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Abstract: A novel short entry to 3,4-disubstituted adipic acids has 

been developed by employing an asymmetric NHC-catalyzed [3+2] 

cycloaddition of enals with masked cinnammates in moderate to 

good yields and high stereoselectivities. The synthetic utility of the 

protocol was demonstrated by the basic conversion of the masked 

cyclopentanone intermediates to 3S,4S-disubstituted adipic acid 

precursors of pharmaceutically important gababutins.  

Adipic acids and their derivatives, as important chemical building 

blocks, have received a great deal of attention due to their wide 

applications in the chemical and pharmaceutical field.[1] Thus, 

considerable efforts have been devoted to the synthesis of 

structurally diverse adipic acid derivatives.[2] However, to date 

there are only very few approaches to enantiopure adipic acid 

derivatives. One typical entry is the oxidation of chiral 

cyclohexenes, which could be obtained via (—)-menthol 

(Scheme 1, strategy a).[ 3 ] Another approach involving the 

electroreductive hydrocoupling of cinnamoyloxazolidinones was 

successfully realized by Kise and co-workers (Scheme 1, 

strategy b).[4] Later, they developed another protocol to chiral 

adipic esters via the electroreductive hydrocoupling of 

cinnamates derived from (+)-camphor (Scheme 1, strategy c).[5] 

Despite this progress, all these approaches employ chiral 

auxiliaries and few syntheses exist starting from achiral 

substrates.[6] To the best of our knowledge, catalytic diastereo- 

and enantioselective strategies to chiral adipic acid derivatives 

starting form achiral, simple substrates has so far not been 

realized, and therefore will be highly desirable.  

In the last few decades N-heterocyclic carbenes (NHCs) 

emerged as efficient organocatalysts for various synthetically 

important asymmetric bond formations,[ 7 ] for instance the 

conjugate umpolung of α,β-unsaturated aldehydes.[8 ] In 2007, 

Nair and co-workers first reported the NHC-catalyzed formal 

[3+2] cycloaddition of enals with cyclic Michael acceptors for the 

synthesis of spirocyclopentanes.[ 9 ] Only until recently have 

enantioselective variants been developed by Glorius[10] et al. and 

our group[11] by using heterocyclic Michael acceptors. However, 

the asymmetric formal [3+2] cycloaddition of enals with simple 

linear Michael acceptors is still a challenge, [12] presumably due 

to the competitive homoenolate/enolate domino process[ 13 ] or 

the difficulty of releasing the NHC catalyst via nucleophilic attack 

of a carbon atom.[14] Thus, a highly enantioselective variant of 

this kind of transformation remains elusive so far. Herein, we 

describe the first example of a one pot strategy to 

enantioenriched adipic acid derivatives via NHC-catalyzed 

formal [3+2] cycloaddition of enals with masked cinnnamates 

(Scheme 1, strategy d). 

 

Scheme 1. Typical approaches to chiral 3,4-disubstituted adipic acid 

derivatives. 

4-Nitro-5-styrylisoxazoles, known as valuable masked 

cinnamate equivalents and developed by Adamo et al., have 

been exploited and utilized for the synthesis of complex 

molecules.[15] Several chiral catalysts have been  developed for 

the transformations of 4-nitro-5-styrylisoxazoles, such as 

aminothioureas,[ 16 ] trienamines,[ 17 ] and phase transfer 

catalysts.[18] In 2012 Adamo et al. reported an interesting NHC-

catalyzed cycloaddition of 4-nitro-5-styrylisoxazoles with enals to 

generate racemic cyclopentanones.[ 19 ] Our group has been 

interested in the development of NHC-catalyzed asymmetric 

variants of important organic transformations.[20] Very recently, 

we successfully developed stereoselective cycloadditions of 4-
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nitro-5-styrylisoxazoles by using NHC catalysis.[ 21 ] We 

envisaged that diverse chiral adipic acid derivatives could be 

easily synthesized via a chiral-NHC-catalyzed [3+2] 

cycloaddition of enals with 4-nitro-5-styrylisoxazoles. 

Initially, the model reaction of the enal 1a and 3-methyl-4-nitro-5-

alkenyl-isoxazole 2a was investigated under NHC catalysis 

(Table 1). In the presence of the tetracyclic NHC A1 derived 

from aminoindanol,[ 22 ] and DBU as the base, the desired 

cycloadduct 3a could be obtained in encouraging 22% yield, with 

13:1 dr and 78% ee (entry 1). A solvent screening showed that 

the reaction in DCM, DCE, toluene or MTBE provided poorer 

results than in THF (entries 2–5). The yield and 

enantioselectivity was improved when NHC A2 with a strongly 

electron-withdrawing nitro group[ 23 ] was employed (entry 6). 

Other bases, such as DIPEA, CsOAc and Cs2CO3 were 

evaluated, but gave inferior results (entries 7–9). Further 

improvement was realized by degassing the reaction mixture 

(entry 10). When the reaction was carried out in DME with 

degassing, the desired product 3a was obtained in 57% yield 

with unchanged diastereo- and enantioselectivity (entry 11). 

Table 1: Optimization of the reaction conditions.  

 

Entry NHC Solvent Base Yield 

[%][a] 

d.r.[b] ee [%][c] 

1 A1 THF DBU 22 13:1 78 

2 A1 DCM DBU 22 16:1 56 

3 A1 DCE DBU 42 20:1 66 

4 A1 Toluene DBU trace — — 

5 A1 MTBE DBU trace — — 

6 A2 THF  DBU 30 15:1 97 

7 A2 THF DIPEA trace — — 

8 A2 THF CsOAc trace — — 

9 A2 THF Cs2CO3 trace — — 

10[d] A2 THF DBU 43 15:1 99 

11[d] A2 DME DBU 57 17:1 98 

[a] Yield of isolated product 3a after chromatography. [b] The d.r. values were 

determined by 1H NMR analysis. [c] The ee was determined by chiral HPLC  

analysis of the purified product on a chiral stationary phase. [d] The reaction 

mixture was degassed. 

With the optimized reaction conditions in hand, the scope of the 

reaction was then briefly investigated (Table 2). It was found that 

both 3-methyl-4-nitro-5-alkenyl-isoxazoles with electron-donating 

(4-MeOC6H4 and 4-MeC6H4) and electron-withdrawing (4-FC6H4 

and 4-ClC6H4) groups worked well for the reaction, giving the 

desired cycloadducts 3b–e in moderate to good yields with good 

diastereo- (7:1-18:1 d.r.) and high enantioselectivities (87-98% 

ee). The para-phenyl substituted isoxazole substrate also led to 

the efficient formation of the corresponding product 3f. Both 

substrates with a meta-substituent (3-ClC6H4) and ortho-

substituent (2-MeC6H4) worked well (3g and 3h). Notably, the 

reaction of a substrate with a 3-pyridyl group was also 

successful and provided the desired product 3i in 41% yield with 

16:1 d.r. and 99% ee. The 2-thienyl substituted substrate was 

also tolerable providing the corresponding cycloaddition 3j in 

moderate to good yield with high stereoselectivities. 

Unfortunately, an alkyl substituted substrate gave only a trace 

amount of the product under the current reaction conditions (3k).  

Table 2: Stereoselective [3+2] cycloaddition with various masked cinnamates.  

 

All reactions were carried out on 0.4 mmol scale. Yields of isolated products 3 

after chromatography. The d.r. was determined by 1H NMR analysis and the 

ee by HPLC analysis of the purified product on a chiral stationary phase. 
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The absolute configuration of the cycloadduct 3d was 

determined by the X-ray structure analysis[ 24 ] and the 

configurations of all other products were assigned accordingly. 

The scope of the reaction with respect to the enals was also 

examined (Table 3). The enals with electron-donating or 

electron-withdrawing substituents (4-MeOC6H4, 4-FC6H4, and 4-

BrC6H4) proceeded smoothly and gave the desired products 3l–

n in moderate to good yields and diastereomeric ratios with 

excellent enantioselectivities. Both a bulky aryl group (2-

MeOC6H4) and a heteroaryl group (2-furyl) were also tolerated, 

affording cycloadducts 3o–q in good yields with high 

stereoselectivities. The reaction of β-alkenyl and β-alkyl enals 

also worked, but in very low yield (22%) with 61% ee (3r), 30% 

yield with 92% ee (3s), respectively. 

Table 3: Stereoselective [3+2] cycloaddition with various enals.  

 

All reactions were carried out on 0.4 mmol scale. Yields of isolated products 3 

after chromatography. The d.r. was  determined by 1H NMR analysis and the 

ee by HPLC analysis of the purified product on a chiral stationary phase. [a] 

The products 3r, s are slightly contaminated by impurities. 

To demonstrate the synthetic utility of the present catalytic 

strategy, a convenient protocol for the asymmetric synthesis of 

3,4-disubstituted adipic acid esters was developed. The resulting 

cyclopentanones could be easily transformed to 3,4-

disubstituted adipic esters by treatment with aqueous NaOH 

followed by esterification (Scheme 2). The corresponding adipic 

esters 4a, 4c, 4f and 4n, with electron donating, para-phenyl 

and electron withdrawing substituents, respectively, were 

obtained in good yields without erosion of the stereoselectivity. 

The synthetic utility of this catalytic protocol was further 

demonstrated by aiming at the 3S,4S-disubstituted gababutins, 

which bind to the α2δ calcium channels,[ 25 ] and have been 

developed as treatments for various diseases, such as insomia, 

depression, hypokinesia and epilepsy.[26] As shown in Scheme 3, 

the [3+2] cycloaddition of 2 with cinnamaldehyde 1a followed by 

unmasking of the resulting cycloadducts 3 led to the one-pot 

formation of the 3S,4S-disubstituted adipic acids 5, precursors in 

the previous syntheses of 3S,4S-disubstituted gababutins.[3, 27] 

This application showcases the utility of NHC-organocatalysis 

and opens a novel short stereoselective entry to 3,4-

disubstituted gababutins. 

 

Scheme 2. Synthesis of 3S,4S-disubstituted adipic esters. 

 

Scheme 3. One pot asymmetric synthesis of 3S,4S-disubstituted adipic acids, 

as intermediates for the synthesis of 3S,4S-disubstituted gababutins. 
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In summary, we have developed an organocatalytic asymmetric 

synthesis of 3,4-disubstituted adipic acid derivatives employing a 

NHC-catalyzed [3+2] cycloaddition of enals and masked 

cinnamates to afford the corresponding cyclopentanones 

bearing a masked carboxylic acid group in moderate to good 

yields with high stereoselectivities. The new protocol was 

successfully applied for the one-pot asymmetric synthesis of 3,4-

disubstituted adipic acids as precursors of pharmaceutically 

important gababutins.  
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