 7.23 (t) = 7.6 Hz, 1H), 5.19 (s, 1H), 2.44 (s, 3fC NMR (125
MHz, DMSO- dg): & 200.27, 178.31, 178.02, 148.45, 138.84, 136.3B.953 133.08,
129.49, 129.05, 128.65, 128.39, 127.95, 120.71561908.86, 98.03, 32.59. IR (neat, Ym
3277.84, 3003.17,2 779.41, 1737.20, 1356.93, 1288@27.99, 759.24, 661.20. HRMSz
calculated for GgH14BroN-O3 [M + H] *: 490.9429 found 490.9431.

1-(7-bromo-3-((4-bromophenyl)amino)-2-hydroxy-10kepoxazin-1-yl)ethan-1-on&4)

Red Solid; Yield- 52%, m. p. = 215-217 °C;, ®3 (30:70 Ethyl acetate: Hexan&t NMR
(500 MHz, DMSO-dk): & 11.07 (s, 1H), 9.60 (s, 1H), 7.61 (s, 1H), 7.4738 (m, 5H), 7.31
(t, J = 8.0 Hz, 1H), 7.19 (d] = 8.8 Hz, 1H), 5.86 (s, 1H), 2.32 (s, 3H)C NMR (125 MHz,
DMSO- dg): 6 199.81, 179.56, 179.04, 147.46, 139.92, 131.69,.0B3 129.31, 128.87,
127.12, 126.8, 123.67, 123.0, 122.3, 121.74, 11®@2%9, 32.30. IR (neat, ¢th 3300.03,
3000.28, 2950.35, 1737.20, 1653.44, 1310.23, 1913@00.25, 820.30, 650.80. HRNSz

calculated for GgH14BroN-Os [M + H] *: 490.9429 found 490.9425.
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Pharmacology

Cell culture
Human cancer lines such as A549 (human lung caneks}63 (human bone cancer), BT-

474 (human brest cancer), HepG2 (human hepaticecartdCT-116 (human colon cancer),
along with human lung epithelial tissue cells (.21 8/ere procured from National Centre for
cell science (NCCS) Pune India. All cells were rneamed with appropriate DMEM and
RPMI 1640 media (Sigma Aldrich) cells were also @amented with 10% Fetal bovine
serum stabilized with 1% antibiotic-anti mycotidwgmn (Sigma Aldrich) in CO2 incubator
at 37°C. when cells reached up to 80-90% confluency, teye sub-cultured by using
0.25% trypsin/AImM EDTA for further passage. Compmainwere dissolved in DMSO to
prepare the stock solution of 10 mM. Further dio§ were made accordingly with

respective to media to get required concentration.

Evaluation ofin vitro cytotoxic assay
Cytotoxicity of synthesized compounds was evaludigdMTTassay. Briefly, cells were

seeded in 96-well plates at a density of 4000@atswell in 20QuL of complete medium and
allowed to growovernight for attachment onto thdlsvelThen the cells were treated with
various concentrations of the compounds for a peofo72h. After the treatment, 100 uL of
MTT (0.5 mg/mL) was added and incubated at 37 °C4b. Then MTT reagent was
aspirated and the formazan crystals formed wersollied by the addition of 20QL of
DMSO for 20 mins at 37 °C. The quantity of formazaoduct wasmeasured by using a
spectrophotometric microtiter plate reader(Spectax, M4 molecular devices, USA) at 570
nm wavelength.Initially, cytotoxicity effects of éhsynthetic derivatives were screened
by MTT assay at 3lM concentration. Among these, the compoundwhiclwgldolG, value

< 30uM was used for the dose dependentstudies at vacmusentrations ranging from 0.78

UM to 30uM inserial dilutions and the percentage of cytotdyiwas calculated.
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DNA Nanodrop method
DNA intercalation is determined by nanodrop spettaiometric analysis. The

intercalatingagents decrease the absorption amdase the wavelengths. In our experiment,
weincubated the 5@M of calf thymus DNA (Sigma-Aldrich, USA) with cormopnd 8,
Ethidium bromide (EtBr) Hoechst 32258 for 10 minlaiM concentration. Later, the TAE
buffer used as blank and absorbance and concemsativere determined by

NanoDrop™ 2000/2000c Spectrophotometer (Thermefishientific, USA).

DNA binding using viscosity measurements

Relative studies were determined by Ostwald vistcemd&he titrations were conducted for
most active compoung, EtBr and Hoechst-33258 at .M while and they are added to CT-
DNA solution(50u«M) and exposed to viscometer. Here, the DNA sofutA@s prepared in
100 mMTrisHCI (pH 7.0). Data were represented g/§o)1l/3 versus the ratio of the
concentration of thecompour] EtBr and Hoechst-33258 to CT-DNA, wheneis the
viscosity of CTDNA in the presence of intercalatiagents ando is the viscosity of CT-

DNA alone.
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An operationally simple reaction between quinadetmmne and aniline derivatives to
afforded 1-(indol-2-yl)-phenoxazine hybrids in gogdlds is presented.

The most plausible reaction mechanism was eskedalibased on the mechanistic studies
carried out with Mass spectrometry.

MTT assay reveals compougdto display significant IC50 value of 3.20.57uM on
A-549 cell line.

The ability of8 to intercalate DNA was also confirmed by DNA Narau method and

viscosity experiments.



Declaration of interests

v" [OThe authors declare that they have no known competing financialinterestsor personal
relationships that could have appeared to influence the work reported in this paper.

[(IThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:




