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1. This probe exhibit high signal-to-background ratio in response to H2S. 7 

2. This probe was used to detect endogenous generation H2S induced by Ca2+ 8 

mediated cystathionine γ-lyase (CSE). 9 

3. This probe was successfully used to detect exogenous hydrogen sulfide in mice. 10 
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Abstract Graphic 31 

The statement: 32 

 33 

A novel fluorescence H2S probe based on nucleophilic substitution reactions, which 34 

with high signal-to-background ratios. This probe was successfully used to imaging 35 

ex-/endogenous H2S in living cells, and exogenous H2S in mice. 36 
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A high signal-to-background ratio H2S-specific fluorescent probe 52 

based on nucleophilic substitution and its bioimaging for generation 53 

H2S induced by Ca2+ in vivo 54 

Jin Kang,1a Fangjun Huo, 1b Yishan Yao,1c Caixia Yina,*  55 
a Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion 56 

and Storage of Shanxi Province, Shanxi University, Taiyuan 030006,  57 
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cState Key Laboratory of Tocicology and Medical Countermeasures, Beijing Institute 59 
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Beijing,100850, P. R. China. 61 

*Corresponding author: C.X. Yin, E-mail: yincx@sxu.edu.cn, Tel/Fax: 62 

+86-351-7011022. 63 

Abstract Hydrogen sulfide (H2S), a new endothelium-derived relaxing factor 64 

(EDRF), which plays vital roles in regulating intracellular redoxstatus and other 65 

fundamental signaling processes involved in human health and disease. In this work, 66 

we designed a fluorescent probe for H2S successive nucleophilic reaction with high 67 

signal-to-background (S/B) ratio. In the probe, we utilized 2-mercaptobenzoic acid as 68 

the distinguish reaction site and introduced 2,4-dinitrophenyl to provide appropriate 69 

steric hindrance to realize specific response on well-structured H2S. Other substances 70 

sulfur-containing do not disturb the detection of H2S. The max emission with 197-fold 71 

enhancement exhibits high signal-to-background ratio. The detection limit was 72 

calculated to be 64 nM. Imaging assays in living cells showed that the probe could 73 

penetrate cells membrane easily and allowed to detect endogenous generation H2S 74 

induced by Ca2+ mediated cystathionine γ-lyase (CSE). Moreover, the probe was 75 

successfully used to detect exogenous H2S in mice. 76 

Keywords: H2S-specific; Two nucleophilic; Ca2+ mediated; Vivo 77 

 78 
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1. Intruduction 80 

H2S is extensively exist in a wide variety of industries such as oil exploitation, 81 

natural gas well, tunnel and sewage disposal [1-4]. Exposure to high level H2S 82 

atmosphere may cause respiratory symptoms, cardiovascular abnormalities and 83 

neurological disorders [5-7]. H2S was found as the third multifunctional 84 

gasotransmitter along with nitric oxide (NO) and carbon monoxide (CO) since last 85 

decades [8-10]. H2S influences a wide range of physiological and pathophysiological 86 

processes, including its ability to act as a neurotransmitter [11], regulator of blood 87 

pressure [12], immunomodulator [13] or anti-apoptotic agent [14], together with its 88 

great pharmacological potential, such as cardioprotection [15], endogenous 89 

stimulation of angiogenesis [16] and mitochondrial bioenergetics [17]. However, 90 

abnormally H2S concentrations have been significant associated with alzheimer's 91 

disease, down's syndrome, diabetes and liver cirrhosis [18-21]. Physiological effects 92 

of H2S are concentration-dependent, thus, in order to benefit from H2S, the 93 

concentration of H2S must be maintained at the appropriate level. In mammals, 94 

endogenous H2S is synthesized naturally by several enzymes, including cystathionine 95 

γ-lyase (CSE), cystathionine β-synthetase (CBS) and 3-mercaptopyruvate 96 

sulfurtransferase (MST)/cysteine aminotransferase (CAT) [22-25]. Yang et al. reported 97 

that the activity of cystathionine γ-lyase (CSE), an important enzyme responsible for 98 

H2S physiological generation in animals, could be activated by calcium-calmodulin 99 

pathway [26]. However, the mechanism of Ca2+ induced intracellular H2S production 100 

in living cells has not been elucidated. Therefore, developing selective and sensitive 101 
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detection tools for H2S in complex biological systems is important. 102 

Traditional methods of H2S detection, including methylene blue method [27], lead 103 

acetate [28], electrochemical sensors [29], gas chromatography [30] and 104 

monobromobimane derivatization are often limited by poor compatibility with 105 

biosystem, limited temporal resolution or rigorous preparation requirements [31-32]. 106 

In contrast, fluorescent probes with highly sensitive, selective, nondestructive are 107 

suitable for detection of this volatile, gaseous molecule with readily available 108 

instruments [33-36]. In the past several years, a number of fluorescent probes for H2S 109 

have been reported [37-41]. However, probes with high signal-to-background (S/B) 110 

ratio are rare. In bio-imaging, the probe with high S/B ratio is benefit for obtaining 111 

more accurate and reliable signals. There are two ways to improve the probe’s S/B 112 

ratio: (1) Increase extent of fluorescence enhancement; (2) Improve selectivity. 113 

Moreover, the application of fluorescent probes to the H2S signaling pathway is still 114 

rare. 115 

The 2,4-dinitrophenyl (DNP) ether moiety has been employed extensively as a 116 

protecting group for tyrosines in peptide synthesis [42]. Direct assemble the DNP 117 

group onto various kinds of fluorophores have yielded a series H2S probes [43-47]. 118 

Indeed, biothiols can also remove DNP group, the selectivity of these probes are 119 

unsatisfactory [48-49]. In this work, we employed the DNP derivative 120 

2-((2,4-dinitrophenyl)thio)benzoic acid as the masking group link to the fluorescein 121 

and obtained the probe (Probe 1) (Scheme 1). The probe exhibits high selectivity and 122 

significant fluorescence enhancement up to 197-fold upon the detection of H2S. 123 
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Furthermore, Ca2+ induced H2S production in Hela cells was directly visual 124 

demonstration use the probe. 125 

2. Preparation and characterization of compounds 126 

2.1. Preparation of Probe 1. 127 

The Probe 1 was synthesized from the compound 1 via an ester moiety link to 128 

fluorescein (Scheme 1). The compound 1 was synthesized use the same methods as 129 

previous literature [50]. 130 

<Inserted Scheme 1> 131 

Compound 1 (1.0 mmol, 0.32 g) and fluorescein (1.0 mmol, 0.33 g) were dissolved 132 

into 25 mL dichloromethane, added N-(3-dimethylaminopropyl)-N-ethyl carbodi 133 

imide hydrochloride (EDC) (1.0 mmol, 0.19 g) and 4-dimethylaminopyridine (DMAP) 134 

(0.10 mmol, 0.01 g). Surrounded by Ar, the reactant stired overnight (r.t.). Then 135 

solvent was evaporated and resulted residue was subjected to column chromatography. 136 

Probe was obtained as a yellow powder (0.19 g, yield: 30 %). 137 

2.2. Characterization of Probe 1 138 

1H NMR (600 MHz, DMSO-d6) δ 8.88 (d, J = 2.5 Hz, 1H), 8.34 (t, J = 8.0 Hz, 3H), 139 

8.05 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 5.7 Hz, 4H), 7.80 (t, J = 7.5 Hz, 1H), 7.75 (t, J = 140 

7.3 Hz, 1H), 7.37-7.34 (m, 2H), 7.15 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 141 

6.91 (d, J = 8.7 Hz, 2H). 13C NMR (150 MHz, DMSO-d6) δ 163.4, 151.5, 150.6, 142 

144.9, 144.4, 144.3, 137.5, 134.4, 133.5, 132.1, 131.3, 130.2, 129.9, 129.3, 127.6, 143 

124.9, 123.9, 121.0, 118.3, 116.5, 110.3. ESI-MS m/z: [probe + H]+ Calcd for 144 

635.07604, Found 635.07525; [probe + Na]+ Calcd for 657.05804, Found 657.05683. 145 
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3. Results and Discussion 146 

3.1 Specta properties of Probe 1 response to H2S. 147 

Firstly, we evaluated the UV-vis spectra properties of Probe 1. As shown in Fig. 1, 148 

in 2 mL DMSO : PBS (v/v, 7 : 3, pH = 7.4) solution of Probe 1 (25 µM), gradually 149 

added HS- (0-300 µM), the absorbance at 338 nm increased with concomitant 150 

appearance of absorbance at 475 nm in a short time frame (10 min). Similarly, we also 151 

studied the reaction beween Probe 1 and biothiols (Cys, Hcy and GSH) in UV-vis 152 

spectrometer (Fig. S6 a, b, c). Under the same conditions, the addition of Cys (500 153 

µM) caused a neglectable absorbance enhancement at 338 nm, and Hcy (500 154 

µM)/GSH (500 µM) couldn’t cause obvious changes in UV-vis spectra. 155 

<Inserted Figure 1> 156 

The Probe 1 is considered to be a high S/B ratio probe. On the one hand, high S/B 157 

ratio probe depend on the extent of fluorescence enhancement. As predicted, the 158 

incremental addition of HS- (0-70 µM) to the solution DMSO : PBS (v/v, 7 : 3, pH = 159 

7.4) of Probe 1 (5 µM) resulted in a dramatic enhancement of the emitting band 160 

centered at 538 nm in 10 min (Fig. 2a). Finally, the max emission has 197-fold 161 

enhancement. On the other hand, the high selectivity is very important condition for 162 

high S/B ratio probe. The Probe 1 was treated with HS- and various relevant analyte 163 

(100 eq.) in DMSO : PBS (v/v, 7 : 3, pH = 7.4). As shown in Fig. 2b, the Probe 1 was 164 

highly selective for HS- versus biological relevant thiols or HSO3
-. These results 165 

demonstrate the excellent selectivity of the probe to H2S. These above experiment 166 

results, the emission of Probe 1 has a large enhancement (197-fold) and the high 167 
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selective of the Probe 1 fulfilled the requirements of high S/B ratio probe. Hence, the 168 

probe is a H2S-specific fluorescent probe with high S/B ratio. 169 

<Inserted Figure 2> 170 

3.2 Working curve and time dependents 171 

Furthermore, a plot of fluorescent intensities at 538 nm versus the concentrations of 172 

H2S showed a good linearity (R2 = 0.991): F-F0 = 94.24c - 293.60 (Fig. 3a). With the 173 

definition: Detection limit = 3σ/k, the detection limit evaluated as 64 nM. In order to 174 

evaluate the response speed of Probe 1 towards H2S, we examined the reactivity of 175 

probe (5 µM) towards the HS- (10 eq.) through time-dependent fluorescence 176 

spectroscopy in DMSO : PBS (v/v, 7 : 3, pH = 7.4). As the Fig. 3b depicted, the 177 

reaction could be completed within 10 min. 178 

<Inserted Figure 3> 179 

3.3. Proposed mechanism 180 

The proposed mechanism of Probe 1 was depicted in the Scheme 2. The H2S 181 

nucleophilic substitution the carbonyl group of Probe 1, result in the protect group 182 

cleaved and released the fluorescein and compound 2 [51]. Furthermore, the 183 

mechanism was proved by the ESI-MS spectra analysis (Fig. S9). ESI-MS of a 184 

solution mixture of Probe 1 and NaHS exhibited m/z peaks at 331.0611, 198.9816 in 185 

accordance with the fluorescein and compound 2 respectively. 186 

<Inserted Scheme 2> 187 

3.4 Cytotoxicity experiments 188 

HepG2 cells were cultured in 96-well plates. The cell number was determined and a 189 
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serial dilution on Probe 1 was performed in culture medium (without serum), 190 

incubated for 5 or 10 h. Subsequently, CCK-8 (10 % in serum free culture medium) 191 

was added to each well, which was washed with PBS two times and the plate was 192 

incubated for another 1 h. Then measure optical densities at 450 nm. Cytotoxicity 193 

assay demonstrating the Probe 1 was benign to cells and has the potential to be used 194 

in biological applications (Fig. S8). 195 

3.5. Imaging of living cells 196 

The HepG2 cells incubated with Probe 1 (5 µM) only for 20 min showed no 197 

fluorescence in the green channel (Fig. 4 a1). In contrast, treatment of Probe 1-loaded 198 

cells with 20 µM NaHS for 20 min triggered an obvious increased in green 199 

fluorescence signal (Fig. 4 b1). 200 

<Inserted Figure 4> 201 

Encouraged by its good sensing performances for H2S in vitro, we applied Probe 1 202 

to image the endogenously generated H2S by exogenous compound stimulation. 203 

S-Nitroso-N-acetyl-DL-penicillamine (SNP) was used to stimulate the generation of 204 

endogenous H2S in HepG2 cells. As we expected, after incubation with 10 µM SNP 205 

for 1 h, the fluorescence intensities from the green channel clearly increased, which 206 

are similar to that of the addition of exogenous NaHS (Fig. 5 d1),. These results 207 

indicated that Probe 1 capable of visualization of endogenous H2S generation in 208 

HepG2 cells. These cell experiments showed the Probe 1 can thus be used to imaging 209 

ex/endogenous H2S in living cells. 210 

<Inserted Figure 5> 211 
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3.6. Imaging the Ca2+-dependent H2S 212 

Ca2+ is the second messenger and involved in a variety of intracellular signaling 213 

pathways. According to reported, that calcium-calmodulin regulating the activity of 214 

cystathionine γ-lyase (CSE) responsible for H2S physiological generation in animals. 215 

To demonstrate the mechanism of Ca2+ induced intracellular H2S production in cells, 216 

we conducted imaging experiments with Probe 1 in Hela cells under conditions of 217 

both negative and positive controls. No fluorescent signal was observed in green 218 

channel when the cells were pre-incubated with DL-propargylglycine (PAG, which 219 

suppresses CSE) along with Probe 1 and Ca2+. In contrast, obvious fluorescent was 220 

observed when the cells were pre-incubated with Ca2+ and Probe 1, or cells 221 

pre-incubated with aminooxyacetic acid (AOAA, a potent inhibitor of CBS) along 222 

with Probe 1 and Ca2+. This indicated that CSE contributes to the observed H2S 223 

generation upon Ca2+ stimulation. 224 

<Inserted Figure 6> 225 

3.7. Imaging of living mice 226 

Furthermore, we applied Probe 1 imaging in mice. The Kunming mice were fed 227 

commercial mouse chow in individual cages and left to freely wander in their housing 228 

for two weeks with 12 h dark/light cycles for acclimatization before the experiment. A 229 

living animal imaging system is used in imaging the mice. After all the preparatory 230 

work was completed, the mice were under anesthesia with 100 mL pentobarbital 231 

intraperitoneal injection. As Fig. 7 shows, the mice were injected with 50 mM of 232 
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Probe 1 in the abdomen, HS- was carefully injected into the same location. Then, the 233 

fluorescence images were recorded at different periods of time (0, 5, 10, 15 min). 234 

These results displayed that Probe 1 could visualize the endogenous H2S in vivo. 235 

<Inserted Figure 7> 236 

4. Conclusions 237 

In conclusion, we prepared a fluorescein-based H2S-specific probe Probe 1 with 238 

high S/B ratio. The results of UV-vis spectrum and fluorescence emission spectrum 239 

studies showed that Probe 1 had good selectivity for H2S and having a 64 nM 240 

detection limit for H2S. Kinetics studies showed that the response can be completed in 241 

10 min. Furthermore, this probe was used to directly image Ca2+-dependent H2S 242 

production, and in vivo imaging. 243 
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Figure captions 418 

Scheme 1 Synthesis of Probe 1. 419 

Figure 1 UV-vis responses of Probe 1 (25 µM) in DMSO : PBS (v/v, 7 : 3, pH = 7.4) 420 

solution, added HS- (0-300 µM). 421 

Figure 2 (a) fluorescent responses of Probe 1 (5 µM) toward HS-; Inset: Visual 422 

fluorescence change photograph for Probe 1 only and upon addition of NaHS under 423 

illumination with a 365 nm UV lamp; (b) the selective of Probe 1 (5 µM) towards HS- 424 

and various relevant analyte (100 eq.), λex = 512 nm, slit: 5 nm/5 nm. 425 

Figure 3 (a) The working curve of Probe 1 (5 µM) in the presence of various 426 

concentrations of HS-(0-70 µM); (b) Time dependent of Probe 1 (5 µM) to HS- (10 427 

eq.). λex = 512 nm, slit: 5 nm/5 nm. 428 

Scheme 2 The mechanism of the Probe 1 responsing to HS-. 429 

Figure 4 Confocal fluorescence imaging the H2S in HepG2 cells of Probe 1 20 min: 430 

(a1-a3) Incubated with the Probe 1 only: (a1) green channel; (a2) brightfield image; 431 

(a3) Overlay. (b1-b3) Incubated with the Probe 1 20 min, then treat with HS- 20 min: 432 

(b1) green channel; (b2) brighfield image; (b3) Overlay. Excitation at 488 nm, the 433 

green channel was set at 545 ± 15 nm scale bar = 20 µm. 434 

Figure 5. Confocal fluorescence imaging the endogenously generated H2S in HepG2 435 

cells of Probe 1: (c1-c3) Incubated with the Probe 1 only: (c1) green channel; (c2) 436 

brightfield image; (c3) Overlay. (d1-d3) Incubated with the SNP for 1 h, and then 437 

incubated with Probe 1 for 20 min: (d1) green channel; (d2) brighfield image; (d3) 438 

Overlay. Excitation at 488 nm, the green channel was set at 545 ± 15 nm, scale bar = 439 
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20 µm. 440 

Figure 6. CLSM images of Ca2+ regulated H2S production pathways. (e1-e3) 441 

Incubated with the Probe 1 only: (e1) green channel; (e2) brightfield image; (e3) 442 

Overlay. (f1-f3) Incubated with CaCl2 (200 µM, 1 h), then incubated with Probe 1 20 443 

min: (f1) green channel; (f2) brighfield image; (f3) Overlay. (g1-g3) pre-incubated 444 

with AOAA (100 µM, 3 h), incubated with CaCl2 (200 µM, 1 h), then incubated with 445 

Probe 1 20 min: (g1) green channel; (g2) brighfield image; (g3) Overlay. (h1-h3) 446 

pre-incubated with PAG (100 µM, 3 h), incubated with CaCl2 (200 µM, 1 h), then 447 

incubated with Probe 1 20 min: (h1) green channel; (h2) brighfield image; (h3) 448 

Overlay. Excitation at 488 nm, the green channel was set at 545 ± 15 nm scale bar = 449 

20 µm. 450 

Figure 7. The in vivo imaging of H2S in a nude mice model of Probe 1 (20 µM). (a) 451 

Control group; (b, c, d) First injected 40 µM Probe 1 solution, then injected 50 µM 452 

HS- solution for 5, 10, 15 min. Excitation at 475 nm, the green channel was collected 453 

at 520±5 nm. 454 
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Scheme 1 462 
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Figure 3 470 

 471 

 472 

Scheme 2 473 

O

O

HO O

O

O S

NO2O2N

HS-

O

CO2
-

HO O

+

Probe 1

NO2

O2N

S-

+
SH

SH

O

Fluorescein Compound 2
 474 

Figure 4 475 

 476 

Figure 5 477 

 478 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 6 479 

 480 

Figure 7 481 
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Supporting Information 493 

 494 

Table S1: Compare of reported fluorescent hydrogen sulfide probes in 495 

recent years. 496 

I Material and Methods 497 

II (Fig.S1-S5): Copies of NMR and ESI-MS of related compounds. 498 

III(Fig. S6-S9): Spectroscopic studies. 499 
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Table S1: 510 

Properties of the reported fluorescent hydrogen sulfide probes in recent years. 511 

[1] Lin L, Zeng XQ, Shen YN, Zhu HL, Qian Y. An ultrasensitive fluorescent probe for rapid 512 

determination of thiophenols. Talanta 2017;165:321-325. 513 

[2] Qiao Z, Zhang HY, Wang KW, Zhang YR. A highly sensitive and responsive fluorescent probe 514 

based on 6-azidechroman dye for detection and imaging of hydrogen sulfde in cells. Talanta 515 

2019;195:850-856. 516 

[3] Yang Y, Feng Y, Jiang Y, Qiu FZ, Wang YZ, Song XR, Tang XL, Zhang GL, Liu WS. A 517 

coumarin-based colorimetric fluorescent probe for rapid response and highly sensitive detection of 518 

probes S/B ratio detection limit response time Ref. 

 

60 10.5 nM 2.5 min [1] 

 

-- 18 nM 30 min [2] 

 

-- 50 nM <1 min [3] 

 

40 120 nM 15 min [4] 

 

200 90 nM 15 min [5] 

 

-- 29 nM 5 min [6] 

 

-- 30 nM 60 min [7] 

This work 

(probe 1) 

197 64 nM 10 min  
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hydrogen sulfde in living cells. Talanta 2019;197:122-129. 519 

[4] Ma C, Wei C, Li XY, Zheng XY, Chen B, Wang M, Zhang PZ, Li XL. A mitochondria-targeted 520 

dual-reactable fluorescent probe for fast detection of H2S in living cells. Dyes and Pigments 2019; 521 

162:624-631. 522 

[5] Ismail I, Wang DW, Wang ZH, Wang D, Zhang CY, Yi L, Xi Z. A julolidine-fused 523 

coumarin-NBD dyad for highly selective and sensitive detection of H2S in biological samples. 524 

Dyes and Pigments 2019;163:700-706. 525 

[6] Chen HH, Gong XY, Liu XW, Li Z, Zhang JJ, Yang XF. A nitroso-based fluorogenic probe for 526 

rapid detection of hydrogen sulfide in living cells. Sensors Actuators: B. Chemical 527 

2019;281:542-548. 528 

[7] Huang XT, Liu HY, Zhang JW, Xiao BR, Wu FX, Zhang YY, Tan Y, Jiang YY. A novel 529 

near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging. New J. Chem., 530 

2019;43:6848-6855. 531 

 532 

I. Materials and apparatus. 533 

Reagents with analytical grades were purchased from commercial and used without 534 

further purification. 535 

UV-vis spectra were taken on a HITACHI U-3900 spectrophotometer and 536 

fluorescence spectra were recorded using a HITACHI F-7000 spectrophotometer. 1H 537 

NMR and 13C NMR experiments were measured by a Bruker AVANCE-600 MHz 538 

spectrometer (Bruker, Billerica, MA). Electrospray ionization (ESI) mass spectra were 539 
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acquired using an AB Triple TOF 5600plus System (AB SCIEX, Framingham, USA). 540 

The cell imaging experiments used Zeiss LSM880 CLSM. 541 

 542 

Imaging Experiments 543 

HepG2 cells and HeLa cells were cultured in dulbecco’s modified eagle’s medium 544 

(DMEM, Gibco) in an atmosphere of 5% CO2 and 95% air at 37 °C. Before the 545 

CLSM imaging, the cells were plated on 14 mm glass coverslips and were incubated 546 

overnight. The cells were washed with PBS and then incubated with Probe 1 in 547 

DMSO/PBS (0.5 %, v/v) for 3 h at 37 °C. After washing three times, the cells were 548 

subjected to CLSM imaging. 549 

Imaging procedures were conducted with adult nude mice under general anesthesia 550 

by injection of sodium pentobarbital (0.5 mL/0.03%). Images were taken using an 551 

excitation of 475 nm and emission was collected 520±5 nm. 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 
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ⅡⅡⅡⅡ: Copies of NMR and ESI-MS of related compounds 565 

Fig. S1 566 

 567 

 568 

Figure S1. The 1H NMR (600 MHz) spectra of the compound 1 in DMSO-d6. 569 

 570 

 571 

Figure S2. The 1H NMR (600 MHz) spectra of the Probe 1 in DMSO-d6. 572 

Fig. S3 573 
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 574 

Figure S3. The 13C NMR (150 MHz) spectra of the Probe 1 in DMSO-d6. 575 

Fig. S4 576 

 577 

Figure S4: ESI-MS of the Probe 1: [Probe 1 + H]+ Calcd for 635.076, Found 635.076; [probe 1 + Na]+ Calcd for 578 

657.058, Found 657.057. 579 

Fig. S5 580 
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    582 

Figure S5: ESI-MS of the complete whole m/z range of the Probe 1: [Probe 1 + H]+ Calcd for 635.076, Found 583 

635.076.    584 

ⅢⅢⅢⅢ. Spectroscopic Studies 585 

Fig. S6 586 

 587 

Figure S7. In 2 mL DMSO : PBS (v/v, 7 : 3, pH = 7.4) solution of Probe 1 (25 µM), added of 500 588 

µM (a) Cys; (b) Hcy; (c) GSH. 589 
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Fig. S8 601 

 602 

Figure S8. Cytotoxicity of Probe 1 toward HepG2 cells. 603 

 604 

 605 

Fig. S9 606 
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 611 

 612 

Figure S9. ESI-MS of a solution mixture of Probe 1 and NaHS exhibited dominant m/z peaks at 613 

331.06, 198.98, 168.95 in accordance with the fluorescein: 331.06, compound 2: 198.98. 614 

 615 
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