Accepted Manuscript

A high signal-to-background ratio H_2S -specific fluorescent probe based on nucleophilic substitution and its bioimaging for generation H_2S induced by Ca²⁺ in *vivo*

Jin Kang, Fangjun Huo, Yishan Yao, Caixia Yin

PII: S0143-7208(19)31172-6

DOI: https://doi.org/10.1016/j.dyepig.2019.107755

Article Number: 107755

Reference: DYPI 107755

To appear in: Dyes and Pigments

Received Date: 22 May 2019

Revised Date: 17 July 2019

Accepted Date: 25 July 2019

Please cite this article as: Kang J, Huo F, Yao Y, Yin C, A high signal-to-background ratio H₂S-specific fluorescent probe based on nucleophilic substitution and its bioimaging for generation H₂S induced by

Ca²⁺ in vivo, Dyes and Pigments (2019), doi: https://doi.org/10.1016/j.dyepig.2019.107755.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

2 3 4 5		
6 7	1.	This probe exhibit high signal-to-background ratio in response to H ₂ S.
8	2.	This probe was used to detect endogenous generation H_2S induced by Ca^{2+}
9		mediated cystathionine γ -lyase (CSE).
10	3.	This probe was successfully used to detect exogenous hydrogen sulfide in mice.
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		

32 The statement:

33

51

A novel fluorescence H_2S probe based on nucleophilic substitution reactions, which with high signal-to-background ratios. This probe was successfully used to imaging ex-/endogenous H_2S in living cells, and exogenous H_2S in mice.

37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

A high signal-to-background ratio H₂S-specific fluorescent probe 52 based on nucleophilic substitution and its bioimaging for generation 53 H₂S induced by Ca²⁺ in *vivo* 54 Jin Kang,^{1a} Fangjun Huo,^{1b} Yishan Yao,^{1c} Caixia Yin^{a,*} 55 ^a Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion 56 and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, 57 ^b Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China. 58 ^cState Key Laboratory of Tocicology and Medical Countermeasures, Beijing Institute 59 of pharmacology and Toxicology, No.27 Taiping Road, Haidian District, 60 Beijing, 100850, P. R. China. 61 *Corresponding author: C.X. Yin, E-mail: vincx@sxu.edu.cn, Tel/Fax: 62 +86-351-7011022. 63 Abstract Hydrogen sulfide (H₂S), a new endothelium-derived relaxing factor 64 (EDRF), which plays vital roles in regulating intracellular redoxstatus and other 65 fundamental signaling processes involved in human health and disease. In this work, 66 we designed a fluorescent probe for H₂S successive nucleophilic reaction with high 67 signal-to-background (S/B) ratio. In the probe, we utilized 2-mercaptobenzoic acid as 68 the distinguish reaction site and introduced 2,4-dinitrophenyl to provide appropriate 69 steric hindrance to realize specific response on well-structured H₂S. Other substances 70 sulfur-containing do not disturb the detection of H₂S. The max emission with 197-fold 71 enhancement exhibits high signal-to-background ratio. The detection limit was 72 calculated to be 64 nM. Imaging assays in living cells showed that the probe could 73 penetrate cells membrane easily and allowed to detect endogenous generation H₂S 74 induced by Ca^{2+} mediated cystathionine y-lyase (CSE). Moreover, the probe was 75 successfully used to detect exogenous H₂S in mice. 76

- 77 **Keywords:** H_2S -specific; Two nucleophilic; Ca^{2+} mediated; Vivo
- 78
- 79

80 1. Intruduction

H₂S is extensively exist in a wide variety of industries such as oil exploitation, 81 natural gas well, tunnel and sewage disposal [1-4]. Exposure to high level H₂S 82 atmosphere may cause respiratory symptoms, cardiovascular abnormalities and 83 neurological disorders [5-7]. H₂S was found as the third multifunctional 84 gasotransmitter along with nitric oxide (NO) and carbon monoxide (CO) since last 85 decades [8-10]. H₂S influences a wide range of physiological and pathophysiological 86 processes, including its ability to act as a neurotransmitter [11], regulator of blood 87 pressure [12], immunomodulator [13] or anti-apoptotic agent [14], together with its 88 great pharmacological potential, such as cardioprotection [15], endogenous 89 stimulation of angiogenesis [16] and mitochondrial bioenergetics [17]. However, 90 abnormally H₂S concentrations have been significant associated with alzheimer's 91 92 disease, down's syndrome, diabetes and liver cirrhosis [18-21]. Physiological effects of H₂S are concentration-dependent, thus, in order to benefit from H₂S, the 93 concentration of H_2S must be maintained at the appropriate level. In mammals, 94 endogenous H₂S is synthesized naturally by several enzymes, including cystathionine 95 (CSE), cystathionine β -synthetase (CBS) and 3-mercaptopyruvate v-lvase 96 sulfurtransferase (MST)/cysteine aminotransferase (CAT) [22-25]. Yang et al. reported 97 that the activity of cystathionine γ -lyase (CSE), an important enzyme responsible for 98 H₂S physiological generation in animals, could be activated by calcium-calmodulin 99 pathway [26]. However, the mechanism of Ca^{2+} induced intracellular H₂S production 100 in living cells has not been elucidated. Therefore, developing selective and sensitive 101

102 detection tools for H_2S in complex biological systems is important.

Traditional methods of H₂S detection, including methylene blue method [27], lead 103 104 acetate [28], electrochemical sensors [29], gas chromatography [30] and monobromobimane derivatization are often limited by poor compatibility with 105 biosystem, limited temporal resolution or rigorous preparation requirements [31-32]. 106 In contrast, fluorescent probes with highly sensitive, selective, nondestructive are 107 suitable for detection of this volatile, gaseous molecule with readily available 108 instruments [33-36]. In the past several years, a number of fluorescent probes for H₂S 109 have been reported [37-41]. However, probes with high signal-to-background (S/B) 110 ratio are rare. In bio-imaging, the probe with high S/B ratio is benefit for obtaining 111 more accurate and reliable signals. There are two ways to improve the probe's S/B 112 113 ratio: (1) Increase extent of fluorescence enhancement; (2) Improve selectivity. Moreover, the application of fluorescent probes to the H₂S signaling pathway is still 114 115 rare.

The 2,4-dinitrophenyl (DNP) ether moiety has been employed extensively as a 116 protecting group for tyrosines in peptide synthesis [42]. Direct assemble the DNP 117 group onto various kinds of fluorophores have yielded a series H₂S probes [43-47]. 118 Indeed, biothiols can also remove DNP group, the selectivity of these probes are 119 unsatisfactory [48-49]. In this work, we employed the DNP derivative 120 2-((2,4-dinitrophenyl)thio)benzoic acid as the masking group link to the fluorescein 121 and obtained the probe (Probe 1) (Scheme 1). The probe exhibits high selectivity and 122 significant fluorescence enhancement up to 197-fold upon the detection of H₂S. 123

124	Furthermore,	Ca^{2+}	induced	H_2S	production	in	Hela	cells	was	directly	visual
125	demonstration	ı use tl	he probe.								

126 2. Preparation and characterization of compounds

127 2.1. Preparation of **Probe 1**.

The **Probe 1** was synthesized from the compound 1 via an ester moiety link to fluorescein (Scheme 1). The compound 1 was synthesized use the same methods as previous literature [50].

131

<Inserted Scheme 1>

132 Compound 1 (1.0 mmol, 0.32 g) and fluorescein (1.0 mmol, 0.33 g) were dissolved

133 into 25 mL dichloromethane, added N-(3-dimethylaminopropyl)-N-ethyl carbodi

imide hydrochloride (EDC) (1.0 mmol, 0.19 g) and 4-dimethylaminopyridine (DMAP)

135 (0.10 mmol, 0.01 g). Surrounded by Ar, the reactant stired overnight (r.t.). Then

- 136 solvent was evaporated and resulted residue was subjected to column chromatography.
- 137 Probe was obtained as a yellow powder (0.19 g, yield: 30 %).
- 138 2.2. Characterization of **Probe 1**

¹H NMR (600 MHz, DMSO- d_6) δ 8.88 (d, J = 2.5 Hz, 1H), 8.34 (t, J = 8.0 Hz, 3H),

140 8.05 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 5.7 Hz, 4H), 7.80 (t, J = 7.5 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H

141 7.3 Hz, 1H), 7.37-7.34 (m, 2H), 7.15 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H),

142 6.91 (d, J = 8.7 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d_6) δ 163.4, 151.5, 150.6,

- 143 144.9, 144.4, 144.3, 137.5, 134.4, 133.5, 132.1, 131.3, 130.2, 129.9, 129.3, 127.6,
- 144 124.9, 123.9, 121.0, 118.3, 116.5, 110.3. ESI-MS m/z: [probe + H]⁺ Calcd for
- 145 635.07604, Found 635.07525; $[probe + Na]^+$ Calcd for 657.05804, Found 657.05683.

146 **3. Results and Discussion**

147 3.1 Specta properties of **Probe 1** response to H_2S .

- Firstly, we evaluated the UV-vis spectra properties of **Probe 1**. As shown in Fig. 1, 148 in 2 mL DMSO : PBS (v/v, 7 : 3, pH = 7.4) solution of **Probe 1** (25 μ M), gradually 149 added HS⁻ (0-300 μ M), the absorbance at 338 nm increased with concomitant 150 appearance of absorbance at 475 nm in a short time frame (10 min). Similarly, we also 151 studied the reaction between Probe 1 and biothiols (Cys, Hcy and GSH) in UV-vis 152 spectrometer (Fig. S6 a, b, c). Under the same conditions, the addition of Cys (500 153 μ M) caused a neglectable absorbance enhancement at 338 nm, and Hcy (500 154 μ M)/GSH (500 μ M) couldn't cause obvious changes in UV-vis spectra. 155
- 156

<Inserted Figure 1>

157 The **Probe 1** is considered to be a high S/B ratio probe. On the one hand, high S/B ratio probe depend on the extent of fluorescence enhancement. As predicted, the 158 incremental addition of HS⁻ (0-70 μ M) to the solution DMSO : PBS (v/v, 7 : 3, pH = 159 7.4) of **Probe 1** (5 μ M) resulted in a dramatic enhancement of the emitting band 160 centered at 538 nm in 10 min (Fig. 2a). Finally, the max emission has 197-fold 161 enhancement. On the other hand, the high selectivity is very important condition for 162 high S/B ratio probe. The **Probe 1** was treated with HS⁻ and various relevant analyte 163 (100 eq.) in DMSO : PBS (v/v, 7 : 3, pH = 7.4). As shown in Fig. 2b, the **Probe 1** was 164 highly selective for HS⁻ versus biological relevant thiols or HSO₃⁻. These results 165 demonstrate the excellent selectivity of the probe to H_2S . These above experiment 166 results, the emission of Probe 1 has a large enhancement (197-fold) and the high 167

168	selective of the Probe 1 fulfilled the requirements of high S/B ratio probe. Hence, the
169	probe is a H_2S -specific fluorescent probe with high S/B ratio.
170	<inserted 2="" figure=""></inserted>
171	3.2 Working curve and time dependents
172	Furthermore, a plot of fluorescent intensities at 538 nm versus the concentrations of
173	H ₂ S showed a good linearity ($R^2 = 0.991$): F-F ₀ = 94.24 <i>c</i> - 293.60 (Fig. 3a). With the
174	definition: Detection limit = $3\sigma/k$, the detection limit evaluated as 64 nM. In order to
175	evaluate the response speed of Probe 1 towards H_2S , we examined the reactivity of
176	probe (5 μ M) towards the HS ⁻ (10 eq.) through time-dependent fluorescence
177	spectroscopy in DMSO : PBS (v/v, 7 : 3, pH = 7.4). As the Fig. 3b depicted, the
178	reaction could be completed within 10 min.
179	<inserted 3="" figure=""></inserted>
179 180	<inserted 3="" figure=""> 3.3. Proposed mechanism</inserted>
179 180 181	Solution <inserted 3="" figure=""> 3.3. Proposed mechanism The proposed mechanism of Probe 1 was depicted in the Scheme 2. The H₂S</inserted>
179 180 181 182	Solution <inserted 3="" figure=""> 3.3. Proposed mechanism The proposed mechanism of Probe 1 was depicted in the Scheme 2. The H₂S nucleophilic substitution the carbonyl group of Probe 1, result in the protect group</inserted>
 179 180 181 182 183 	Solution Inserted Figure 3> 3.3. Proposed mechanism The proposed mechanism of Probe 1 was depicted in the Scheme 2. The H ₂ S nucleophilic substitution the carbonyl group of Probe 1, result in the protect group cleaved and released the fluorescein and compound 2 [51]. Furthermore, the
 179 180 181 182 183 184 	Solution Inserted Figure 3> 3.3. Proposed mechanism The proposed mechanism of Probe 1 was depicted in the Scheme 2. The H ₂ S nucleophilic substitution the carbonyl group of Probe 1, result in the protect group cleaved and released the fluorescein and compound 2 [51]. Furthermore, the mechanism was proved by the ESI-MS spectra analysis (Fig. S9). ESI-MS of a
 179 180 181 182 183 184 185 	Solution mixture of Probe 1 and NaHS exhibited m/z peaks at 331.0611, 198.9816 in
 179 180 181 182 183 184 185 186 	Solution mixture of Probe 1 and NaHS exhibited m/z peaks at 331.0611, 198.9816 in accordance with the fluorescein and compound 2 respectively.
 179 180 181 182 183 184 185 186 187 	Solution mixture of Probe 1 and NaHS exhibited m/z peaks at 331.0611, 198.9816 in accordance with the fluorescein and compound 2 respectively.
 179 180 181 182 183 184 185 186 187 188 	Solution mixture of Probe 1 and NaHS exhibited m/z peaks at 331.0611, 198.9816 in accordance with the fluorescein and compound 2 respectively.

190	serial dilution on Probe 1 was performed in culture medium (without serum),
191	incubated for 5 or 10 h. Subsequently, CCK-8 (10 % in serum free culture medium)
192	was added to each well, which was washed with PBS two times and the plate was
193	incubated for another 1 h. Then measure optical densities at 450 nm. Cytotoxicity
194	assay demonstrating the Probe 1 was benign to cells and has the potential to be used
195	in biological applications (Fig. S8).

196 *3.5. Imaging of living cells*

197 The HepG2 cells incubated with **Probe 1** (5 μ M) only for 20 min showed no 198 fluorescence in the green channel (Fig. 4 a1). In contrast, treatment of **Probe 1**-loaded 199 cells with 20 μ M NaHS for 20 min triggered an obvious increased in green 200 fluorescence signal (Fig. 4 b1).

<Inserted Figure 4>

Encouraged by its good sensing performances for H₂S in vitro, we applied **Probe 1** 202 to image the endogenously generated H_2S by exogenous compound stimulation. 203 S-Nitroso-N-acetyl-DL-penicillamine (SNP) was used to stimulate the generation of 204 endogenous H₂S in HepG2 cells. As we expected, after incubation with 10 μ M SNP 205 206 for 1 h, the fluorescence intensities from the green channel clearly increased, which are similar to that of the addition of exogenous NaHS (Fig. 5 d1),. These results 207 indicated that Probe 1 capable of visualization of endogenous H₂S generation in 208 HepG2 cells. These cell experiments showed the **Probe 1** can thus be used to imaging 209 ex/endogenous H₂S in living cells. 210

<Inserted Figure 5>

211

212 3.6. Imaging the Ca^{2+} -dependent H_2S

 Ca^{2+} is the second messenger and involved in a variety of intracellular signaling 213 214 pathways. According to reported, that calcium-calmodulin regulating the activity of cystathionine γ -lyase (CSE) responsible for H₂S physiological generation in animals. 215 To demonstrate the mechanism of Ca^{2+} induced intracellular H₂S production in cells, 216 we conducted imaging experiments with Probe 1 in Hela cells under conditions of 217 both negative and positive controls. No fluorescent signal was observed in green 218 channel when the cells were pre-incubated with DL-propargylglycine (PAG, which 219 suppresses CSE) along with **Probe 1** and Ca^{2+} . In contrast, obvious fluorescent was 220 observed when the cells were pre-incubated with Ca^{2+} and **Probe 1**, or cells 221 pre-incubated with aminooxyacetic acid (AOAA, a potent inhibitor of CBS) along 222 with **Probe 1** and Ca^{2+} . This indicated that CSE contributes to the observed H₂S 223 generation upon Ca²⁺ stimulation. 224

225

<Inserted Figure 6>

226 3.7. Imaging of living mice

Furthermore, we applied **Probe 1** imaging in mice. The Kunming mice were fed commercial mouse chow in individual cages and left to freely wander in their housing for two weeks with 12 h dark/light cycles for acclimatization before the experiment. A living animal imaging system is used in imaging the mice. After all the preparatory work was completed, the mice were under anesthesia with 100 mL pentobarbital intraperitoneal injection. As Fig. 7 shows, the mice were injected with 50 mM of

233	Probe 1 in the abdomen, HS ⁻ was carefully injected into the same location. Then, the
234	fluorescence images were recorded at different periods of time (0, 5, 10, 15 min).
235	These results displayed that Probe 1 could visualize the endogenous H_2S in vivo.
236	<inserted 7="" figure=""></inserted>
237	4. Conclusions
238	In conclusion, we prepared a fluorescein-based H_2S -specific probe Probe 1 with
239	high S/B ratio. The results of UV-vis spectrum and fluorescence emission spectrum
240	studies showed that Probe 1 had good selectivity for H_2S and having a 64 nM
241	detection limit for H ₂ S. Kinetics studies showed that the response can be completed in
242	10 min. Furthermore, this probe was used to directly image Ca^{2+} -dependent H ₂ S
243	production, and in vivo imaging.
244	5. Acknowledgments
245	We thank the National Natural Science Foundation of China (No. 21775096,
246	21302223), Shanxi Province "1331 project" key innovation team construction plan
247	cultivation team (2018-CT-1), Shanxi Province Foundation for Returness (2017-026),
248	Shanxi Province Science Foundation for Youths (201701D221061), Scientific
249	Instrument Center of Shanxi University (201512).
250	Y .
251	
252	
253	

255 **References**

- [1] Haggard HW. The toxicity of hydrogen sulphide. J. Ind. Hyg. Toxicol
 1925;7:113-121.
- [2] Poda GA. Hydrogen sulfide can be handled safely. Arch. Environ. Health1966;12:795-800.
- [3] Yant WP. Hydrogen sulphide in industry-occurrence, effects, and treatment. Am. J.
 Public Health Nations Health 1930;20:598-608.
- [4] Qian Y, Karpus J, Kabil O, Zhang SY, Zhu HL, Banerjee R, Zhao J, He C.
 Selective fluorescent probes for live-cell monitoring of sulphide. Nat. Commun
 264 2011;2:495.
- [5] Wang X, Sun J, Zhang WH, Ma XX, Lv JZ, Tang B. A near-infrared ratiometric
 fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen
 sulfide in living cells. Chem. Sci 2013;4:2551-2556.
- [6] Liu CR, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M.
 Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew.
 Chem. Int. Ed 2011; 50:10327-10329.
- 271 [7] Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H₂S
- signaling through persulfidation. Chem. Rev 2018;118:1253-1337.
- [8] Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous
 neuromodulator. The J. Neurosci 1996;16:1066-1071.

275	[9]	Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging
276		and detection of hydrogen sulfide and reactive sulfur species in biological
277		systems. Chem. Soc. Rev 2015;44:4596-4618.

- [10] Eberhardt M, Dux M, Namer B, Filipovic MR. H₂S and NO cooperatively
 regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP
 signalling pathway. Nat. Commun 2014;5:4381.
- [11]O'Sullivan SE. What is the significance of vascular hydrogen sulphide (H_2S)? Brit.
- 282 J. Pharmacol 2010;149:609-610.
- 283 [12] Perini R, Fiorucci S, Wallace JL. Mechanisms of nonsteroidal anti-inflammatory
- drug-induced gastrointestinal injury and repair: a window of opportunity for cyclooxygenase-inhibiting nitric oxide donors. Can. J. Gastroenterol 286 2004;18:229-236.
- [13] Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Sellke
- FW. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur. J. Cardio-Thorac 2008;33:906-913.
- [14] Lavu M, Bhushan S, Lefer DJ. Hydrogen sulfide-mediated cardioprotection:
 mechanisms and therapeutic potential. Clin. Sci 2011;120:219-229.
- [15]Bir SC, Kolluru GK, Fang K, Kevil CG. Redox balance dynamically regulates
 vascular growth and remodeling. Semin. Cell Dev. Biol 2012;23:745-757.
- [16] Kabil O, Banerjee R. Redox biochemistry of hydrogen sulfide. J. Biol. Chem

- 295 2010;285:21903-21907.
- [17] Wu D, Si W, Wang M, Lv S, Ji A, Li Y. Hydrogen sulfide in cancer: friend or foe?
 Nitric Oxide 2015;50:38-45.
- 298 [18] Fan K, Li N, Qi J, Yin P, Zhao C, Wang L, Li Z, Zha X. Wnt/beta-catenin
- signaling induces the transcription of cystathionine-γ-lyase, a stimulator of tumor
 in colon cancer. Cell Signal 2014;26:2801-2808.
- [19] Altaany Z, Ju YJ, Yang GD, Wang R. The coordination of S-sulfhydration,
 S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by
 hydrogen sulfide. Sci. Signal 2014;7:87.
- 304 [20] Tai IH, Sheen JM, Lin YJ, Yu HR, Tiao MM, Chen CC, Huang LT, Tain YL.
- 305 Maternal N-acetylcysteine therapy regulates hydrogen sulfidegenerating pathway 306 and prevents programmed hypertension in male offspring exposed to prenatal
- dexamethasone and postnatal high-fat diet. Nitric Oxide 2016;53:6-12.
- 308 [21] Wang R. Physiologicalimplications of hydrogen sulfide: a whiff exploration that
 309 blossomed. Physiological Rev 2012;92:791-896.
- 310 [22]Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric
 311 Oxide 2013;35:21-34.
- [23] Kabil O, Zhou Y, Banerjee R. Human cystathionine-β-synthase is a target for
 sumoylation. Biochem 2006;45:13528-13536.
- [24] Yamanishi M, Kabil O, Sen S, Banerjee R. Structural insights into pathogenic

- mutations in heme-dependent cystathionine-β-synthase. J. Inorg. Biochem.
 2006;100:1988-1995.
- 317 [25] Yang GD, Wu LY, Jiang B, Yang W, Qi JS, Cao K, Meng QH, Mustafa AK, Mu
- WT, Zhang SM, Snyder SH, Wang R. H₂S as a Physiologic Vasorelaxant:
 Hypertension in Mice with Deletion of Cystathionine?-Lyase. Science
 2008;322:587-590.
- [26] Wang MJ, Cai WJ, Zhu YC. Hydrogen sulphide in cardiovascular system: a
 cascade from interaction between sulphur atoms and signalling molecules. Life
 Sci 2016;153:188-197.
- [27] Kuban V, Dasgupta PK, Marx JN, Nitroprusside and Methylene Blue Methods
 for Silicone Membrane Differentiated Flow Injection Determination of Sulfide in
 Water and Wastewater. Anal. Chem 1992;64:36-43.
- [28] Wei Y, Kenyon C, Roles for ROS and Hydrogen Sulfide in the Longevity
 Response to Germline Loss in Caenorhabditis Elegans. Proc. Natl. Acad. Sci
 2016;113:E2832-E2841.
- [29] Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S, Fugetsu B,
 Zhang X. Electrochemical hydrogen sulfide biosensors. Analyst
 2016;141:1185-1195.
- [30] Vitvitsky V, Banerjee R. H₂S analysis in biological samples using gas
 chromatography with sulfur chemiluminescence detection. Methods Enzymol
 2015;554:111-123.

336	[31] Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M,
337	Motohashi H, Fujii S, Matsunaga T. Reactive cysteine persulfides and
338	S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad.
339	Sci 2014;111:7606-7611.
340	[32] Yu FB, Han XY, Chen LX. Fluorescent probes for hydrogen sulfide detection and
341	bioimaging. Chem. Commun 2014;50:12234-12249.
342	[33] Tang LJ, Xu D, Tian MY, Yan XM. A mitochondria-targetable far-red emissive
343	fluorescence probe for highly selective detection of cysteine with a large Stokes
344	shift. J Lumin 2019;208:502-508.
345	[34]Montoya LA, Pluth MD. Selective turn-on fluorescent probes for imaging
346	hydrogen sulfide in living cells. Chem. Commun 2012;48:4767-4769.
347	[35] Tang LJ, Tian MY, Chen HB, Yan XM, Zhong KL, Bian YJ. An ESIPT-based
348	mitochondria-targeted ratiometric and NIR-emitting fluorescent probe for
349	hydrogen peroxide and its bioimaging in living cells. Dyes Pigments
350	2018;158:482-489.
351	[36]Chen BF, Li W, Lv C, Zhao MM, Jin HW, Jin HF, Du JB, Zhang LR, Tang XJ.
352	Fluorescent probe for highly selective and sensitive detection of hydrogen sulfide
353	in living cells and cardiac tissues. Analyst 2013;138:946-951.
354	[37] Wu SZ, Li Z, Yang L, Han JH, Han SF. Fluorogenic detection of hydrogen sulfide
355	via reductive unmasking of o-azidomethylbenzoyl-coumarin conjugate. Chem.
356	Commun 2012;48:10120-10122.

357	[38] Bae SK, Cho BR, Kim HM. A ratiometric two-photon fluorescent probe reveals
358	reduction in mitochondrial H ₂ S production in parkinson's disease gene knockout
359	astrocytes. J. Am. Chem. Soc 2013;135:9915-9923.

- 360 [39] Velusamy N, Binoy A, Bobba KN, Nedungadi D, Bhuniya NMS. A bioorthogonal
- 361 fluorescent probe for mitochondrial hydrogen sulfide: new strategy for cancer cell

362 labeling. Chem. Commun 2017;53:8802-8805.

- 363 [40] Wang R, Yu FB, Chen LX, Chen H, Wang LJ, Zhang WW. A highly selective
- turn-on near-infrared fluorescent probe for hydrogen sulfide detection and
 imaging in living cells. Chem. Commun 2012;48:11757-11759.
- [41] Liu TY, Xu ZC, Spring DR, Cui JN. Alysosome-targetable fluorescent probe for
 imaging hydrogen sulfide in living cells. Org. Lett 2013;9:2310-2313.
- 368 [42] Fridkin M, Hazum E, Tauber-Finkelstein M, Shaltiel S. Thiolysis of
- 369 o-2,4-dinitrophenyltyrosines:Spectrophotometric monitoring of the reaction and
- its use in peptide synthesis. Arch. Biochem. Biophys 1977;178:517-526.
- [43] Cao XW, Lin WY, Zheng KB, He LW. A near-infrared fluorescent turn-on probe
 for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of
 dinitrophenyl ether. Chem. Commun 2012;48:10529-10531.
- 374 [44] Chalmers S, Caldwell ST, Quin C, Prime TA, James AM, Cairns AG, Murphy
- 375 MP, McCarron JG, Hartley RC. Selective uncoupling of individual mitochondria
- within a cell using a mitochondria-targeted photoactivated protonophore. J. Am.
- 377 Chem. Soc 2012;134:758-761.

378	[45] Liu HY, Zhao M, Qiao QL, Lang HJ, Xu JZ, Xu ZC. Fluorescein-derived
379	fluorescent probe for cellular hydrogen sulfide imaging. Chinese Chem. Lett
380	2014;25:1060-1064.
381	[46] Yuan L, Zuo QP. FRET-based mitochondria-targetable dual-excitation ratiometric

- fluorescent probe for monitoring hydrogen sulfide in living cells. Chem- Asian J
 2014;6:1544-1549.
- [47] Du ZB, Song B, Zhang WZ, Duan CC, Wang YL, Liu CL, Zhang R, Yuan JL.
 Quantitative monitoring and visualization of hydrogen sulfide in vivo using a
 luminescent probe based on a ruthenium(II) complex. Angew. Chem. Int. Ed
 2018;57:3999-4004.
- [48] Yang Y, Feng Y, Qiu FZ, Iqbal K, Wang YZ, Song XR, Wang Y, Zhang GL, Liu
 WS. Dual-Site and Dual-Excitation Fluorescent Probe That Can Be Tunedfor
 Discriminative Detection of Cysteine, Homocystein, and Thiophenols. Anal.
 Chem 2018;90:14048-14055.
- [49]Ren XT, Wang F, Lv J, Wei TW, Zhang W, Wang Y, Chen XQ. An ESIPT-based
 fluorescent probe for highly selective detection of glutathione in aqueous solution
 and living cells. Dyes Pigments 2016;129:156-162.
- [50] Huang YY, Bae SA, Zhu ZH, Guo NN, Roth BL, Laruelle M. Fluorinated Diaryl
 Sulfides as Serotonin Transporter Ligands: Synthesis, Structure-Activity
 Relationship Study, and in Vivo Evaluation of Fl: 2559-2570.
- 398 [51] Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The

399	development of fluorescent probes for visualizing intracellular hydrogen
400	polysulfides. Angew. Chem. Int. Ed 2015;54:13961-13965.
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	

- 418 **Figure captions**
- 419 Scheme 1 Synthesis of Probe 1.
- 420 Figure 1 UV-vis responses of Probe 1 (25 μ M) in DMSO : PBS (v/v, 7 : 3, pH = 7.4)
- 421 solution, added HS⁻ (0-300 μ M).
- 422 Figure 2 (a) fluorescent responses of Probe 1 (5 μ M) toward HS⁻; Inset: Visual
- fluorescence change photograph for **Probe 1** only and upon addition of NaHS under
- 424 illumination with a 365 nm UV lamp; (b) the selective of **Probe 1** (5 μ M) towards HS⁻
- and various relevant analyte (100 eq.), $\lambda_{ex} = 512$ nm, slit: 5 nm/5 nm.
- 426 Figure 3 (a) The working curve of Probe 1 (5 μ M) in the presence of various
- 427 concentrations of HS⁻(0-70 μ M); (b) Time dependent of **Probe 1** (5 μ M) to HS⁻ (10
- 428 eq.). $\lambda_{ex} = 512$ nm, slit: 5 nm/5 nm.
- 429 Scheme 2 The mechanism of the Probe 1 responsing to HS⁻.
- 430 Figure 4 Confocal fluorescence imaging the H₂S in HepG2 cells of Probe 1 20 min:
- 431 (a1-a3) Incubated with the **Probe 1** only: (a1) green channel; (a2) brightfield image;
- (a3) Overlay. (b1-b3) Incubated with the **Probe 1** 20 min, then treat with HS⁻ 20 min:
- (b1) green channel; (b2) brighfield image; (b3) Overlay. Excitation at 488 nm, the
- 434 green channel was set at 545 ± 15 nm scale bar = $20 \,\mu$ m.
- **Figure 5**. Confocal fluorescence imaging the endogenously generated H₂S in HepG2
- 436 cells of **Probe 1**: (c1-c3) Incubated with the **Probe 1** only: (c1) green channel; (c2)
- 437 brightfield image; (c3) Overlay. (d1-d3) Incubated with the SNP for 1 h, and then
- 438 incubated with **Probe 1** for 20 min: (d1) green channel; (d2) brighfield image; (d3)
- 439 Overlay. Excitation at 488 nm, the green channel was set at 545 ± 15 nm, scale bar =

440 20 μm.

441	Figure 6. CLSM images of Ca^{2+} regulated H ₂ S production pathways. (e1-e3)
442	Incubated with the Probe 1 only: (e1) green channel; (e2) brightfield image; (e3)
443	Overlay. (f1-f3) Incubated with CaCl ₂ (200 μ M, 1 h), then incubated with Probe 1 20
444	min: (f1) green channel; (f2) brighfield image; (f3) Overlay. (g1-g3) pre-incubated
445	with AOAA (100 μ M, 3 h), incubated with CaCl ₂ (200 μ M, 1 h), then incubated with
446	Probe 1 20 min: (g1) green channel; (g2) brighfield image; (g3) Overlay. (h1-h3)
447	pre-incubated with PAG (100 μ M, 3 h), incubated with CaCl ₂ (200 μ M, 1 h), then
448	incubated with Probe 1 20 min: (h1) green channel; (h2) brighfield image; (h3)
449	Overlay. Excitation at 488 nm, the green channel was set at 545 \pm 15 nm scale bar =
450	20 μm.
451	Figure 7. The <i>in vivo</i> imaging of H ₂ S in a nude mice model of Probe 1 (20 μ M). (a)
452	Control group; (b, c, d) First injected 40 μ M Probe 1 solution, then injected 50 μ M
453	HS ⁻ solution for 5, 10, 15 min. Excitation at 475 nm, the green channel was collected

454 at 520±5 nm.

462 Scheme 1

470 Figure 3

475 Figure 4

Probe 1

479 Figure 6

481 Figure 7

(a)	[246] 2234 2004 2004 2004 2004 2004 2004 2005 2005	(b)	(rps) 2000 9013 - 9013 - 9013 - 1003 - 1003 - 1006 - 1006 - 9010 - 9010 - 9010 - 9010 -
(c)	(1994) 19479 19479 19463 19463 19465 19466 19596 19456 19450 (1994)	(d)	(real) 20102 - 30506 - 88523 - 17534 - 15564 - 12556 - 11179 - 9868 - 8758 (real)

ACCEPTED MANUSCRIPT				
492				
493	Supporting Information			
494				
495	Table S1: Compare of reported fluorescent hydrogen sulfide probes in			
496	recent years.			
497	I Material and Methods			
498	II (Fig.S1-S5): Copies of NMR and ESI-MS of related compounds.			
499	III(Fig. S6-S9): Spectroscopic studies.			
500				
501				
502				
503				
504				
505				
506				
507				
508				
509				

510 Table S1:

probes	S/B ratio	detection limit	response time	Ref.
	60	10.5 nM	2.5 min	
N3 CC		18 nM	30 min	[2]
Y C O C OH		50 nM	<1 min	[3]
	40	120 nM	15 min	[4]
	200	90 nM	15 min	[5]
COOH COOH COOH		29 nM	5 min	[6]
	<u>A</u>	30 nM	60 min	[7]
This work (probe 1)	197	64 nM	10 min	

511 Properties of the reported fluorescent hydrogen sulfide probes in recent years.

512 [1] Lin L, Zeng XQ, Shen YN, Zhu HL, Qian Y. An ultrasensitive fluorescent probe for rapid
513 determination of thiophenols. Talanta 2017;165:321-325.

514 [2] Qiao Z, Zhang HY, Wang KW, Zhang YR. A highly sensitive and responsive fluorescent probe
515 based on 6-azidechroman dye for detection and imaging of hydrogen sulfde in cells. Talanta
516 2019;195:850-856.

518 coumarin-based colorimetric fluorescent probe for rapid response and highly sensitive detection of

^{517 [3]} Yang Y, Feng Y, Jiang Y, Qiu FZ, Wang YZ, Song XR, Tang XL, Zhang GL, Liu WS. A

- 519 hydrogen sulfde in living cells. Talanta 2019;197:122-129.
- 520 [4] Ma C, Wei C, Li XY, Zheng XY, Chen B, Wang M, Zhang PZ, Li XL. A mitochondria-targeted
- 521 dual-reactable fluorescent probe for fast detection of H2S in living cells. Dyes and Pigments 2019;

522 162:624-631.

- 523 [5] Ismail I, Wang DW, Wang ZH, Wang D, Zhang CY, Yi L, Xi Z. A julolidine-fused
- 524 coumarin-NBD dyad for highly selective and sensitive detection of H_2S in biological samples.
- 525 Dyes and Pigments 2019;163:700-706.
- 526 [6] Chen HH, Gong XY, Liu XW, Li Z, Zhang JJ, Yang XF. A nitroso-based fluorogenic probe for
- 527 rapid detection of hydrogen sulfide in living cells. Sensors Actuators: B. Chemical528 2019;281:542-548.
- [7] Huang XT, Liu HY, Zhang JW, Xiao BR, Wu FX, Zhang YY, Tan Y, Jiang YY. A novel
 near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging. New J. Chem.,
 2019;43:6848-6855.
- 532

533 I. Materials and apparatus.

Reagents with analytical grades were purchased from commercial and used withoutfurther purification.

536 UV-vis spectra were taken on a HITACHI U-3900 spectrophotometer and 537 fluorescence spectra were recorded using a HITACHI F-7000 spectrophotometer. ¹H 538 NMR and ¹³C NMR experiments were measured by a Bruker AVANCE-600 MHz 539 spectrometer (Bruker, Billerica, MA). Electrospray ionization (ESI) mass spectra were

540	acquired using an AB Triple TOF 5600plus System (AB SCIEX, Framingham, USA).
541	The cell imaging experiments used Zeiss LSM880 CLSM.
542	
543	Imaging Experiments
544	HepG2 cells and HeLa cells were cultured in dulbecco's modified eagle's medium
545	(DMEM, Gibco) in an atmosphere of 5% CO_2 and 95% air at 37 °C. Before the
546	CLSM imaging, the cells were plated on 14 mm glass coverslips and were incubated
547	overnight. The cells were washed with PBS and then incubated with Probe 1 in
548	DMSO/PBS (0.5 %, v/v) for 3 h at 37 °C. After washing three times, the cells were
549	subjected to CLSM imaging.
550	Imaging procedures were conducted with adult nude mice under general anesthesia
551	by injection of sodium pentobarbital (0.5 mL/0.03%). Images were taken using an
552	excitation of 475 nm and emission was collected 520±5 nm.
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	

573 **Fig. S3**

Figure S4: ESI-MS of the **Probe 1**: [**Probe 1** + H]+ Calcd for 635.076, Found 635.076; [probe 1 + Na]+ Calcd for

- 657.058, Found 657.057.
- 580 Fig. S5

Figure S5: ESI-MS of the complete whole m/z range of the Probe 1: [Probe 1 + H]+ Calcd for 635.076, Found
635.076.

- 585 III. Spectroscopic Studies
- 586 Fig. S6

588 Figure S7. In 2 mL DMSO : PBS (v/v, 7 : 3, pH = 7.4) solution of **Probe 1** (25 μ M), added of 500 589 μ M (a) Cys; (b) Hcy; (c) GSH.

Fig. S8

Figure S9. ESI-MS of a solution mixture of Probe 1 and NaHS exhibited dominant m/z peaks at 331.06, 198.98, 168.95 in accordance with the fluorescein: 331.06, compound 2: 198.98.