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Abstract—This paper describes the ready preparation of 3,6-difluoro-3-deazapurine (4,7-difluoroimidazo[4,5-c]pyridine). This novel
base was glycosylated under mild conditions using three different ribose sugar analogs. 3,6-Difluoro-3-deazapurine ribonucleoside
analogs underwent direct SNAr amination reactions with liquid ammonia to give 3-fluoro-3-deazaadenosine analogs in excellent
yield; in contrast, 6-chloro-3-fluoro-3-deazapurine nucleosides were inert under similar reaction conditions.
� 2005 Elsevier Ltd. All rights reserved.
Fluorinated organic molecules perform a wide range of
biological functions.1 In many cases, the introduction of
one or more fluorine atoms into biologically important
molecules enhances their activity, liphophilicity, bio-
availability, and metabolic stability.2 Accordingly, an
enormous amount of work has been performed to pre-
pare fluorinated nucleoside analogs; several of these
analogs have been studied in clinical trials and a few
have been approved as drugs, including the pancreatic
cancer drug Gemcytabine (Gemzar) and the HIV drug
5F-3TC. It was reported3 quite recently that 7-fluoro-
7-deaza-2 0-C-methyladenosine 1, a nucleoside derivative
in which a C–F bond appears at the 7-position of
7-deaza-20-C-methyladenosine 2a or 20-C-methyladenosine
2b, inhibits the replication of hepatitis C virus (HCV)
with higher inhibitory potency (EC50 = 0.07 lM) than
its parent compounds 2a (EC50 = 0.25 lM) and 2b
(EC50 = 0.26 lM). 3-Deazaadenosine 3 analogs4 display
broad-spectrum antiviral and anticancer activities, and
3 0-deoxyribonucleosides exhibit interesting antiviral,
antifungal, antibacterial, antiparasitic, and anticancer
properties.5 Furthermore, ribonucleosides having 2 0-b-
C-methyl substituents display anti-HCV properties.6

These findings prompted us to synthesize a series of
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3-fluoro-3-deazaadenosine analogs, 4a–c, that combine
the 3-fluoro-3-deazapurine heterocycle with the active
compounds� ribosugar moieties. The introduction of a
C–F bond at the 3-position of purine could not only
isosterically mimic the regular adenine and guanine
bases but also the 3-deazaadenine and 3-deazaguanine
bases (Fig. 1).

Although syntheses of 3-fluoro-3-deazaadenosine (3F-3-
deaza-Ad) have been reported,7 there are difficulties
encountered when applying these procedures to the
synthesis of modified-sugar analogs of 3F-3-deaza-Ad
and, therefore, an efficient and general methodology is
desirable. 6-Chloro-3-deazapurine (4-chloroimidazo[4,5-
c]pyridine) nucleosides are highly inert toward
nucleophiles (e.g., ammonia) in SNAr reactions, which is
the main drawback for their use in the synthesis of 3-dea-
za-Ad analogs.8 Thus, an alternative two-step synthesis
(displacement of the 6-chloro-substituent with hydrazine
under reflux conditions and subsequent cleavage of
the N–N bond using Raney Ni) for the amination of
6-chloro-3-deazapurine has been developed.9,10 This
approach has its limitations, however, including poor-
to-moderate yields and the generation of side products.
Moreover, use of hydrazine under reflux is not a condi-
tion tolerated by various sugar or base modifications;
indeed, Matsuda and co-workers7a reported that
nucleoside 5a decomposed when attempting to perform
the displacement reaction using hydrazine under
reflux (Scheme 1).11
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Figure 1. Rationale for the synthesis of target compounds 4a–c.

Scheme 1. Reagents and conditions: (i) (a) hydrazine, reflux; (b) Raney nickel; (ii) liquid NH3 or MeOH saturated with NH3 at 0 �C, (iii) NaSMe,

DMF.
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Likewise, our initial attempts to synthesize 3F-3-deaza-
2 0-C-Me-Ad 4b based on performing SNAr reactions
with 5b were also unsuccessful, but we did gather some
useful clues about what would be necessary to design a
successful synthetic scheme for the target compounds
4a–c: (i) The starting material was completely recovered
when compound 5b was reacted directly with ammonia
nucleophiles, that is, NH4OH, saturated methanolic
NH3 (MeOH saturated with NH3 at 0 �C), and liquid
NH3. (ii) In an attempt to realize the classical two-step
amination, we heated nucleoside 5b under reflux with
anhydrous hydrazine, but observed only decomposition
of the starting material.7a (iii) To proceed with Seela�s
methodology,10b we attempted the synthesis of 3-fluoro-
6-S-methyl-3-deazapurine-20-C-methylriboside 6c.12 When
we reacted nucleoside 5b with sodium thiomethoxide
in DMF at room temperature, the products we
isolated were, surprisingly, 6a (52%) and 6b (17%); their
formation reveals that the SNAr reaction of the 3-fluoro
substituent is more facile than that of the 6-chloro sub-
stituent.13 It is well established in the literature14 that a
halogen substitutent adjacent to the N-1 position (the 6-
position of purine or 3-deazapurine) is most reactive to-
ward nucleophiles, but it is also well known that fluoride
is the best leaving group among the halogens in most
SNAr reactions.15 In addition, the electron-withdrawing
6-chloro substituent in 5b may enhance the reactivity of
the 3-fluoro substituent by reducing the electron density
around the six-membered ring.16 As a result, the 3-flu-
oro substituent is easily displaced. By exploiting these
observations, facile SNAr reactivity at the 6-position
can be tuned by introducing fluorine substituents
at both the 3- and 6-positions. On the basis of these
concepts, we investigated the direct SNAr aminations
of 4,7-difluoro-imidazo[4,5-c]pyridine nucleosides with
NH3 nucleophiles and, consequently, in this paper we
present the efficient and general syntheses of 3F-3-dea-
za-Ad analogs using direct SNAr amination.

We synthesized (Scheme 2) 3,6-difluoro-3-deazapurine
15 from commercially available 3-chloro-2,4,5,6-tetra-
fluoropyridine 7. The synthesis of N-(2-amino-
5-chloro-3,6-difluoropyridine-4-yl)phthalimide 8 was
realized in three steps from 7 by following a reported
procedure.17 Diazotization of compound 8 using tert-
butylnitrite in THF produced the deaminated product
9. Treatment of compound 9 with 28% aqueous ammo-
nium hydroxide at room temperature, followed by cata-
lytic dehalogenation under H2 (50 psi) using 10% Pd on
activated carbon, afforded 4-amino-2,5-difluoro-pyri-
dine 11 (55% overall yield from compound 7). Gratify-
ingly, the synthesis of compound 11 from compound 7
required only a single purification by column chroma-
tography after the last step, because all of the synthetic
steps proceeded with clean conversions and excellent
yields. Compound 11 was nitrated using potassium



Scheme 2. Reagents and conditions: NPhthol = Phthalimido; (i) See Ref. 17 or Supplementary data; (ii) tert-butylnitrite, THF, 60 �C, 1 h; (iii) 28%
aqueous NH4OH, rt, 1.5 h; (iv) 10% Pd/C, 50 psi [H] Et3N, 24 h; (v) concd H2SO4, KNO3 4 �C to rt, 1.5 h; (vi) concd H2SO4, rt, 24 h; (vii) Raney

nickel, anhydrous EtOH, 36 psi [H]; (viii) diethoxymethyl acetate, 100 �C, 2 h.
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nitrate in concentrated H2SO4 to give the nitrated
amino compound 12 in 73% yield, which on further
reaction with concentrated H2SO4 produced 4-amino-
2,5-difluoro-3-nitropyridine 13 in 87% yield. Catalytic
reduction of 13 under H2 (36 psi) using Raney Ni pro-
duced the diamino compound 14 in 95% yield, which
we reacted with diethoxymethyl acetate18 to give the
ring-closed product, 3,6-difluloro-3-deazapurine 15 in
78% yield.

Next we investigated the coupling reactions between
base 15 and three different ribosugar analogs: 1,2,3,5-
tetra-O-benzoyl-b-DD-ribofuranose 16a, 1,2,3,5-tetra-O-
benzoyl-2-C-methyl-b-DD-ribofuranose 16b,19 and 1,2-
di-O-acetyl-5-O-(4-methylbenzoyl)-3-deoxy-b-DD-ribofu-
ranose 19.20 The Vorbrüggen-type glycosylation reac-
tion21 between the silylated base 15 and sugar 16a in
the presence of trimethylsilyl trifluoromethanesulfonate
(TMSOTf) proceeded smoothly to give 17a in 70% yield.
In contrast, glycosylation reactions between 15 and the
2-C-methylribose 16b failed under both the Vorbrüggen
and SnCl4-mediated coupling conditions. The successful
coupling of 6-chloropurine and the 2-C-methyl sugar
16b has been reported in the literature22 when a combi-
nation of two coupling reagents, for example, TMSOTf
and 1,8-diazabicyclo[4,5,0]undec-7-ene (DBU), was
used. Using this procedure, we reacted base 15 with 2-
C-methylribose 16b in dichloroethane in the presence
of TMSOTf and DBU. After the usual work-up, we iso-
lated the corresponding glycosylated products 17b and
18b as a mixture of positional isomers (9-N/7-N = 5:1)
in a combined yield of 84%. For comparison, we also
realized the coupling reaction between base 15 and
ribose sugar 16a under similar conditions to give a
mixture of the corresponding glycosylated products 17a
and 18a in a 6:1 ratio (82% combined yield). The posi-
tional isomers 17 and 18 were readily separated by flash
column chromatography (SiO2; 3% EtOAc in CH2Cl2).
The major product, the slower-moving one by thin-layer
chromatography (TLC), was 17a, which is also the prod-
uct obtained under the Vorbrüggen reaction conditions.
In contrast, the coupling reaction between 3 0-deoxy su-
gar analog 19 and base 15 afforded the anomeric mixture
20ab (1:2) in 70% yield; we also observed the anomeric
mixture of the N-7 positional isomer (ca. 7%) by 1H
NMR spectroscopic analysis of the crude reaction mix-
ture. We isolated the major product (20ab) as a pure
mixture (a/b = 1:2) by flash column chromatography
(SiO2; 3% EtOAc in CH2Cl2) (Scheme 3).

To realize our synthetic goal, we first investigated the di-
rect SNAr amination of compound 17a, which we re-
acted with liquid NH3 at 80 �C in a steel bomb.23

After 48 h, we observed complete conversion of 17a
and the only product isolated was indeed 3F-3-deaza-
adenosine 4a (81% yield). Neither a prolonged reaction
time (96 h) nor a higher temperature (110 �C) resulted
in the formation of the diamino compound. We
confirmed the structure of 4a by comparing its 1H and
13C NMR and UV spectra with those of a compound
synthesized by Matsuda et al.7a This comparison
revealed that the slower-moving (by TLC), major
glycosylation product was the N-9 positional isomer.
To generalize this direct amination reaction, we sub-
jected compounds 17b and 18b independently to similar
reactions with liquid NH3 to give 4b (88%) and 22
(72%), respectively. The assignment of the positional
isomers 4b and 22 is based on the UV absorption spectra
of these derivatives:24 the N-9 positional isomer 4b dis-
played its kmax at 269 nm while the undesired (N-7) iso-
mer 22 exhibited kmax at 295 nm. In addition, the value
of kmax of 4b is consistent with that obtained for com-
pound 4a. In their 1H NMR spectra, the 8-H protons
of the N-9 isomers are always located downfield (ca.
0.1 ppm) relative to the 8-H protons of the N-7 isomers.
These data are consistent with those reported for other
3-deazapurine nucleosides.24 We reacted the pure mix-
ture 20ab with liquid NH3 in a similar fashion to give
a mixture of 4c and 4c-a in 85% yield after separation
by reverse-phase HPLC. We confirmed the glycosylation
site and the anomeric configurations of 4c and 4c-a
by using UV and 1H NMR spectral data, which are



Scheme 4.

Scheme 3. Reagents and conditions: (i) (a) compound 15, HMDS, cat. ammonium sulfate, reflux 3 h; (b) dichloroethane, TMSOTf, rt, 12 h; (ii)

compound 15, DBU, TMSOTf, dichloroethane, 0 �C to rt, 24 h.

3886 K. Sakthivel, P. D. Cook / Tetrahedron Letters 46 (2005) 3883–3887
comparable to those reported for 3 0-deoxy-3-deaza-Ad
(Scheme 4).25

In summary, we have executed an efficient synthesis of a
novel base, 3,6-difluoro-3-deazapurine. This base was
glycosylated under mild conditions using three different
ribose sugar analogs. Our studies on the direct SNAr
amination reactions of fluorinated imidazo[4,5-c]pyri-
dine nucleosides have yielded an efficient and general-
ized methodology for the synthesis of such biologically
important molecules as 3-fluoro-3-deazaadenosine
analogs. A study of the biological properties of these
nucleosides will be published in due course.
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