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ABSTRACT: A copper-catalyzed radical cascade dehydrogenative cyclization of N-tosyl-8-ethynyl-1-naphthylamines under air is
descried herein for the synthesis of thioazafluoranthenes. The reaction proceeds smoothly with a high efficiency and a broad
reaction scope. The product is indeed a new fluorophore and its photophysical properties are also investigated. Based on the results,
we are pleased to find that the Stokes shift of amino-linked thioazafluoranthenes in dilute tetrahydrofuran is determined to be 143
nm (4830 cm-1).

Introduction

Fluoranthene (structure A, Scheme 1) was a kind of important 6/5
ring system. Being always served as synthons for constructing
many chemical Eulerean networks such as corannulene, fullerenes,
and capped carbon tubes,1 fluoranthene thus attracted growing
interests of synthetic chemists with a wish to develop simple and
efficient methodology towards this 6/5 ring system.2 To the best
of our knowledge, under thermal or photochemical conditions or
in the presence of metal catalysts its synthetic methodologies from
naphthalene and its derivatives represented the most
straightforward protocols thus far.3 For example, the use of
rhodium catalysis enabled the synthesis of fluoranthene from 1,8-
bis(phenylethynyl)-naphthalene with a high efficiency (Scheme 1,
eq a).3e Recent advances suggested that introduction of heteoatom
into fluoranthene could make a significant impact on their
optoelectronic properties.4 Particularly, its electrochemical,
photophysical, and bowl-dynamic properties could be uniquely
controlled when fluoranthene and its analogies were doped by
nitrogen in indole core.5 As such, tremendous efforts were made
to develop novel and mild methods towards this azafluoranthene
core (structure B, Scheme 1).6
On the other hand, the sulfonamide moiety always has a range of
biological and medicinal applications.7 With the sulfonamide
structural core, 1,2-benzothiazine 1,1-dioxides (benzosultams) are
the most important class of non-steroidal anti-inflammatory
drugs.8 Moreover, in a chemical context, introduction of sulphur
atom into materials was an efficient strategy to improve its
optoelectronic and sensing properties.9 Therefore, in this paper we
would like to disclose an efficient procedure for synthesizing
sulphur/nitrogen-doped fluoranthenes (structure C, Scheme 1)
under mild conditions.
To date, tandem radical reaction was well recognized as a
powerful tool towards polycyclic architectures.10 It was thus
envisioned that a radical cascade reaction of N-tosyl-8-ethynyl-1-
naphthylamines 1 could enabled the formation of

sulphur/nitrogen-doped fluoranthenes 2. In the past years, one of
continuous interests in our group is focusing on N-center radical-
based transformations.11 For example, on basis of copper-
catalyzed N-center radical-based 6-endo-dig cyclization of 2-
alkynylbenzamide, we realized the formation of various
isoquinoline-1-ones.11a In light of this result, the projected
transformation of 8-ethynyl-1-naphthylamines 1 access to
sulphur/nitrogen-doped fluoranthenes 2 was hypothesized to be
triggered a formal N-center radical-based 5-exo-dig aza-
cyclization12 (scheme 1, eq b). The starting materials 1 were
prepared from 8-iodo-1-naphthylamine.13

Scheme 1. Synthetic strategies of heteoatom-doped fluoranthenes

Results and Discussion

Under copper catalysis,14 we initially tested the reaction of N-
Tosyl-8-ethynyl-1-naphthylamines 1a in the presence of CuI,
NaHCO3 and TBHP using CH3CN as solvent under air at 110 oC
for 12 h (Table 1, entry 1). To our delight, the desired product 2a
was obtained in 21% isolated yield as expected. This promising
result indicated our above proposed hypothesis seemed reliable.
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Screening solvents such as DMSO, DMF, DMAc or 1,4-dioxane,
and DMSO was determined to be the optimal (Table 1, entries 2-
5). Using 1,4-dioxane as the solvent, the reaction did not work at
all (Table 1, entry 5). By changing the Cu catalyst to CuCl and
CuBr, the reactions gave rise to inferior outcomes (Table 1,
entries 6-7). The reaction became complex when the reaction
employed copper acetate as catalyst (Table 1, entry 8). From the
results on screening bases effects, no better yields were observed
when the reactions with K2CO3 and Na2CO3 (Table 1, entries 9
and 10). A blank experiment without a base suggested the desired
product 2a was isolated in 78% yield (Table 1, entry 11).
Subsequently, the optimal amount of TBHP was determined to be
2 equivalents (Table 1, entry 12). Using air and H2O2 as
replacements of TBHP gave inferior yields (Table 1, entries 13-
14). By decreasing the reaction temperature, the yield of 2a was
dropped (Table 1, entry 15). The improved yield was afforded by
decreasing the amount of CuI to 0.2 equivalents while prolonging
the reaction time to 18 hours (Table 1, entry 16). A blank reaction
without copper salt did not provide the desired product 2a (Table
1, entry 17). Furthermore, a 1 mmol scaled reaction was
conducted, leading to desired product 2a in 65% yield (278.9 mg,
Table 1, entry 18). Thus, the optimal reaction conditions were
established: running the mixture of N-Tosyl-8-ethynyl-1-
naphthylamines, CuI and TBHP (1:0.2:2) in DMSO under air at
110 oC for 18 h.
Table 1. Optimization of the Reaction Conditionsa

entry [Cu]
(equiv) Sol. Base [O]

(equiv)

Yields
Of
2aa

1 CuI (0.5) MeCN NaHCO3 TBHP 21
2 CuI (0.5) DMSO NaHCO3 TBHP 56
3 CuI (0.5) DMF NaHCO3 TBHP 45
4 CuI (0.5) DMAc NaHCO3 TBHP 46
5 CuI (0.5) 1,4-

Dioxane
NaHCO3 TBHP nr

6 CuCl (0.5) DMSO NaHCO3 TBHP 51
7 CuBr (0.5) DMSO NaHCO3 TBHP 43
8 Cu(OAc)2

(0.5)
DMSO NaHCO3 TBHP trace

9 CuI (0.5) DMSO Na2CO3 TBHP 41
10 CuI (0.5) DMSO K2CO3 TBHP 40
11 CuI (0.5) DMSO - TBHP 78
12 CuI (0.5) DMSO - TBHP (2) 83
13 CuI (0.5) DMSO - air 43
14 CuI (0.5) DMSO - H2O2 12
15b CuI (0.5) DMSO - TBHP (2) 63
16c CuI (0.2) DMSO - TBHP (2) 83
17 CuI (0) DMSO - TBHP (2) nr
18d CuI (0.2) DMSO - TBHP (2) 65

a Reaction conditions: 1a (0.1 mmol, 43.1 mg), [Cu], TBHP (1.5 equiv),
and base (1.0 equiv) in 2 mL of solvent was stirred at 110 oC in air for 12
hours. b the reaction was conducted at 80 oC. c 18 hours. nr = no reaction. d

1 mmol scaled reaction was conducted.

With these optimal reaction conditions in hand, we then explored
substituents effect on the alkynes in substrates (Scheme 2). Based
on results, a variety of substituents was compatible in the reaction

under standard conditions. For instance, arylethynyls substituted
with electron-withdrawing groups such as -Cl and -F at the para
position of aryl group proved to be efficient reaction partners,
affording the corresponding products 2a and 2b in 83% and 81%
yields, respectively. The introduction of electron donating groups
such as -CH3, -Et and -OMe at the para position produced the
desired products 2d-2f in improved yields. Good yields of the
pentacyclic products 2g-2h were obtained when meta-substituted
phenylethynyls were employed. However, steric hindering effect
made significant impact on the outcomes. For example, the
substrates with ortho-Cl phenylacetylene and -
methoxylphenylacetylene gave the products in lower yields. This
cyclization method is also suitable to the reaction of
naphthylacetylene-, 2-thiophenethyl- and 3-thiophenethyl-linked
substrates. As expected, 2k, 2l, and 2m were obtained in yields of
81%, 78%, and 80%, respectively. To our delight, when using the
substrate with alkylethynyl, the reaction proceeded smoothly and
gave the product 2n in a 64% yield. In this report, the exact
structures of these products were identified by diffraction of X-
Ray (CCDC: 1992389 for 2m).

Scheme 2. The Influence of Substituents On The Alkynes a

a Reaction conditions: 1 (0.1 mmol), CuI (0.02 mmol), TBHP (0.2 mmol)
in DMSO (2.0 mL) was stirred under air for 18 hours. Yield of isolated
product after column chromatography on silica gel. b The reaction time
was 24 hours.

In order to understand the effect of substituents on the
sulfonamides in the present reaction, the scope of substituted
sulfonamides were subsequently examined. The para position of
the aryl ring in arylsulfonamides could be replaced by an electron-
withdrawing -F or an electron-donating -OCH3, which both gave
good yields. The reactions with meta and ortho-substituted
sulfonamides also provided moderate to good yields. When there
is no substituent on the benzenesulfonamide ring, 2s was obtained

Page 2 of 9

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



in 79% yield. 2-Naphthyl-linked sulfonamide was also compatible,
leading to the desired product 2t in 71% yield. When using N-(8-
((4-chlorophenyl)ethynyl)naphthalen-1-yl)-4-nitrobenzene-sulfon-
amide as the substrate under standard conditions, the expected
product 2u could be obtained in 27% yield. It is probably due to
the instability of radical intermediates in the presence of nitro
group. Substituted naphthylamine had been tested in this reaction.
When using N-(8-((4-methoxyphenyl)ethynyl)-4-nitronaphthalen-
1-yl)-4-methylbenzenesulfonamide (1v) as the substrate, the
expected product 13-(4-methoxyphenyl)-11-methyl-4-nitrobenzo
[cd]benzo[5,6][1,2]thiazino[2,3-a]indole 8,8-dioxide (2v) could
be obtained in 61% yield under the standard conditions. However,
under standard conditions, the reactions of N-(8-((4-
methoxyphenyl)ethynyl)naphthalen-1-yl)thiophene-2-sulfonamide
or 4-methyl-N-(8-((trimethylsilyl)ethynyl)naphthalen-1-
yl)benzenesulfon-amide or N-(8-ethynylnaphthalen-1-yl)-4-
methylbenzenesulfonamide did not give desired products (please
see ESI). The reaction of 4-methyl-N-(5-phenylpent-4-yn-1-
yl)benzenesulfonamide did not take place under standard
conditions, and starting material was recovered.
To gain insights into reaction mechanism, the control reactions
and kinetic isotopic experiment were carried out under the
standard conditions. By adding 4 equivalents of TEMPO or 1,1-
diphenylethylene as radical scavengers under standard reaction
conditions, the expected product 2a was not observed (Scheme 3),
and surprisingly, the corresponding radical was not trapped
accordingly. We reasoned the use of radical scavengers retarded
the formation of tert-butyloxygen radical from TBHP. The
reaction of benzsulfonamide 1s and deuterated benzsulfonamide
1s-d5 was also conducted. As expected, the value of the kinetic
isotope effect (KIE) was 1.38. The KIE results indicated that the
C-H bond cleavage step was not the rate-determining step in the
formation of 1s. Notably, a distinctive reaction pathway from that
of our previous results was involved herein, although similar
starting materials were employed.15

Scheme 3. The control experiments and Plausible Mechanism

Based on the aforementioned results, we postulated a plausible
mechanism, as illustrated in Scheme 3. Initially, treated with in
situ generated [CuII], a tosyl amide N-center radical A was
produced with the removal of proton. The intermediate A then
went through an intramolecular 5-exo-dig aza-cyclization to
provide dihydrobenzo-[c,d]indole-fused 1,2-benzothiazine 1,1-
dioxides vinyl radical B. Undergoing another radical 6-endo-trig

dearomatization, the intermediate B was readily converted into
polycyclic species C. Finally, oxidation and aromatization
afforded the desired products 2.
Structural elaboration of products 2 was also explored, and the
results were presented in Scheme 4. Nitrated product 3 could be
reached in an 81% yield at room temperature in the presence of
HNO3/HOAc. Moreover, the prepared nitrated product was able
to be reduced in situ by Fe/HOAc to offer an aminated product 4
in a 61% total yield.

Scheme 4 Structural elaboration of product 2a

During the experiments, we observed that these compounds
emitted strong photoluminescence in dilute solutions as well as in
solids (Figures 1 and 2). First of all, the effect of alkyne
substituents on photophysical properties was investigated. The
UV-vis absorption was measured in a 2*10-5 M concentration of
tetrahydrofuran. The maximum absorption wavelengths for 2a, 2e
and 2m are around 406 nm without the apparent influence of the
substituted groups (see ESI). 2a and 2m emitted bright blue light
at about 480 nm with a large Stokes shift at about 74 nm (3800
cm-1). With electron-donating group substitution, 2e emitted light
at 475 nm with a Stokes shift of 69 nm (3580 cm-1). Next, we
investigated the effect on photophysical properties of substituents
on the aromatic ring adjacent to the sulfonamide. The absorption
wavelengths of 2e and 2o were 406 and 408 nm (see ESI). 2e
emitted blue light at about 475 nm with a Stokes shift at about 69
nm, compared to 2o which emitted bright light at about 482 nm
with a large Stokes shift about 74 nm (3760 cm-1).
Finally, the substituents effects of naphthalene ring on
photophysical properties were investigated. Could be seen from
the data, the substituent effect was apparent. Compounds 2a, 3
and 4 absorbed light at about 406 nm, 439 nm and 477 nm (see
ESI), respectively. Also the emission spectrum was done. The
excitation wavelengths of 2a, 3 and 4 were 480 nm, 505 nm and
620 nm. Based on the results, we found that Stokes shift of
amino-linked 2H-benzo[e][1,2]thiazine 1,1-dioxides 4 in dilute
tetrahydrofuran was identified to be 143 nm (4830 cm-1).

Figure 1 Fluorescence emission spectrum of 2a, 2e and 2m

Besides, compounds 2a had strong emission in solid. The
emission wavelength of this compound was about 503 nm (Figure
2a). Before and after UV irradiation on 2a was shown in Figure
2b.
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Figure 2 (a) Solid emission spectra of 2a. (b) Images of
compound 2a under white light (left) and under UV light (365 nm)
(right).

Conclusion

In conclusion, we have developed an efficient tandem radical
pathway to prepare thio-azafluoranthenes from 8-
alkynylnaphthalen-1-amines. The reactions were catalyzed by CuI,
while TBHP was used as the oxidant. Moreover, this thio-
azafluoranthene was indeed a new fluorophore and its
photophysical properties were investigated. The largest Stokes
shift in dilute tetrahydrofuran was determined to be 143 nm of
compound 4. Further studies on the synthetic application are
currently ongoing.

Experimental Section
Unless stated otherwise, reactions were conducted in dried
glassware. Commercially available reagents and solvents were
used as received. 300-400 Mesh silica gel was used for flash
column chromatography. Visualization on TLC was achieved
by the use of UV light (254 nm). 400 MHz and 100 MHz were
used for the record of 1H NMR and 13C NMR spectra.
Chemical shifts (ppm) were reported in parts per million
referring to either the internal standard of TMS or the residue
of the deuterated solvents. Splitting pattern was described as
follows: s for singlet, d for doublet, t for triplet, q for quartet,
and m for multiplet. Coupling constants were reported in Hz.
The high-resolution mass spectrum (HRMS) was performed
on Waters Xevo G2-S QTof mass spectrometer. Absorption
spectra were measured using UV-Vis spectrometer (Shimadzu,
UV-2450). Emission spectra were recorded on a
spectrofluorometer (Shimadzu, RF-5301PC) with a xenon
lamp excitation source. All the substrates were synthesized
with references to published literatures13,16.

Typical Procedure for the synthesis of compound 1a:
8-iodonaphthalen-1-amine, p-chlorophenylacetylene (1.2
equiv), TEA (3.0 equiv), PdCl2(PPh3)2 (5 mol%), and CuI
(2 mol%) were added in flask under N2 atmosphere. The
mixture was stirred at room temperature. After reaction as
indicated by TLC, filtration, evaporation under reduced
pressure and purification by flash column chromatography
provided 8-((4-chlorophenyl)ethynyl)naphthalen-1-amine in
82% yield. In the end, 1a can be obtained in the presence of p-
toluenesulfonyl chloride in 90% yield. All compounds are
known in this paper as cited in Ref 13 and 16.

N-(8-((4-chlorophenyl)ethynyl)naphthalen-1-
yl)benzenesulfonamide (1s-D5)
Yellow solid. 1H NMR (400 MHz, CDCl3) δ 9.89 (s, 1H), 7.82
(d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.3 Hz, 3H), 7.63 (d, J = 7.1
Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.44 – 7.40 (m, 3H), 7.33 (t,
J = 7.7 Hz, 1H).

Typical Procedure for the synthesis of compound 2:

Substrate 1 (0.1 mmol) , CuI (0.2 equiv) and TBHP ( 2
equiv, 70% in water) were added to a test tube, and then
DMSO (2.0 ml) was added. The mixture was stirred at 110
oC (oil bath) for 18 h (checked by TLC). After the substrate
1 was completely consumed, the reaction mixture was then
cooled to room temperature, and quenched by adding 20
mL water and extracted with ethyl acetate (EA) (3*10 mL).
After the organic layer was washed with saturated salt
water, it was filtrated and concentrated under reduced
pressure.The residue was purified by column
chromatography to afford the desired product 2.

13-(4-chlorophenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2a)

Yellow solid, 35.6 mg, 83%, eluent (PE:EA=10:1). 1H NMR
(400 MHz, CDCl3) δ 8.08 (d, J = 8.0 Hz, 1H), 7.82 – 7.76 (m,
1H), 7.73 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.58 –
7.53 (m, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.36 – 7.30 (m, 2H),
6.84 (s, 1H), 6.31 (d, J = 7.3 Hz, 1H), 2.36 (s, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 143.5, 137.3, 135.1, 134.5, 133.3,
132.1, 130.9, 130.8, 130.6, 129.0, 128.9, 128.9, 128.7, 128.5,
128.0, 127.8, 126.9, 126.7, 122.8, 121.6, 121.0, 109.4, 21.8;
IR (neat) 3135, 1401, 820 cm-1; HRMS (ESI-TOF) m/z :
[M+H]+Calcd for C25H17ClNO2S: 430.0669; Found 430.0667.

13-(4-fluorophenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2b)

Yellow solid, 33.4 mg, 81%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.07 (d, J = 8.0 Hz, 1H), 7.80 – 7.75 (m,
1H), 7.72 (d, J = 8.2 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.47 – 7.40
(m, 2H), 7.40 – 7.27 (m, 4H), 6.85 (s, 1H), 6.25 (d, J = 7.3 Hz,
1H), 2.36 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 163.1
(JC-F = 246.0 Hz), 143.4, 139.2, 137.3, 134.7, 132.5, 132.4,
130.9, 130.7 (JC-F = 4.0 Hz), 128.9, 128.9, 128.7, 128.5, 128.0,
126.8, 126.8, 122.8, 121.5, 121.0, 117.5 (JC-F = 22.0 Hz),
116.3, 109.3, 21.9. IR (neat) 3137, 1398, 818 cm-1; HRMS
(ESI-TOF) m/z : [M+H]+ Calcd for C25H17FNO2S: 414.0964;
Found 414.0962.

11-methyl-13-phenylbenzo[cd]benzo[5,6][1,2]thiazino[2,3-
a]indole 8,8-dioxide (2c)

Yellow solid, 32.4 mg, 82%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.08 (d, J = 8.1 Hz, 1H), 7.78 (dd, J =
5.9, 2.0 Hz, 1H), 7.72 – 7.58 (m, 4H), 7.58 – 7.50 (m, 2H),
7.45 (d, J = 6.4 Hz, 2H), 7.36 – 7.27 (m, 2H), 6.89 (s, 1H),
6.18 (d, J = 7.3 Hz, 1H), 2.35 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 143.3, 138.9, 137.4, 134.8, 131.1, 130.9,
130.5, 130.2, 128.9, 128.8, 128.8, 128.6, 128.4, 128.0, 127.0,
126.6, 122.7, 121.6, 120.9, 117.5, 112.0, 109.2, 21.8; IR (neat)
3136, 1403, 823 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd
for C25H18NO2S: 396.1058; Found 396.1059.

13-(4-ethylphenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2d)

Yellow solid, 35.9 mg, 85%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J
= 8.0 Hz, 1H), 7.77 (dd, J = 5.9, 1.8 Hz, 1H), 7.68 (d, J = 8.1
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Hz, 1H), 7.53 (d, J = 6.2 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H),
7.37 – 7.26 (m, 4H), 6.92 (s, 1H), 6.22 (d, J = 7.3 Hz, 1H),
2.85 (d, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.40 (t, J = 7.6 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 145.0, 143.3, 138.9, 137.4,
134.9, 131.9, 131.2, 130.9, 130.3, 129.6, 128.9, 128.8, 128.7,
128.3, 128.0, 127.0, 126.4, 122.6, 121.6, 120.8, 117.6, 109.1,
28.8, 21.8, 15.5; IR (neat) 3131, 1402, 820 cm-1; HRMS (ESI-
TOF) m/z : [M+H]+ Calcd for C27H22NO2S: 424.1371; Found
424.1369.

11-methyl-13-(p-tolyl)benzo[cd]benzo[5,6][1,2] thiazino [2,3-
a]indole 8,8-dioxide (2e)

Yellow solid, 35.2 mg, 86%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.06 (d, J = 8.0 Hz, 1H), 7.80 – 7.73 (m,
1H), 7.68 (d, J = 8.2 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.46 (d, J =
7.7 Hz, 2H), 7.36 – 7.23 (m, 4H), 6.92 (s, 1H), 6.26 (d, J = 7.3
Hz, 1H), 2.55 (s, 3H), 2.34 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 143.3, 138.8, 138.7, 137.4, 134.9, 131.7, 131.2,
130.9, 130.9, 130.2, 128.9, 128.8, 128.7, 128.3, 128.0, 127.0,
126.5, 122.6, 121.7, 120.9, 117.6, 109.1, 21.8, 21.6; IR (neat)
3135, 1401, 817 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd
for C26H20NO2S: 420.1215; Found 420.1212.

13-(4-methoxyphenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2f)

Yellow solid, 35.7 mg, 84%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.06 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 5.5
Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.58 – 7.47 (m, 2H), 7.40 –
7.27 (m, 4H), 7.18 (d, J = 7.5 Hz, 2H), 6.92 (s, 1H), 6.31 (d, J
= 7.1 Hz, 1H), 3.97 (s, 3H), 2.35 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 159.9, 143.3, 139.1, 137.4, 135.1, 131.7,
131.2, 130.9, 128.9, 128.8, 128.7, 128.3, 128.0, 127.0, 126.8,
126.5, 122.6, 121.7, 120.9, 117.2, 115.6, 109.1, 55.4, 21.8; IR
(neat) 3134, 1401, 818 cm-1; HRMS (ESI-TOF) m/z : [M+H]+
Calcd for C26H20NO3S: 426.1164; Found 426.1161.

13-(3-chlorophenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2g)

Yellow solid, 35.2 mg, 82%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.08 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 2.9
Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 3.9 Hz, 2H),
7.55 (s, 2H), 7.48 (s, 1H), 7.40 – 7.29 (m, 3H), 6.84 (s, 1H),
6.27 (d, J = 7.3 Hz, 1H), 2.37 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 143.5, 141.8, 140.1, 137.2, 136.7, 136.0,
135.3, 134.7, 131.6, 130.9, 130.7, 129.3, 129.0, 128.9, 128.9,
128.6, 128.6, 126.9, 126.7, 122.8, 122.8, 121.7, 121.1, 109.4,
21.9; IR (neat) 3142, 1401, 807 cm-1; HRMS (ESI-TOF) m/z :
[M+H]+Calcd for C25H17ClNO2S: 430.0669; Found 430.0663.

13-(3-fluorophenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2h)

Yellow solid, 33.0 mg, 80%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.08 (d, J = 8.1 Hz, 1H), 7.82 – 7.76 (m,
1H), 7.72 (d, J = 8.1 Hz, 1H), 7.70 – 7.60 (m, 1H), 7.58 – 7.51
(m, 2H), 7.38 – 7.28 (m, 3H), 7.28 – 7.23 (m, 1H), 7.19 (d, J =

9.0 Hz, 1H), 6.86 (s, 1H), 6.27 (d, J = 7.3 Hz, 1H), 2.37 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 164.0 (JC-F = 248.0
Hz), 143.5, 139.0, 137.3, 137.0 (JC-F = 8.0 Hz), 134.3, 132.0
(JC-F = 8.0 Hz), 130.9, 130.7, 128.9, 128.6, 128.5, 127.9, 126.9,
126.7, 126.4 (JC-F = 3.0 Hz), 122.8, 121.6, 121.1, 117.8, 117.6,
116.2, 116.0, 109.4, 21.9; IR (neat) 3140, 1400, 806 cm-1;
HRMS (ESI-TOF) m/z : [M+H]+ Calcd for C25H17FNO2S:
414.0964; Found 414.0967.

13-(2-chlorophenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2i)

Yellow solid, 32.6 mg, 76%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.09 (d, J = 8.1 Hz, 1H), 7.84 – 7.77 (m,
1H), 7.73 (d, J = 8.1 Hz, 2H), 7.63 – 7.53 (m, 4H), 7.52 – 7.44
(m, 1H), 7.37– 7.27 (m, 2H), 6.78 (s, 1H), 6.17 (d, J = 7.3 Hz,
1H), 2.37 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 143.5,
139.4, 137.4, 135.3, 133.6, 133.5, 132.5, 130.9, 130.9, 130.7,
130.6, 129.1, 128.9, 128.7, 128.6, 128.6, 127.9, 127.0, 126.3,
122.8, 121.2, 121.0, 114.5, 109.4, 21.9; IR (neat) 3138, 1401,
768 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C25H17ClNO2S: 430.0669; Found 430.0666.

13-(2-methoxyphenyl)-11-methylbenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2j)

Yellow solid, 31.9 mg, 75%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.07 (d, J = 8.0 Hz, 1H), 7.78 (dd, J =
6.1, 1.6 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.65 – 7.57 (m, 1H),
7.56 – 7.48 (m, 2H), 7.36 (dd, J = 7.4, 1.5 Hz, 1H), 7.33 – 7.26
(m, 2H), 7.26 – 7.15 (m, 2H), 6.87 (s, 1H), 6.25 (d, J = 7.3 Hz,
1H), 3.68 (s, 3H), 2.35 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 157.9, 143.2, 138.9, 137.5, 134.5, 132.1, 131.3,
130.9, 130.7, 129.0, 128.7, 128.3, 128.1, 126.7, 126.4, 123.2,
122.6, 122.2, 121.1, 120.7, 114.2, 112.1, 109.0, 55.8, 21.9; IR
(neat) 3135, 1401, 771 cm-1; HRMS (ESI-TOF) m/z : [M+H]+
Calcd for C26H20NO3S: 426.1164; Found 426.1163.

11-methyl-13-(naphthalen-1-yl)benzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2k)

Yellow solid, 36.0 mg, 81%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.13 (d, J = 8.0 Hz, 2H), 8.03 (d, J = 8.2
Hz, 1H), 7.87 – 7.67 (m, 3H),7.66 – 7.57 (m, 2H), 7.57 – 7.47
(m, 3H), 7.38 – 7.29 (m, 2H), 7.09 (td, J = 8.1, 2.8 Hz, 1H),
6.74 (s, 1H), 5.79 (dd, J = 7.3, 2.6 Hz, 1H), 2.24 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 143.5, 139.7, 137.4, 134.9,
134.4, 132.2, 132.1, 130.9, 130.7, 129.5, 129.4, 128.9, 128.8,
128.6, 128.5, 128.5, 128.1, 127.2, 126.9, 126.8, 126.5, 126.5,
124.9, 122.6, 121.7, 121.0, 115.4, 109.3, 21.8; IR (neat) 3134,
1401, 771 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C29H20NO2S: 446.1215; Found 446.1214.

11-methyl-13-(thiophen-2-yl)benzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2l)

Orange solid, 31.3 mg, 78%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.06 (d, J = 8.0 Hz, 1H), 7.83 – 7.73 (m,
2H), 7.68 (d, J = 5.2 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.42 – 7.29
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(m, 3H), 7.22 – 7.14 (m, 1H), 7.10 (s, 1H), 6.37 (d, J = 7.3 Hz,
1H), 2.40 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 151.1,
143.6, 141.0, 139.6, 137.6, 137.2, 135.2, 134.9, 130.8, 129.1,
129.0, 128.8, 128.5, 128.5, 128.3, 127.7, 127.2, 126.7, 122.6,
122.3, 121.2, 109.5, 21.9; IR (neat) 3129, 1401, 774 cm-1;
HRMS (ESI-TOF) m/z : [M+H]+ Calcd for C23H16NO2S2:
402.0622; Found 402.0623.

11-methyl-13-(thiophen-3-yl)benzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2m)

Orange solid, 32.1 mg, 80%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.05 (d, J = 8.0 Hz, 1H), 7.81 – 7.74 (m,
1H), 7.73 – 7.65 (m, 2H), 7.58 – 7.48 (m, 2H), 7.44 (s, 1H),
7.33 (dd, J = 15.1, 7.4 Hz, 2H), 7.13 (d, J = 4.8 Hz, 1H), 6.97
(s, 1H), 6.35 (d, J = 7.3 Hz, 1H), 2.37 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 143.4, 139.4, 137.3, 134.7, 134.5, 130.9,
130.9, 129.0, 128.8, 128.5, 128.4, 128.1, 127.9, 126.8, 126.8,
125.8, 122.6, 121.5, 121.0, 112.0, 109.2, 21.9; IR (neat) 3128,
1401, 773 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C23H16NO2S2: 402.0622; Found 402.0625.

13-butyl-11-methylbenzo[cd]benzo[5,6][1,2]thiazino[2,3-
a]indole 8,8-dioxide (2n)

Yellow solid, 24.0 mg, 64%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.05 (d, J = 8.0 Hz, 1H), 7.86 – 7.72 (m,
3H), 7.71 – 7.63 (m, 1H), 7.61 – 7.53 (m, 2H), 7.51 (s, 1H),
7.35 (d, J = 8.0 Hz, 1H), 3.16 – 3.06 (m, 2H), 2.54 (s, 3H),
1.74 (d, J = 6.9 Hz, 2H), 1.63 (dd, J = 14.6, 7.4 Hz, 2H),
1.11 – 1.02 (m, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 143.3,
137.6, 134.3, 132.6, 131.3, 131.2, 129.2, 129.2, 128.9, 128.4,
128.3, 126.4, 125.0, 122.8, 121.4, 120.7, 117.7, 109.1, 29.7,
27.5, 23.1, 22.2, 14.1; IR (neat) 3466, 1747, 752 cm-1; HRMS
(ESI-TOF) m/z : [M+H]+ Calcd for C23H22NO2S: 376.1371;
Found 376.1373.

11-fluoro-13-(p-tolyl)benzo[cd]benzo[5,6][1,2]thiazino[2,3-
a]indole 8,8-dioxide (2o)

Yellow solid, 33.8 mg, 82%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.17 (dd, J = 8.7, 5.3 Hz, 1H), 7.86 –
7.68 (m, 3H), 7.56 (d, J = 4.2 Hz, 3H), 7.46 (d, J = 7.7 Hz,
2H), 7.36 – 7.27 (m, 2H), 7.22 – 7.13 (m, 1H), 6.80 (dd, J =
10.3, 2.2 Hz, 1H), 6.34 (d, J = 7.3 Hz, 1H), 2.54 (s, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 164.9 (JC-F = 252.0 Hz),
139.1, 137.1, 131.7, 131.1, 131.0, 130.8, 130.7, 130.1, 129.3,
128.9, 128.8, 128.7, 127.9, 127.1, 125.5 (JC-F = 10.0 Hz),
122.3, 121.2, 114.8 (JC-F = 23.0 Hz), 113.3, 113.1, 109.5, 21.5;
IR (neat) 3134, 1401, 805 cm-1; HRMS (ESI-TOF) m/z :
[M+H]+Calcd for C25H17FNO2S: 414.0964; Found 414.0967.

13-(4-chlorophenyl)-11-methoxybenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2p)

Yellow solid, 37.4 mg, 84%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.11 (d, J = 8.8 Hz, 1H), 7.81 – 7.75 (m,
1H), 7.73 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.58 –
7.51 (m, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.33 (t, J = 7.8 Hz, 1H),

7.02 (dd, J = 8.8, 2.3 Hz, 1H), 6.48 (d, J = 2.3 Hz, 1H), 6.31 (d,
J = 7.3 Hz, 1H), 3.76 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3)
δ 162.7, 137.6, 137.2, 136.7, 135.1, 133.2, 132.1, 130.9, 130.7,
130.7, 128.9, 128.9, 127.9, 127.0, 124.9, 123.9, 121.8, 121.0,
115.8, 113.2, 111.4, 109.4, 55.6; IR (neat) 3137, 1401, 809
cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C25H17ClNO3S: 446.0618; Found 446.0619.

10-chloro-13-(4-chlorophenyl)benzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2q)

Yellow solid, 36.4 mg, 81%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.16 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.6
Hz, 2H), 7.65 – 7.51 (m, 5H), 7.50 – 7.41 (m, 3H), 7.35 (t, J =
7.7 Hz, 1H), 6.44 (d, J = 7.3 Hz, 1H); 13C{1H} NMR (100
MHz, CDCl3) δ 136.7, 136.5, 134.9, 134.2, 132.7, 132.5,
131.7, 131.2, 130.9, 130.6, 129.8, 129.3, 129.0, 129.0, 128.8,
128.7, 128.3, 127.6, 123.0, 122.0, 121.9, 110.6; IR (neat) 3135,
1401, 804 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C24H14Cl2NO2S: 450.0122; Found 450.0121.

13-(4-chlorophenyl)-9-fluorobenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2r)

Yellow solid, 31.6 mg, 73%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 7.87 – 7.78 (m, 1H), 7.76 (d, J = 8.0 Hz,
1H), 7.65 (d, J = 7.4 Hz, 2H), 7.60 – 7.52 (m, 2H), 7.48 (d, J =
6.0 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.22 – 7.13 (m, 1H), 6.83 (d,
J = 8.0 Hz, 1H), 6.30 (d, J = 7.1 Hz, 1H); 13C{1H} NMR (100
MHz, CDCl3) δ 158.6 (JC-F = 257.0 Hz), 137.1, 136.8, 135.3,
133.7, 133.6, 133.1, 132.1, 130.8, 130.8, 130.2, 129.0, 129.0,
127.5, 127.4, 122.4, 122.4, 122.1, 121.4, 115.1, 114.9, 109.9;
IR (neat) 3132, 1401, 806 cm-1; HRMS (ESI-TOF) m/z :
[M+H]+ Calcd for C24H14ClFNO2S: 434.0418; Found
434.0412.

13-(4-chlorophenyl)benzo[cd]benzo[5,6][1,2]thiazino[2,3-
a]indole 8,8-dioxide (2s)

Yellow solid, 32.8 mg, 79%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.24 – 8.15 (m, 1H), 7.83 – 7.77 (m, 1H),
7.74 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.61 – 7.46
(m, 4H), 7.41 (d, J = 8.4 Hz, 2H), 7.38 – 7.30 (m, 1H), 7.12 –
7.04 (m, 1H), 6.35 (d, J = 7.3 Hz, 1H); 13C{1H} NMR (100
MHz, CDCl3) δ 137.2, 135.2, 134.5, 133.7, 133.2, 132.6,
132.1, 130.9, 130.7, 130.6, 128.9, 128.9, 128.0, 127.6, 127.3,
127.0, 126.5, 122.7, 121.7, 121.2, 116.1, 109.5; IR (neat) 3133,
1401, 805 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for
C24H15ClNO2S: 416.0512; Found 416.0515.

15-phenylbenzo[cd]naphtho[1',2':5,6][1,2]thiazino[2,3-
a]indole 7,7-dioxide (2t)

Yellow solid, 30.6 mg, 71%, eluent (PE:EA=10:1).1H NMR
(400 MHz, CDCl3) δ 8.22 (d, J = 8.6 Hz, 1H), 7.97 (d, J = 8.6
Hz, 1H), 7.87 – 7.79 (m, 2H), 7.71 (d, J = 8.1 Hz, 1H), 7.67 –
7.62 (m, 3H), 7.59 – 7.54 (m, 5H), 7.48 – 7.41 (m, 1H), 7.28 (t,
J = 7.8 Hz, 1H), 7.12 (t, J = 7.9 Hz, 1H), 6.39 (d, J = 7.4 Hz,
1H); 13C{1H} NMR (100 MHz, CDCl3) δ 140.4, 138.6, 136.8,
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136.2, 131.9, 131.2, 130.9, 130.7, 130.5, 130.2, 129.8, 129.8,
129.2, 129.1, 129.0, 128.9, 128.6, 127.6, 127.4, 127.1, 126.7,
122.7, 121.7, 119.9, 118.2, 110.5; IR (neat) 3131, 1398, 803
cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd for C28H18NO2S:
432.1058; Found 432.1057.

13-(4-chlorophenyl)-11-nitrobenzo[cd]benzo[5,6][1,2]
thiazino[2,3-a]indole 8,8-dioxide (2u)

Yellow solid, 12.4 mg, 27%, eluent (PE:EA=5:1). 1H NMR
(400 MHz, CDCl3) δ 8.36 (d, J = 8.6 Hz, 1H), 8.30 (d, J = 8.7
Hz, 1H), 7.93 (s, 1H), 7.83 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 8.1
Hz, 2H), 7.67 – 7.58 (m, 2H), 7.48 – 7.37 (m, 3H), 6.42 (d, J =
7.3 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 136.5, 136.3,
136.0, 135.5, 134.4, 131.9, 131.8, 131.1, 130.9, 130.0, 129.2,
129.0, 128.2, 124.6, 122.9, 122.8, 122.0, 121.4, 121.3, 115.1,
110.2, 105.0; IR (neat) 3130, 1401, 805 cm-1; HRMS (ESI-
TOF) m/z : [M+H]+ Calcd for C24H14ClN2O4S: 461.0363;
Found 461.0361.

13-(4-methoxyphenyl)-11-methyl-4-nitrobenzo[cd]benzo
[5,6][1,2]thiazino[2,3-a]indole 8,8-dioxide (2v)

Yellow solid, 28.7 mg, 61%, eluent (PE:EA=5:1). 1H NMR
(400 MHz, CDCl3) δ 8.75 – 8.63 (m, 2H), 8.06 (d, J = 8.0 Hz,
1H), 7.78 (d, J = 8.3 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.42 – 7.32
(m, 3H), 7.21 (d, J = 8.6 Hz, 2H), 6.96 (s, 1H), 6.39 (d, J = 7.4
Hz, 1H), 3.99 (s, 3H), 2.38 (s, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 160.3, 144.1, 143.4, 139.2, 138.2, 134.5, 132.5,
131.2, 130.0, 129.7, 129.2, 128.9, 128.5, 127.8, 125.7, 124.8,
124.3, 123.0, 122.7, 120.0, 115.8, 107.0, 55.5, 21.9; IR (neat)
3132, 1400, 800 cm-1; HRMS (ESI-TOF) m/z : [M+H]+ Calcd
for C26H19ClN2O5S: 471.1015; Found 471.1017.

13-(4-chlorophenyl)-11-methyl-4-nitrobenzo[cd]benzo[5,6]
[1,2]thiazino[2,3-a]indole 8,8-dioxide (3)

Yellow solid, 38.4 mg, 81%, eluent (PE:EA=5:1). 1H NMR
(400 MHz, CDCl3) δ 8.73 (d, J = 8.6 Hz, 1H), 8.68 (d, J = 8.5
Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H),
7.68 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.40 (d, J =
8.0 Hz, 3H), 6.87 (s, 1H), 6.38 (d, J = 7.3 Hz, 1H), 2.38 (s,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.3, 136.4, 135.6,
132.6, 132.3, 131.6, 130.9, 130.5, 130.1, 129.7, 129.6, 129.5,
128.9, 127.4, 125.3, 124.5, 124.4, 123.6, 123.1, 122.8, 122.7,
107.3, 21.9; IR (neat) 3130, 1401, 779 cm-1; HRMS (ESI-TOF)
m/z : [M+H]+ Calcd for C25H16ClN2O4S: 475.0519; Found
475.0514.

4-amino-13-(4-chlorophenyl)-11-methylbenzo[cd]benzo[5,6]
[1,2]thiazino[2,3-a]indole 8,8-dioxide (4)

Yellow solid, 27.1 mg, 61%, eluent (PE:EA=5:1). 1H NMR
(400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 1H), 7.75 – 7.60
(m, 3H), 7.56 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H),
7.35 – 7.20 (m, 2H), 6.87 – 6.70 (m, 2H), 6.29 (d, J = 7.4
Hz, 1H), 4.14 (s, 2H), 2.34 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 143.2, 139.3, 137.5, 134.9, 134.5, 133.5,
132.2, 131.1, 130.6, 129.4, 128.7, 128.3, 128.3, 127.7,

126.5, 122.6, 122.1, 122.0, 121.7, 115.6, 111.7, 110.5, 21.8;
IR (neat) 3135, 1401, 724 cm-1; HRMS (ESI-TOF) m/z :
[M+H]+ Calcd for C25H18ClN2O2S: 445.0778; Found
445.0779.
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