

Inorganica Chimica Acta 340 (2002) 21-28

www.elsevier.com/locate/ica

Reactions of bis[dichloro(pentamethylcyclopentadienyl)rhodium(III) and -iridium(III)] with aromatic phosphine bearing a methoxy group at an ortho-position: double insertion of 1-alkynes into a Rh–O bond

Yasuhiro Yamamoto*, Kenichiro Sugawara, Masateru Kakeya

Department of Chemistry, Faculty of Science, Toho University, Miyama, 2-2-1, Funabashi, Chiba 274-8510 Japan

Received 10 December 2001; accepted 27 April 2002

Abstract

Reactions of $[Cp^*MCl_2]_2$ (1a: M = Rh, 1b: M = Ir; $Cp^* = C_5Me_5$) with 2-methoxyphenylphosphines at room temperature gave the corresponding ¹η-P coordination complexes, $[Cp^*MCl_2(PPh_{3-n}R_n)]$ (2: *n* = 1; 4: *n* = 2; 6b: *n* = 3 for R = C₆H₄-2-MeO). Reaction of 1 with (2-methoxyphenyl)diphenylphosphine at reflux in diglyme underwent demethylation to afford Cp*MCl(MMMPP-*P*,*O*) (3) (M = Rh, Ir; MMMPP-*P*,*O* = *P*Ph₂(C₆H₄-2-*O*)) with a (*P*,*O*) chelating ligand. In the reaction with bis(2-methoxyphenyl)phenylphosphine, Cp*MCl(BMMPP-*P*,*O* = *P*Ph₂(C₆H₄-2-*O*)) with a (*P*,*O*) = *P*Ph(C₆H₄-2-MeO)(C₆H₄-2-*O*)) was generated at reflux in a mixture of diglyme and MeOH. Tris(2-methoxyphenyl)phosphine reacted with 1a at reflux in MeOH to give Cp*RhCl(TMMPP-*P*,*O*) (7a) (TMMPP-*P*,*O* = *P*(C₆H₄-2-MeO)₂(C₆H₄-2-*O*)), whereas the reaction with 1b at reflux in EtOH generated Cp*Ir(TMMPP-*P*,*O*,*O'*) (8b) (TMMPP-*P*,*O*,*O'* = *P*(C₆H₄-2-MeO)(C₆H₄-2-*O*)₂) with a (*P*,*O*,*O'*) tridentate ligand. Crystal structural analyses of 3a, 5a and 8b were carried out. Complex 3a underwent a double insertion of alkyne into a Rh–O bond on treatment with phenylacetylene or *p*-tolylacetylene in the presence of KPF₆, giving [Cp*Rh{*P*Ph₂(C₆H₄-*O*-CR=CH-CH= *C*R}](PF₆) (9a: R = *p*-MeC₆H₄; 9b: R = Ph) with a (*P*,*O*,*C*) tridentate ligand, in which X-ray crystal analysis of 9a was performed. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: 2-Methoxyphenylphosphines; Bis[dichloro(pentamethylcyclopentadienyl)rhodium(III) and -iridium(III)]; P-O chelating ligand; Double insertion of alkyne

1. Introduction

We have reported that one or two of the *ortho*methoxy groups in (2,6-dimethoxyphenyl)diphenylphosphine, bis(2,6-dimethoxyphenyl)phenylphosphine, and tris(2,6-dimethoxyphenyl)phosphine were demethylated in the reactions with bis[dichloro(η^6 -arene)ruthenium-(II)] [1] or bis[dichloro(η^5 -pentamethylcyclopentadienyl)rhodium(III) or -iridium(III)] [2,3], giving (η^6 -arene) RuCl(MDMPP-*P*,*O*), (η^6 -arene)RuCl(TDMPP-*P*,*O*) (arene = *p*-cymene, 1,2,3-Me₃C₆H₃, 1,3,5-Me₃C₆H₃, and C₆Me₆; MDMPP-*P*,*O* = *P*Ph₂(C₆H₃-2-*O*-6-MeO), TDMPP-*P*,*O* = *P* {C₆H₃-2,6-(MeO)₂}₂(C₆H₃-2-*O*-6-MeO)), Cp*MCl(MDMPP-*P*,*O*), Cp*MCl(BDMPP- *P*,*O*) and Cp*M(TDMPP-*P*,*O*,*O'*) (M = Rh and Ir; Cp* = η^{5} -C₅Me₅; BDMPP-*P*,*O* = *P*Ph{C₆H₃-2,6-(MeO)₂} (C₆H₃-2-*O*-6-MeO), TDMPP-*P*,*O*,*O'* = *P*{C₆H₃-2,6-(MeO)₂} (C₆H₃-2-*O*-6-MeO)₂) with bidentate (η^{2} -*P*,*O*) or tridentate (η^{3} -*P*,*O*,*O'*) chelating phosphines, respectively.

Recently, we reported that these $(\eta^2 - P, O)$ and $(\eta^3 - P, O, O')$ chelating complexes of rhodium(III) and iridium(III) reacted readily with strongly electron-deficient olefin such as tetracyanoethylene and 7,7,8,8-tetracyano-*p*-quinodimethane, which inserted into weakly activated C-H bonds on the phenyl ring of the phosphine ligand [4]. In the reactions of alkynes with $(\eta^2 - P, O)$ chelating rhodium complexes in the presence of KPF₆, they underwent the single- or double insertion of alkyne into a Rh–O bond to generate five-, six- and seven-membered metallacycles, the transannular addition of alkyne between metal atom or *ipso*-carbon atom of the phosphine, and the insertion of alkyne into a

^{*} Corresponding author. Tel.: +81-474-72 5076; fax: +81-474-75 1855

E-mail address: yamamoto@chem.sci.toho-u.ac.jp (Y. Yamamoto).

^{0020-1693/02/\$ -} see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 0 - 1 6 9 3 (0 2) 0 1 0 2 1 - 6

metal–P bond, depending on the nature of the alkyne, the metal atom and the chelating phosphine ligand [5–7].

We were interested in chemistry of less bulky 2methoxyphenylphosphines in comparison with 2,6-dimethoxyphenylphosphines. 2-Methoxyphenylphosphines are known to lead to O- or C-metallation with various metal complexes. Thus, 2-methoxyphenyl-di-tbutylphosphine, $PBu_2^t(C_6H_4OMe-2)$, in the reactions with platinum(II) complexes is metallated much more readily than $PPh_2(C_6H_4OMe-2)$, and $PMe_2(C_6H_4OMe-2)$ could not be metallated [8,9]. These metallations are promoted by steric effects.

We have now investigated the reactions of 2-methoxyphenylphosphines with bis[dichloro(pentamethylcyclopentadienyl)rhodium(III) or -iridium(III)], compared with 2,6-dimethoxyphenylphosphines, and performed the reaction of the resulting metallated complex with alkyne.

2. Experimental

All complexes were carried out under nitrogen atmosphere. Dichloromethane was distilled over CaH₂ and Et₂O was distilled over LiAlH₄. 2-Methoxyphenylphosphines [10] and [Cp*MCl₂]₂ (M = Rh [11], Ir [7]; Cp* = C₅Me₅) were prepared according to the literature. The IR and electronic absorption spectra were measured on FT/IR-5300 and U-best 30 instruments, respectively. NMR spectroscopy was carried out on a Bruker AC250. The ¹H NMR spectra were measured at 250 MHz, and ³¹P{¹H} NMR spectra were measured at 100 MHz using 85% H₃PO₄ as an external reference.

2.1. Reaction of **1a** with (2methoxyphenyl)diphenylphosphine

2.1.1. At room temperature

A mixture of 1a (0.300 g, 0.485 mmol) and (2methoxyphenyl)diphenylphosphine (0.350 g, 1.20 mmol) was stirred in CH₂Cl₂ (30 ml) for 5 h. The solvent was removed in vacuo and the residue was washed with Et₂O. The solid was recrystallized from CH_2Cl_2 and Et_2O to give yellow crystals of $[Cp*RhCl_2{PPh_2(C_6H_4-2-MeO)}]$ (**2a**) (0.375)g, 64.3%). UV–Vis (CH₂Cl₂): λ_{max} 408, 274 nm. ¹H NMR (CDCl₃): δ 1.32 (d, $J_{PH} = 4.0$ Hz, Cp*, 15H), 3.27 (s, MeO, 3H), 6.7–8.2 (m, ArH, 14H). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): δ 29.1 (d, $J_{RhP} = 142$ Hz). Anal. Calc. for C₂₉H₃₂Cl₂OPRh: C, 57.92; H, 5.36. Found: C, 58.16; H. 5.44%.

Complex **2b** (66.3%) was obtained according to a procedure similar to **1a**. UV–Vis (CH₂Cl₂): λ_{max} 350, 289 nm. ¹H NMR (CDCl₃): δ 1.32 (d, $J_{PH} = 2.0$ Hz, Cp*, 15H), 3.27 (s, MeO, 3H), 6.7–8.0 (m, ArH, 14H).

³¹P{¹H} NMR (CDCl₃): δ 0.56 (s). *Anal*. Calc. for C₂₉H₃₂Cl₂IrOP: C, 50.43; H, 4.67. Found: C, 50.06; H, 4.55%.

2.1.2. At reflux

A mixture of 1a (1.0 g, 1.62 mmol) and (2-methoxyphenyl)diphenylphosphine (1.04 g, 3.56 mmol) in diglyme (40 ml) was refluxed for 10 h. The solvent was removed in vacuo and the residue was washed with Et₂O. The solid was recrystallized from CH₂Cl₂ and Et₂O to give brown crystals of $[Cp^* RhCl{PPh_2(C_6H_4-$ 2-*O*)}] (**3a**) (1.34 g, 74.9%). UV–Vis (CH₂Cl₂): λ_{max} 400 (sh), 334, 255 nm. ¹H NMR (CDCl₃): δ 1.50 (d, $J_{PH} =$ 3.0 Hz, Cp*, 15H), 6.9–7.6 (m, ArH, 14H). ³¹P{¹H} NMR (CDCl₃): δ 49.3 (d, $J_{RhP} = 142$ Hz). Anal. Calc. for C₂₈H₂₉ClOPRh: C, 61.05; H, 5.31. Found: C, 60.76; H, 5.40%. Complex 3b (orange, 91.8%): UV-Vis (CH₂Cl₂): λ_{max} 330 nm. ¹H NMR (CDCl₃): δ 1.53 (d, $J_{\rm PH} = 2.0$ Hz, Cp*, 15H), 6.5–8.0 (m, ArH, 14H). ³¹P NMR (CDCl₃): δ 26.7 (s). Anal. Calc. for C₂₈H₂₉ClIrOP: C, 52.53; H, 4.57. Found: C, 52.23; H, 4.62%.

2.2. Reactions of **1a** or **1b** with bis(2methoxyphenyl)phenylphosphine

2.2.1. At room temperature

A mixture of **1a** (0.30 g, 0.486 mmol) and bis(2methoxyphenyl)phenylphosphine (0.356 mg, 1.10 mmol) in CH₂Cl₂ (15 ml) was stirred for 5 h at room temperature (r.t.) and the solvent was removed. The residue was chromatographed on alumina (containing 10% water) using CH₂Cl₂ as an eluent after washing of the residue with Et₂O. The eluate was concentrated and Et₂O was added to form orange-brown crystals of 4a (0.486 g, 74.2%) contained CH₂Cl₂. UV-Vis (CH₂Cl₂): $\lambda_{\rm max}$ 408, 278 nm. ¹H NMR (CDCl₃): δ 1.35 (d, $J_{\rm PH}$ = 2.5 Hz, Cp*, 15H), 3.40 (b, MeO, 6H), 6.8-8.0 (m, ArH, 13H). ³¹P NMR (CDCl₃): δ 26.0 (d, $J_{RhP} = 146$ Hz). Anal. Calc. for $C_{30}H_{34}Cl_2O_2PRh \cdot 0.5CH_2Cl_2$: C, 54.36; H, 5.24. Found: C, 54.02; H, 5.30%. Complex 4b (64.3%) was prepared according to a procedure similar to 4a. UV–Vis (CH₂Cl₂): λ_{max} 322, 287 nm. ¹H NMR (CDCl₃): δ 1.32 (d, $J_{PH} = 2.0$ Hz, Cp*, 15H), 3.38 (b, MeO, 6H), 6.8–7.9 (m, ArH, 13H). ³¹P{¹H} NMR (CDCl₃): δ -1.50 (s). Anal. Calc. for C₃₀H₃₄Cl₂IrO₂P: C, 50.00; H, 4.76. Found: C, 50.02; H, 5.00%.

2.2.2. At reflux

A mixture of **1b** (0.610 g, 0.766 mmol) and bis(2methoxyphenyl)phenylphosphine (0.538 mg, 1.699 mmol) was refluxed in diglyme (10 ml) and MeOH (30 ml) for 10 h. The solvent was removed in vacuo and the residue was washed with Et₂O. The solid was chromatographed on alumina (10% water), using CH₂Cl₂– MeOH (16:1) as an eluant. Yellow eluate was concentrated to give yellow solid of **5b** (0.683 mg, 66.5%). The solid was recrystallized from CH₂Cl₂ and Et₂O for purification. ¹H NMR (CDCl₃): δ 1.53 (d, $J_{PH} = 2.5$ Hz, Cp*, 15H), 3.78 (s, MeO, 3H), 6.4–7.9 (m, ArH, 13H). ³¹P NMR (CDCl₃): δ 35.0 (s). *Anal*. Calc. for C₂₉H₃₁ClIrO₂P: C, 51.97; H, 4.66. Found: C, 52.31; H, 4.59%. Reddish–brown complex of **5a** (68.3%) were obtained as well as **5b**. UV–Vis (CH₂Cl₂): λ_{max} 338, 260 nm. ¹H NMR (CDCl₃): δ 1.52 (d, $J_{PH} = 3.0$ Hz, Cp*, 15H), 3.81 (s, MeO, 1H), 6.4–8.0 (m, ArH, 13H). ³¹P NMR (CDCl₃): δ 48.7 (d, $J_{RhP} = 141$ Hz). *Anal*. Calc. for C₂₉H₃₁ClO₂PRh: C, 59.96; H, 5.38. Found: C, 60.02; H, 5.31%.

2.3. Reaction of 1a with tris(2-methoxyphenyl)phosphine

A mixture of **1a** (0.150 g, 0.243 mmol) and tris(2methoxyphenyl)phosphine (0.250 mg, 0.71 mmol) was stirred for 4 h at reflux in MeOH (20 ml). The solvent was removed in vacuo and the residue was washed with Et₂O. The solid was chromatographed on alumina (10% water), using CH₂Cl₂ as an eluant. Brown eluate was concentrated to give brown solid of [Cp*RhCl{*P*(C₆H₄-2-MeO)₂(C₆H₄-2-*O*)}] (**7a**) (0.683 g, 66.5%). UV–Vis (CH₂Cl₂): λ_{max} ca. 410 (sh), 366, 253 nm. ¹H NMR (CDCl₃): δ 1.53 (d, *J*_{PH} = 2.5 Hz, Cp*, 15H), 3.20 (bs, OMe, 6H), 3.72 (bs, OMe, 3H), 6.5–8.0 (m, ArH, 14H). ³¹P{¹H} NMR (CDCl₃): δ 40.9 (d, *J*_{RhP} = 155 Hz). *Anal*. Calc. for C₃₀H₃₃ClO₃PRh·0.25CH₂Cl₂: C, 57.43; H, 5.37. Found: C, 57.98; H, 5.46%.

2.4. Reaction of 1b with tris(2-methoxyphenyl)phosphine

2.4.1. At room temperature

A mixture of **1b** (0.230 g, 0.289 mmol) and tris(2methoxyphenyl)phosphine (0.250 mg, 0.710 mmol) was stirred for 3 h at r.t. in CH₂Cl₂ (15 ml). The solvent was removed in vacuo and the residue was washed with Et₂O. The residue was recrystallized from CH₂Cl₂ and Et₂O, giving yellow crystals of **6b** (0.325 mg, 75%). UV– Vis (CH₂Cl₂): λ_{max} ca. 360 (sh), ca. 310, 287 nm. *Anal*. Calc. for C₃₁H₃₆Cl₂IrO₃P: C, 49.60; H, 4.83. Found: C, 49.62; H, 4.99%.

2.4.2. At reflux

A mixture of **1b** (0.150 g, 0.188 mmol) and tris(2methoxyphenyl)phosphine (0.250 mg, 0.710 mmol) was stirred for 4 h at reflux in MeOH (20 ml). The solvent was removed in vacuo and the residue was washed with Et₂O. The solid was chromatographed on alumina (10% water), using CH₂Cl₂ as an eluant. Brown eluate was concentrated to give brown solid of [Cp*IrCl{*P*(C₆H₄-2-MeO)₂(C₆H₄-2-*O*)}] (7b) (0.149 mg, 56.6%). UV–Vis (CH₂Cl₂): λ_{max} 328, 289 nm. ¹H NMR (CDCl₃): δ 1.55 (d, *J*_{PH} = 2.0 Hz, Cp*, 15H), 3.21 (s, OMe, 6H), 3.73 (s, OMe, 3H), 6.4–7.5 (m, ArH, 14H). ³¹P{¹H} NMR (CDCl₃): δ 34.5 (s). *Anal*. Calc. for C₃₀H₃₃ClIrO₃P: C, 51.46; H, 4.75. Found: C, 51.47; H, 4.80%.

The yellow solid $[Cp*IrP(C_6H_4-2-MeO)(C_6H_4-2-O)_2\}]$ (**8b**) (18.9%) was generated by refluxing in EtOH for 0.5 h, followed by chromatography on alumina (10% water), using CH₂Cl₂ and C₆H₆ (4:1) as an eluant. ¹H MNR (CDCl₃): δ 1.53 (d, $J_{PH} = 2.0$ Hz, Cp*, 15H), 3.20 (s, MeO, 3H), 6.4–7.8 (m, ArH, 13H). ³¹P NMR (CDCl₃): δ 20.8 (s). *Anal*. Calc. for C₂₉H₃₀IrO₃P· 0.5CH₂Cl₂: C, 51.19; H, 4.51. Found: C, 51.60; H, 4.87%.

2.5. Reaction of **3a** with p-tolylacetylene

A mixture of 3a (0.050 mg, 0.091 mmol), tolylacetylene (0.10 ml, 0.91 mmol) and KPF₆ (0.167 mg, 0.91 mmol) was stirred in CH₂Cl₂ (15 ml) and C₃H₆O (10 ml) at r.t. After 48 h, the solvent was removed and the residue was extracted with CH2Cl2 and the solution was filtered with a glass filter. After the solvent was removed, the residue was washed with Et₂O and recrystallized from CH₂Cl₂-MeOH-Et₂O, giving reddish-brown crystals of 9a (0.029 mg, 35.3%). FAB mass (m/z): 747 [M⁺]. IR (Nujol): 1574 (C=C), 841 (PF₆) cm⁻¹. UV–Vis (CH₂Cl₂): λ_{max} 365 nm. ¹H MNR (CDCl₃): δ 1.39 (d, $J_{PH} = 2.5$ Hz, Cp*, 15H), 2.15 (s, *p*-Me, 3H), 2.44 (s, *p*-Me, 3H), 6.30 (d, $J_{\rm HH} = 7.5$ Hz, 1H), 6.46 (d, $J_{\rm HH} = 7.5$ Hz, 1H), 6.7–7.7 (m, ArH, 22H). ³¹P{¹H} NMR (CDCl₃): δ 37.4 (d, $J_{RhP} = 158$ Hz), - $J_{\rm PF} = 712$ Hz). Anal. Calc. 140.2 (sep, for C₄₆H₄₅F₆OP₂Rh·0.5CH₂Cl₂: C, 59.72; H, 4.96. Found: C, 59.25; H, 4.95%. Analogously, reddish-brown complex 9b was prepared by the reaction of 3a with phenylacetylene. FAB mass (m/z): 719 $[M^+ - 1]$. IR (Nujol): 1575 (C=C), 839 (PF₆) cm⁻¹. UV–Vis (CH₂Cl₂): λ_{max} 257 nm. ¹H NMR (CDCl₃): δ 1.39 (d, $J_{\rm PH} = 2.7$ Hz, Cp*, 15H), 6.31 (d, $J_{\rm HH} = 7.5$ Hz, 1H), 6.44 (d, $J_{\rm HH} = 7.5$ Hz, 1H), 6.8–7.7 (m, ArH, 24H). ³¹P{¹H} NMR (CDCl₃): δ 37.3 (d, $J_{RhP} = 163$ Hz), -140.0 (sep, $J_{PF} = 712$ Hz). *Anal*. Calc. for C₄₄H₄₁F₆OP₂Rh·0.5CH₂Cl₂: C, 56.92; H, 4.56. Found: C, 56.94; H, 4.61%.

2.6. Data collection

All complexes were recrystallized from C₃H₆O/Et₂O or CH₂Cl₂/ether. Cell constants were determined from 20 reflections on Rigaku four-circle automated diffractometer AFC5S. The crystal parameters along with data collections are summarized in Table 1S (see Section 5). Data collection was carried out by a Rigaku AFC5S refractometer at 27 °C. Intensities were measured by the $2\theta - \omega$ scan method using Mo K α radiation ($\lambda = 0.71069$ Å). Throughout the data collection the intensities of the three standard reflections were measured every 200 reflections as a check of the stability of the crystals and no decay was observed. Intensities were corrected for Lp effects. The absorption correction was made with the ψ scan methods. Atomic scattering factors were taken from the usual tabulation of Cromer and Waber [12]. Anomalous dispersion effects were included in Fcalc [13]; the values of $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley [14]. All calculations were performed using the TEXSAN crystallographic software package [15].

2.7. Determination of the structures

The structures of 3a, 5a, 8b and 9a were solved by Patterson methods (DIRDIF92 PATTY). The positions of all non-hydrogen atoms of 8b and 9a were refined with anisotropic thermal parameters by using fullmatrix least-square methods. Heteroatoms (four atoms) and fifteen carbon atoms for 3a and heteroatoms (five atoms) and sixteen carbon atoms for 5a were refined anisotropically and other non-hydrogen atoms were refined isotropically. All hydrogen atoms were calculated at the ideal positions with the C–H distance of 0.95 Å. Complex 8b consists of two independent molecules.

3. Results and discussion

3.1. Reactions of [Cp*MCl₂]₂ with 2methoxyphosphines

When 1a and 1b were treated with (2-methoxyphenyl)diphenylphosphine in CH2Cl2 at room temperature, the cleavage of bridged Cl atoms readily occurred to give yellow complexes $[Cp*MCl_2{PPh_2(C_6H_4-2-MeO)}]$ (2a: M = Rh; 2b: M = Ir) in ca. 65% yield (Scheme 1). The ¹H NMR spectra showed two characteristic resonances at approximately δ 1.3 as a doublet and 3.3 as a singlet, assignable to Cp* and methoxy protons, respectively. The ³¹P{¹H} NMR spectra showed a doublet at δ 29.1 for **2a** and a singlet at δ 0.56 for **2b**. These chemical shift values shifted to down-field by 44.9 ppm for 2a and 16.4 ppm for **2b** from that (δ -15.8) of the parent phosphine. Similar down-field shifts have been observed in (2,6-dimethoxylphenyl)diphenylphosphine complexes [1-3]. Treatment at reflux in diglyme led to demethylation of an ortho-methoxy group of aromatic phosphine ligand, giving metal complexes with a (P, O)-chelating phosphine, $[Cp*MCl{PPh_2(C_6H_4-2-O)}]$ (3a: M = Rh; **3b**: M = Ir). The ¹H NMR spectra showed a characteristic signal at δ ca. 1.50, assignable to Cp* protons. The ³¹P{¹H} NMR spectra showed a doublet at δ 49.3 for **3a** and a singlet at δ 26.7 for **3b**. The X-ray analysis of **3a** revealed that the rhodium atom is surrounded by P. Cl and O atoms in addition to Cp* moiety (Fig. 1 and Table 1). The bite P(1)-Rh(1)-O(1) angle is 79.7(6)° (Table 1). The Rh(1)–Cl(1), Rh(1)–P(1) and Rh(1)–O(1) bond lengths are 2.368(7), 2.293(6) and 2.13(2) Å, respectively.

Reaction with bulky bis(2-methoxyphenyl)phenylphosphine was carried out at room temperature, giving a η^1 -P coordination complex, [Cp*MCl₂{PPh(C₆H₄-2-MeO)₂}] (**4a**: M = Rh; **4b**: M = Ir). The reaction at reflux in dyglyme (10 ml) and MeOH (30 ml) generated a (P,O)-chelating complexes [Cp*MCl{PPh(C₆H₄-2-MeO)(C₆H₄-2-O)}] (**5a**: M = Rh; **5b**: M = Ir). The ¹H NMR spectra of **4** showed two characteristic resonances at δ ca. 1.35 as a doublet and at δ ca. 3.40 as a singlet, assignable to Cp* and methoxy protons, respectively. The ³¹P{¹H} NMR spectra showed a doublet at δ 26.0 for **4a** and a singlet at δ -1.50 for **4b**. These chemical shift values shifted to down-field by 52.9 ppm for **4a** and 25.4 ppm for **4b** from that (δ -26.9) of the parent phosphine.

Since the phosphine ligand of 5 is bidentate, binding through P and σ -bonded O atoms, the molecule has two chiral centers (metal and P atoms). The detailed structure was confirmed by X-ray analysis of 5a (Fig. 2 and Table 2). A priority order of the ligand is aromatic ring > Cl > P > O for a metal center and Rh > 2-O- $C_6H_4 > 2$ -MeOC₆H₄ > Ph for a P center. Fig. 2 showed that the molecule is a Rh_RP_R/Rh_SP_S pair. The ¹H NMR spectrum of 5a showed the presence of only one diastereomer. The ³¹P{¹H} NMR spectrum also supported the presence of one diastereomer, showing a doublet at δ 48.7. These NMR spectra showed that the structure in solution is similar to that in the solid state. However, we cannot rule out occurrence of rapid exchange between two diastereomers. A similar behavior was observed for the iridium complex 5b.

When 1a was treated with much bulky tri(2-methoxvphenyl)phosphine at reflux in MeOH, brown crystals of $[Cp*RhCl{P(C_6H_4-2-MeO)_2(C_6H_4-2-O)}]$ (7a) were obtained. The ¹H NMR spectrum showed a doublet at δ 1.52 and two singlets at δ 3.20 and 3.72(b), assignable to Cp* and methoxy protons, respectively. The inequivalence for the methoxy protons is assumed to arise from the presence of a chiral center of the P atom, however, it cannot rule out the restricted rotation of the C₆H₃-2-OMe) ring about the P-C axis. Reaction with iridium complex 1b at room temperature generated yellow complex of $[Cp*IrCl_2{P(2-MeOC_6H_4)_3}]$ (6b), whereas reactions at reflux in MeOH or EtOH gave a (P,O)chelating complex $[Cp*IrCl{P(C_6H_4-2-MeO)_2(C_6H_4-2(C_6H_4-2-MeO)_2(C_6H_4-2-MeO)_2(C_6H_4-2(C_6H_4-2-MeO)_2(C_6H_4-2(C_6H_4-2-MeO)_2(C_6H_4-2-MeO)_2(C_6H_4-2-MeO)_2(C_6H$ and (P, O, O')-chelating *O*)}] (**7b**), а one, $[Cp*Ir{P(C_6H_4-2-MeO)(C_6H_4-2-O)_2}]$ (**8b**). The ${}^{31}P{}^{1}H$ NMR spectra of **7b** and **8b** showed singlets at δ 34.5 and 20.8, again shifting to down-field by 73.2 and 59.5 ppm from that (δ -38.7) of free phosphine, respectively. The structure of 8b was confirmed by Xray analyses (Fig. 3 and Table 3). The iridium atom is coordinated by a tridentate (P, O, O')-chelating ligand.

Scheme 1. Reactions of $[Cp*MC1_2]_2$ with 2-methoxyphenylphosphines ($R' = C_6H_3$ -2-MeO).

Fig. 1. Molecular structure of 3a.

The Ir(1)-P(1), Ir(1)-O(1) and Ir(1)-O(2) bond lengths are 2.266(4), 2.10(1) and 2.09(1) Å, respectively. The Ir-

Cl bond lengths are somewhat shorter than that (2.281(3) Å) found in $[Cp*Ir{P(C_6H_3-2,6-(MeO)_2)(C_6H_3-2-O-6-MeO)_2}]$ bearing a similar structure [3].

In complexes 2–7, the chemical shift values of Cp* protons and coordinated P atom in η^2 -complexes appeared at lower fields than those of the corresponding η^1 -P complexes, being a result of high electron-withdrawing ability of the phenoxide-oxygen atom. The difference of the ³¹P chemical shift value between complex and free phosphine increased with the number of 2-methoxyphenyl substituent of the phosphine for η^1 -P complexes (2, 4 and 6) and (*P*,*O*)-chelating complexes (3, 5 and 7), suggesting that the electron-donating ability increases with the number of the methoxy group in the phosphine. It is greater in rhodium(III) complexes than iridium(III) ones, indicating that the rhodium atom is greater in acceptability of electron pair than the iridium atom.

Table 1 Selected bond lengths (Å) and angles (°) of [Cp*RhCl{(MMMPP-P,O)] (**3a**)

Bond lengths Rh(1)–Cl(1)	2.368(7)	Rh(1) - P(1)	2.293(6)	Rh(1) - O(1)	2.13(2)
O(1)-C(12)	1.30(3)	C(11)-C(12)	1.44(3)	P(1)-C(11)	1.78(2)
Bond angles Cl(1)-Rh(1)-P(1) Rh(1)-O(1)-C(12) Rh(1)-P(1)-C(11)	89.5(2) 121.0(1) 101.0(8)	Cl(1)-Rh(1)-O(1) O(1)-C(12)-C(11)	83.3(6) 118.0(2)	P(1)-Rh(1)-O(1) P(1)-C(11)-C(12)	79.7(6) 114.0(1)

Fig. 2. Molecular structure of 5a.

3.2. Reaction of 3a with 1-alkyne

Previously, we have reported that reaction of $[Cp*RhCl{PPh_2(C_6H_3-2-O-6-MeO)}]$ bearing a (P,O) chelating ligand with phenylacetylene in the presence of KPF₆ led to a head-to-head double insertion of phenylacetylene into the Rh–O σ -bond to generate the complex $[Cp*Rh{PPh_2(C_6H_3-2-(O-CPh=CH-CH=CPh)-6-MeO)}](PF_6)$ (10) bearing a (P,O,C) tridentate ligand consisting of six- and five-membered rings sharing the rhodium atom [5,7]. A similar reaction with **3a** bearing less bulky (P,O)-chelating ligand was carried out. When **3a** was treated with *p*-tolylacetylene in the presence of KPF₆, reddish–brown crystals **9a** with an empirical formula as $[Cp*Rh{PPh_2(C_6H_3-2-O-6-Phene)]$

Table 2 Selected bond lengths (Å) and angles (°) of [Cp*RhCl{(BMMPP-P,O)] (5a)

Fig. 3. Molecular structure of 8b. (Only one molecule for clarity.)

 $(p-tolyl = 4-MeC_6H_4)$ MeO)}] \cdot (*p*-tolylC=CH)₂ \cdot PF₆ from elementary analysis and FAB mass spectrometry were isolated (Scheme 2). The detailed structure was determined by X-ray analysis (Fig. 4 and Table 4). A rhodium atom is surrounded by a (P, O, C) tridentate ligand resulting from a head-to-head double insertion of 1-alkyne into the Rh-O bond (Fig. 4). Two carbon atoms bearing a p-tolyl group are connected to the rhodium and oxygen atoms. The molecule contains the five- and six-membered rings through coordination of an ether-O atom. The Rh(1)-O(1) coordination bond length of 2.241(4) Å is ca. 0.11 Å longer than that of **3a**, as expected for ether coordination as opposed to a phenoxide. The Rh-P(1) and Rh-C(39) bond lengths are 2.301(2),and 2.104(6) Å, respectively, not being significantly different from the corresponding bond

Dered law ethe					
Bona lengins					
Rh(1)-Cl(1)	2.402(8)	Rh(1)-P(1)	2.315(8)	Rh(1)-O(1)	2.08(2)
O(1)-C(111)	1.35(3)	C(11)-C(16)	1.47(4)	P(1)-C(16)	1.87(3)
Bond angles					
Cl(1) - Rh(1) - P(1)	88.8(3)	Cl(1)-Ir(1)-O(1)	90.0(6)	P(1)-Rh(1)-O(1)	83.2(6)
Rh(1) - O(1) - C(111)	123.0(1)	O(1) - C(11) - C(16)	118.0(2)	C(11)-C(16)-P(1)	114.0(2)
Rh(1) - P(1) - C(16)	100.6(10)				. ,

Table 3 Selected bond lengths (Å) and angles (°) of $[Cp*Ir(TMMPP-P, O, O')] \cdot 2H_2O$ **8b** $\cdot 2H_2O$

Bond lengths					
Ir(1) - P(1)	2.266(4)	Ir(1) - O(1)	2.10(1)	Ir(1) - O(2)	2.09(1)
O(1)-C(12)	1.32(2)	C(12) - C(11)	1.44(2)	P(1)-C(11)	1.80(2)
O(2) - C(18)	1.33(2)	C(18) - C(17)	1.44(2)	P(1) - C(17)	1.80(2)
Ir(2) - P(2)	2.277(5)	Ir(2)-O(4)	2.11(1)	Ir(2) - O(5)	2.11(1)
O(4)-C(41)	1.30(2)	C(40) - C(41)	1.41(2)	P(2) - C(40)	1.78(2)
O(5)-C(47)	1.33(2)	C(47) - C(46)	1.38(2)	P(2) - C(46)	1.82(2)
Bond angles					
P(1)-Ir(1)-O(1)	81.7(3)	P(1)-Ir(1)-O(2)	81.4(3)	O(1) - Ir(1) - O(2)	86.1(5)
Ir(1) - O(1) - C(12)	120.0(1)	O(1)-C(12)-C(11)	121.0(1)	C(12)-C(11)-P(1)	112.0(1)
Ir(1) - P(1) - C(11)	102.3(6)	Ir(1) - P(1) - C(17)	103.9(6)	P(1)-C(17)-C(18)	110.0(1)
O(2) - C(18) - O(17)	123.0(1)	Ir(1) - O(2) - C(18)	119.0(1)	C(11) - P(1) - C(17)	103.2(8)
P(2)-Ir(2)-O(4)	80.1(3)	P(2)-Ir(2)-O(5)	81.4(4)	O(4) - Ir(2) - O(5)	87.6(5)
Ir(2) - O(4) - C(41)	121.0(1)	O(4) - C(41) - C(40)	119.0(1)	C(41) - C(40) - P(2)	114.0(1)
Ir(2) - P(2) - C(40)	101.8(7)	Ir(2) - P(2) - C(46)	102.7(6)	P(2)-C(46)-C(47)	112.0(1)
O(5)-C(47)-O(46)	123.0(1)	Ir(2)-O(5)-C(47)	119.0(1)	C(40) - P(2) - C(46)	104.1(8)

Scheme 2. Reaction of 3a with alkyne.

Fig. 4. Molecular structure of 9a.

length for **10**. The P(1)–Rh(1)–O(1) bite angle of the five-membered ring were 79.5(1)°, and the O(1)–Rh(1)–C(39) bite angle of the six-membered ring are $81.4(2)^{\circ}$. These angles are independent of the ring-size. The P(1)–Rh(1)–C(39) bond angle of $91.0(2)^{\circ}$ is wider by ca. 10° than those of five- and six-membered rings. Similar trend has been noted in **10**. The average length of two double bonds, C(29)–C(37) and C(38)–C(39), in the metallacyclohexadiene rings is ca. 1.34 Å, being shorter

than the C(37)–C(38) single bond and in usual C–C double bonds.

The ¹H NMR spectrum showed a doublet at δ 1.39 due to Cp* protons and two singlets at δ 2.16 and 2.44, assignable to *p*-methyl protons. The CH= protons appeared at δ 6.29 and 6.46 as doublets. The ³¹P{¹H} NMR spectra showed a doublet at δ 37.4. The PF₆ anion was confirmed by ³¹P{¹H} NMR and IR spectrometry.

Analogously, complex $[Cp*Rh{PPh_2(C_6H_3-2-(O-CPh=CH-CH=CPh))}](PF_6)$ (9b) was obtained in the reaction of 3a with phenylacetylene.

4. Summary

2-Methoxyphenylphosphines underwent demethylation of one or two methyl groups on the phenyl rings in the reactions with $[Cp*MCl_2]_2$. These reactions are similar to the reactions with much more bulky 2,6dimethylphenylphosphines, however the reactivity of 2methyoxyphenyl phosphines are lower than that of 2,6dimethoxyphenylphosphines. Thus, demethylation is promoted by steric effects. A double insertion of the alkyne into a Rh–O bond was found to occur in spite of the presence or absence of the 6-methoxy substituent on the phenyl rings. Reactions of small molecules for the (P,O) chelating complexes are in progress.

5. Supplementary material

A listing of atomic coordinates, thermal parameters, bond lengths, angles and torsion angles, and Table 1S, are available from the authors on request.

Table 4
Selected bond lengths (Å) and angles (°) of $[Cp*Rh{PP_2(C_6H_4-2-(O-C(p-tolyl)=CH-CH=C(p-tolyl))}](PF_6)$ (9a)

Bond lengths					
Rh(1) - P(1)	2.301(2)	Rh(1) - O(1)	2.241(4)	Rh(1) - C(39)	2.104(6)
O(1)-C(29)	1.452(7)	C(29) - C(37)	1.320(10)	C(37) - C(38)	1.43(1)
C(38)-C(39)	1.358(9)	P(1)-C(23)	1.819(6)	C(23)-C(24)	1.375(8)
O(1)-C(24)	1.416(7)				
Bond angles					
O(1) - Rh(1) - P(1)	79.5(1)	O(1) - Rh(1) - C(39)	81.4(2)	P(1)-Rh(1)-C(39)	91.0(2)
Rh(1) - O(1) - C(24)	119.0(3)	O(1)-C(24)-C(23)	116.9(5)	P(1)-C(23)-C(24)	118.6(4)
Rh(1)-P(1)-C(23)	102.8(2)	Rh(1) - O(1) - C(29)	112.5(3)	O(1)-C(29)-C(37)	114.5(6)
C(29)-C(37)-C(38)	128.1(7)	C(37)-C(38)-C(39)	129.5(7)	Rh(1)-C(39)-C(38)	115.6(6)

Acknowledgements

The authors would like to thank Professor Sigetoshi Takahashi and Dr. Fumie Takei of The Institute of Scientific and Industrial Research, Osaka University for performing the FAB mass spectroscopy measurement.

References

- (a) Y. Yamamoto, R. Sato, M. Ohshima, F. Matsuo, C. Sudho, J. Organomet. Chem. 489 (1995) C68;
 (b) Y. Yamamoto, R. Sato, F. Matsuo, C. Sudho, T. Igoshi, Inorg. Chem. 35 (1996) 2329.
- [2] X.-H. Han, Y. Yamamoto, J. Organomet. Chem. 561 (1998) 157.
- [3] Y. Yamamoto, K. Kawasaki, S. Nishimura, J. Organomet. Chem. 587 (1999) 49.
- [4] (a) Y. Yamamoto, X.-H. Han, K. Sugawara, S. Nishimura, Angew. Chem. 112 (1999) 1318; Angew. Chem., Int. Ed. Engl. 38 (1999) 1242;

(b) Y. Yamamoto, X.-H. Han, S. Nishimura, K. Sugawara, N. Nezu, T. Tanase, Organometallics 20 (2001) 266.

- [5] Y. Yamamoto, X.-H. Han, J.-F. Ma, Angew. Chem. 113 (2000) 2041; Angew. Chem., Int. Ed. Engl. 39 (2000) 1965.
- [6] Y. Yamamoto, K. Sugawara, J. Chem. Soc., Dalton Trans. (2000) 2896.
- [7] Y. Yamamoto, K. Sugawara, X.-H. Han, J. Chem. Soc., Dalton Trans. (2002) 195.
- [8] C.E. Jones, B.L. Shaw, B.L. Turtle, J. Chem. Soc., Dalton Trans. (1974) 992.
- [9] H.D. Empsall, B.L. Shaw, B.L. Turtle, J. Chem. Soc., Dalton Trans. (1976) 1500.
- [10] O. Neunhoeffer, L. Lamza, Chem. Ber. 94 (1961) 2514.
- [11] J.W. Kang, K. Moseley, M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5971.
- [12] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, vol. IV (Table 2.2A), Kynoch Press, Birmingham, UK, 1974.
- [13] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964) 781.
- [14] D.C. Creagh, W.J. McAuley, International Tables for Crystallography, vol. C, Kluwer, Boston, 1992, pp. 219–222, Table 4.2.6.8.
- [15] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985 and 1992.