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Abstract An efficient and economic Ag-catalyzed method

for the direct cross-coupling of unactivated imidazo[1,2-

a]pyridines with arylboronic acids has been developed.

This approach leads to the formation of corresponding 2,3-

diarylimidazo[1,2-a]pyridine derivatives as biological and

pharmaceutical materials of interest in good yields under

mild reaction conditions.
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Introduction

During the recent decades, the transition-metal-catalyzed

C-H bond activation reactions of heterocycles with aryl

groups for the formation of heteroaromatic molecules have

gained considerable importance among synthetic chemists

[1–9]. Although different transition metals have been

employed in these reactions, trying to find novel methods

using inexpensive and highly efficient transition-metal

catalysts is still attractive.

Imidazo[1,2-a]pyridines are one of the interesting bio-

logically active nitrogen-containing heterocyclic

compounds with a wide range of biological activities such

as antiviral [10], antibacterial [11], antifungal [12, 13],

antiprotozoal [14], antiherpes [15], and anti-apoptotic

properties [16]. Imidazo[1,2-a]pyridine unit is an essential

scaffold in a number of sedative and anxiolytic commercial

drugs such as saripidem, necopidem, and alpidem (Fig. 1).

Regarding the remarkable biological activities of imi-

dazo[1,2-a]pyridines, a number of synthetic routes for the

construction of this valuable scaffold have been reported

using a transition-metal-catalyzed cross-coupling reactions

in the literature. For instance, in 2000, Enguehard et al.

reported a Suzuki-type cross-coupling reaction on 2-sub-

stituted 3-iodoimidazo[1,2-a]pyridines to afford 2,3-

diarylimidazo[1,2-a]pyridines [17]. In 2012, Cao et al.

reported a copper-catalyzed direct C-3 arylation of 2-sub-

stituted imidazo[1,2-a]pyridines with aryl iodides,

bromides, and triflates [18]. In 2013, Liu et al. reported a

Rh-catalyzed C-H arylation of imidazo[1,2-a]pyridines

with aryl halides or triflates [19]. In 2014, Zhao et al.

reported a palladium-catalyzed cross-coupling of imi-

dazo[1,2-a]pyridines with arylboronic acids [20]. In the

same year, Wang et al. reported a palladium-catalyzed

cross-coupling reaction of imidazo[1,2-a]pyridines with
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arenes [21]. Also recently, a number of metal-catalyzed C–

H activation arylation reactions on 2-substituted imi-

dazo[1,2-a]pyridines to afford 2,3-disubstituted

imidazo[1,2-a]pyridines are reported in the literature

[22–28].

As can be concluded from the previous reports starting

from imidazo[1,2-a]pyridines, some drawbacks such as

using expensive transition-metal catalysts and being lim-

ited to use the halogen/triflate-bearing starting materials

suppress the ease of making new compounds by directly

starting from C–H target bonds. Therefore, introducing

efficient, facile, and economical methods to achieve the

direct C–H functionalization of target compounds to pro-

duce the corresponding cross-coupling products is of great

importance. Hence, we herein described the first example

of direct cross-coupling of imidazo[1,2-a]pyridines with

arylboronic acids at C-3 position in the presence of AgNO3

as an absolutely inexpensive catalyst under mild reaction

conditions.

Results and discussion

In continuation of our researches on preparation of

N-containing heterocyclic compounds [29–32], herein, we

report an efficient and economic approach for synthesis of

2,3-diarylimidazo[1,2-a]pyridines 3a–3h via direct Ag-

catalyzed cross-coupling reaction of unactivated

2-arylimidazo[1,2-a]pyridines 1 with arylboronic acids 2

(Scheme 1).

To achieve the optimized reaction conditions, 2-

phenylimidazo[1,2-a]pyridine (1a) and phenylboronic

acid (2a) were chosen as the model substrates (Table 1).

The effects of different silver catalysts, oxidants, addi-

tives, and solvents were screened. We started our

investigations by screening the formation of the desired

coupling product in the presence of 10 mol% AgNO3 as

the catalyst, 1 equiv. of K2S2O8 as the oxidant, and 1

equiv. of TFA as an additive in 6 cm3 of CH2Cl2:H2O

with the ratio 1:1 at rt which led to 54% product yield

(entry 1). Among the other examined silver(I) catalysts,

AgNO3 gave the highest yield in combination with

K2S2O8 as the oxidant. Using other silver(I) catalysts

such as Ag2CO3 and Ag2O decreased the reaction yield

as well as other oxidants such as Na2S2O8 and H2O2

(entries 2–5). We next examined the amounts of catalyst

and oxidant with different ratios (entries 6–15). Finally,

we studied the effect of the solvent on the reaction

progress. The use of other solvents like CH3CN:H2O and

acetone:H2O dramatically suppressed the yield and were

totally ineffective (entry 16, 17). It was clearly con-

cluded that the best results were obtained with 20 mol%

AgNO3 and 3 equiv. of K2S2O8, TFA as an additive in

CH2Cl2:H2O with the ratio 1:1 (entry 11).

With the optimized reaction conditions available for the

Ag-catalyzed synthesis of 2,3-diarylimidazo[1,2-a]pyridi-

nes, we investigated the substrates scope. Different

2-arylimidazo[1,2-a]pyridines with various aryl boronic

acids were examined, and the results are summarized in

Table 2. As shown in Table 2, different electron-donating

and electron-withdrawing substituents on the aryl ring of

arylboronic acids were tolerated and the resulting corre-

sponding products 3a–3h were obtained in good yields.

On the basis of the previous reports, a plausible mech-

anism for the formation of 2,3-diarylimidazo[1,2-

a]pyridines 3 is given in Scheme 2. It has been reported

Fig. 1 Examples of

commercially available

imidazo[1,2-a]pyridine-based

drugs

Scheme 1
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[33–35] that persulfate anion in the presence of Ag(I) dis-

proportionates into sulfate radical anion, sulfate dianion,

and Ag(II) ion. Next, arylboronic acid, through the reduc-

tion of Ag(II) into Ag(I), provides an aryl radical. This aryl

radical could react with the protonated imidazopyridine

A to give radical cation B. Then, a hydrogen atom can be

removed from radical cation B by sulfate radical anion to

produce protonated imidazopyridine C. Finally, the desired

product 3 can be afforded after a basic workup (Scheme 2).

In conclusion, we have developed a novel, facile, and

economic Ag-catalyzed direct cross-coupling reaction of

unactivated imidazo[1,2-a]pyridines with arylboronic acids

for the first time. The present method represents an

efficient way to produce the corresponding imidazo[1,2-

a]pyridine derivatives in good yields under mild reaction

conditions.

Experimental

All chemicals were purchased from Merck and Fluka

companies. All yields refer to isolated products. 1H and 13C

NMR spectra were recorded on a Bruker (Rheinstetten,

Germany) NMR spectrometer (at 500 and 400 MHz) using

tetramethylsilane (TMS) as internal standard. Melting

points were determined in a capillary tube. The progress of

Table 1 Effect of different reaction conditions on synthesis of 2,3-diphenylimidazo[1,2-a]pyridine

Entry Catalyst Oxidant Additive Solvent Yield/%a

1 AgNO3 K2S2O8 TFA CH2Cl2/H2O 54

2 Ag2CO3 K2S2O8 TFA CH2Cl2/H2O 48

3 Ag2O K2S2O8 TFA CH2Cl2/H2O 43

4 AgNO3 Na2S2O8 TFA CH2Cl2/H2O 50

5 AgNO3 H2O2 TFA CH2Cl2/H2O 10

6b AgNO3 K2S2O8 TFA CH2Cl2/H2O 64

7c AgNO3 K2S2O8 TFA CH2Cl2/H2O 58

8d AgNO3 K2S2O8 TFA CH2Cl2/H2O 40

9e AgNO3 K2S2O8 TFA CH2Cl2/H2O 34

10f AgNO3 K2S2O8 TFA CH2Cl2/H2O 53

11g AgNO3 K2S2O8 TFA CH2Cl2/H2O 71

12h AgNO3 K2S2O8 TFA CH2Cl2/H2O 50

13i AgNO3 K2S2O8 TFA CH2Cl2/H2O 35

14j AgNO3 K2S2O8 TFA CH2Cl2/H2O 48

15k AgNO3 K2S2O8 TFA CH2Cl2/H2O 61

16 AgNO3 K2S2O8 TFA CH3CN/H2O Trace

17 AgNO3 K2S2O8 TFA Acetone/H2O Trace

Reaction conditions: 2-phenylimidazo[1,2-a]pyridine (1a, 1 mmol), phenylboronic acid (2a, 1.5 mmol), catalyst (10 mol%), oxidant (1 eq.),

TFA (1 eq), solvent (1:1), rt, 12 h
a Isolated yields
b Catalyst (10 mol%), oxidant (2 eq.)
c Catalyst (10 mol%), oxidant (3 eq.)
d Catalyst (10 mol%), oxidant (4 eq.)
e Catalyst (20 mol%), oxidant (1 eq.)
f Catalyst (20 mol%), oxidant (2 eq.)
g Catalyst (20 mol%), oxidant (3 eq.)
h Catalyst (20 mol%), oxidant (4 eq.)
i Catalyst (30 mol%), oxidant (1 eq.)
j Catalyst (30 mol%), oxidant (2 eq.)
k Catalyst (30 mol%), oxidant (3 eq.)
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the reaction was followed with TLC using silica gel SILG/

UV 254 and 365 plates. All products are known com-

pounds and their structures were deduced by 1H and 13C

NMR spectroscopies.

Typical procedure for the preparation

of compounds 3a–3h

To a solution of imidazo[1,2-a] pyridine (1 mmol, 1equiv)

in 3 cm3 dichloromethane was added trifluoroacetic acid

(1 mmol, 1 equiv) and arylboronic acid (1.5 mmol, 1.5

equiv). Water (2 cm3) was then added, followed by sil-

ver(I) nitrate (0.2 mmol, 20 mol%) in 1 cm3 water.

Potassium persulfate (3 mmol, 3 equiv) was then added

and the solution was stirred vigorously at room temperature

and was screened by TLC. After completion of the reac-

tion, the reaction mixture was diluted with 6 cm3

dichloromethane and washed with 5% sodium bicarbonate.

The aqueous layer was extracted with dichloromethane

(3 9 4 cm3), dried over sodium sulfate, and evaporated in

vacuum. Purification was performed by column

chromatography using hexane:ethyl acetate (1:4) to obtain

desired products.
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